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h(x) = x1 + x4+ x0x3 + x2x3+ x3x4 + x0x1x2 + x0x2x3 + x0x2x4+x1x2x4 + x2x3x4.

The output function is taken aszi =
∑

k∈A ni+k + h(l i+3, l i+25, l i+46, l i+64, ni+63),
whereA = {1, 2, 4, 10, 31, 43, 56}.

Bin Zhang, Zhenqi Li (IIE,ISCAS) FSE 2013 March 13, 2013 5 / 29



Outline

Introduction

Description of Grain v1

Main idea& some key observations

The general attack model: NCA-1.0

NCA-2.0& NCA-3.0

Simulations

Conclusions

Bin Zhang, Zhenqi Li (IIE,ISCAS) FSE 2013 March 13, 2013 6 / 29



Main idea

In this paper, a new key recovery attack, called near collision attack is proposed,
utilizing the compact NFSR-LFSR combined structure of Grain v1.

Bin Zhang, Zhenqi Li (IIE,ISCAS) FSE 2013 March 13, 2013 7 / 29



Main idea

In this paper, a new key recovery attack, called near collision attack is proposed,
utilizing the compact NFSR-LFSR combined structure of Grain v1.

It is observed that the NFSR and LFSR are of length exactly 80-bit (with no
redundance) and theLFSR updates independentlyin the keystream generation
phase.

Bin Zhang, Zhenqi Li (IIE,ISCAS) FSE 2013 March 13, 2013 7 / 29



Main idea

In this paper, a new key recovery attack, called near collision attack is proposed,
utilizing the compact NFSR-LFSR combined structure of Grain v1.

It is observed that the NFSR and LFSR are of length exactly 80-bit (with no
redundance) and theLFSR updates independentlyin the keystream generation
phase.

It is observed that the LFSR state bits can be easily recovered, given the internal
state difference at two different time instants.

Bin Zhang, Zhenqi Li (IIE,ISCAS) FSE 2013 March 13, 2013 7 / 29



Main idea

In this paper, a new key recovery attack, called near collision attack is proposed,
utilizing the compact NFSR-LFSR combined structure of Grain v1.

It is observed that the NFSR and LFSR are of length exactly 80-bit (with no
redundance) and theLFSR updates independentlyin the keystream generation
phase.

It is observed that the LFSR state bits can be easily recovered, given the internal
state difference at two different time instants.

It is observed that the distribution of the keystream segment differences is
non-uniform, given a low Hamming weight internal state difference.

Bin Zhang, Zhenqi Li (IIE,ISCAS) FSE 2013 March 13, 2013 7 / 29



Main idea

In this paper, a new key recovery attack, called near collision attack is proposed,
utilizing the compact NFSR-LFSR combined structure of Grain v1.

It is observed that the NFSR and LFSR are of length exactly 80-bit (with no
redundance) and theLFSR updates independentlyin the keystream generation
phase.

It is observed that the LFSR state bits can be easily recovered, given the internal
state difference at two different time instants.

It is observed that the distribution of the keystream segment differences is
non-uniform, given a low Hamming weight internal state difference.

Three attacks has been proposed: NCA-1.0, NCA-2.0 combinedwith BSW
sampling, NCA-3.0 utilizing the non-uniform distributionof the internal state
differences for a fixed keystream difference.
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Preliminaries

Definition
Two n-bit strings s, s′ are d-near-collision, if wH(s⊕ s′) ≤ d.

Similar to the birthday paradox, which states that two random subsets of a space with
2n elements are expected to intersect when the product of theirsizes exceeds 2n, we
present the followinglemma ofd-near-collision.

Lemma
Given two random subsets A, B of a space with2n elements, then there exists a pair
(a, b) with a∈ A and b∈ B that is an d-near-collision if

|A| · |B| ≥
2n

V(n, d)
(1)

holds, where|A| and|B| are the size of A and B respectively.

V(n, d) =
∑d

i=0

(n
i

)

.
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Observation I-State recovery with known state difference

Denote the LFSR state asLt1 = (lt10 , l
t1
1 , ..., l

t1
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79)
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The next step is to recover the NFSR state att1 andt2, the time complexity is
bounded by 220.3 cipher ticks.
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Observation II-the Distribution of the KSD

The distribution of keystream segment differences (KSDs) is biased, given a
specific internal state differential (ISD).
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0x2000 38.3% 0x0801 37.2%
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The distribution of KSDs.
l = 16, d = 4.

The results also show that there exists some impossible differences for most of
(d, l) pairs.
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If each keystream bit is treated as a random variable, then for eachki , the
probability that the attacker need to generatel (1 ≤ l ≤ 80) bits keystream is 1
for l = 1 and 2−(l−1) for l > 1

Let Nw be the expected number of bits needed to generate for each enumerated
key, which isNw =

∑80
l=1 l · Pl =

∑80
l=1 l · 2−(l−1) ≈ 4. Then, the total time

complexity is(280 − 1) · (160+ 4) ≈ 287.4 cipher ticks.
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Complexity Analysis of NCA-1.0

Pre-computation time:P = 2 · N · V(n, d) · l. The data complexity is
D = |A|+ |B| l̂-bit keystream segments and the memory requirement is
M = M1 + M2 = V(n, d) · 26.6 + |A|+ |B| entries.
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M = M1 + M2 = V(n, d) · 26.6 + |A|+ |B| entries.

Step 2:T1 = (|A| · log |A|+ |B| · log |B|)/Ω cipher ticks.

Step 3:T2 = min{Q(n, d, l) · m · logm/Ω, m2 · logQ(n, d, l)/Ω} ticks.

Step 4:T3 = |A| · |B| · V(n, d) · 26.6 · TK/Q(n, d, l).

Table: The attack complexity with variousl

l P T1 T2 T3 T
102 295.7 240.9 285.8 286.4 286.4

104 295.7 240.9 285.9 284.4 285.9

106 295.7 240.9 285.9 272.4 285.9

n = 160, d = 16, D = 245.8, M = 278.6

Strategy II is chosen in Step 3.
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Step 3:T2 = min{Q(n, d, l) · m · logm/Ω, m2 · logQ(n, d, l)/Ω} ticks.

Step 4:T3 = |A| · |B| · V(n, d) · 26.6 · TK/Q(n, d, l).

Table: The attack complexity with variousl

l P T1 T2 T3 T
102 295.7 240.9 285.8 286.4 286.4

104 295.7 240.9 285.9 284.4 285.9

106 295.7 240.9 285.9 272.4 285.9

n = 160, d = 16, D = 245.8, M = 278.6

Strategy II is chosen in Step 3.

We name this basic attack as NCA-1.0. The pre-computation complexity
P = 295.7 exceeds the brute force attack complexity of 287.4.
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The first improvement is designated by combining thesampling resistance
property of Grainwith NCA-1.0.
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Lemma
Given the value of139particular state bits of Grain and the first21keystream bits
produced from that state, another21 internal state bits can be deduced directly.

The sampling resistance of Grain isR= 2−21. Thus we definea restricted
one-way functionτ : {0, 1}139 → {0, 1}139 by choosing a prefix of 021.

1. For each 139-bit input valuex, the remaining 21-bit internal state can be determined
by Lemma 2 and the prefix of 021.

2. Run the cipher forward for 160 ticks, generate an 160-bit segment 021||y, outputy.

Now, the searching space is reduced to a special subset of theinternal states.

Bin Zhang, Zhenqi Li (IIE,ISCAS) FSE 2013 March 13, 2013 17 / 29



Complexity Analysis of NCA-2.0

Now, the goal is torecover then∗ = 139 bits ISDwhich contains 60 NFSR state
bits and 79 LFSR state bits, instead of then = 160 bits ISD.

Bin Zhang, Zhenqi Li (IIE,ISCAS) FSE 2013 March 13, 2013 18 / 29



Complexity Analysis of NCA-2.0

Now, the goal is torecover then∗ = 139 bits ISDwhich contains 60 NFSR state
bits and 79 LFSR state bits, instead of then = 160 bits ISD.

We need to collect those keystream segments with the prefix pattern 021, the data
complexity isD = (|A|+ |B|) · 221.

Bin Zhang, Zhenqi Li (IIE,ISCAS) FSE 2013 March 13, 2013 18 / 29



Complexity Analysis of NCA-2.0

Now, the goal is torecover then∗ = 139 bits ISDwhich contains 60 NFSR state
bits and 79 LFSR state bits, instead of then = 160 bits ISD.

We need to collect those keystream segments with the prefix pattern 021, the data
complexity isD = (|A|+ |B|) · 221.

Table: The attack complexities with variousl based on sampling resistance

l P∗ T1 T2 T3 T
92 283.4 235.9 276.1 275.4 276.1

94 283.4 235.9 276.2 273.4 276.2

96 283.4 235.9 276.2 271.4 276.2

n∗ = 139, d = 13, D = 262, M = 265.9.
Strategy II is chosen in Step 3.
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Strategy II is chosen in Step 3.

Compared to NCA-1.0, our improved attack reducesP by a factor of 212.3 and it
saves 10-bit storage for each entry inA andB.
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Now, the goal is torecover then∗ = 139 bits ISDwhich contains 60 NFSR state
bits and 79 LFSR state bits, instead of then = 160 bits ISD.

We need to collect those keystream segments with the prefix pattern 021, the data
complexity isD = (|A|+ |B|) · 221.

Table: The attack complexities with variousl based on sampling resistance

l P∗ T1 T2 T3 T
92 283.4 235.9 276.1 275.4 276.1

94 283.4 235.9 276.2 273.4 276.2

96 283.4 235.9 276.2 271.4 276.2

n∗ = 139, d = 13, D = 262, M = 265.9.
Strategy II is chosen in Step 3.

Compared to NCA-1.0, our improved attack reducesP by a factor of 212.3 and it
saves 10-bit storage for each entry inA andB.

All the complexities are under the brute force attack complexity of 287.4. We
name this combined attack as NCA-2.0.
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NCA-3.0

The second improvement is based on NCA-2.0 byutilizing the non-uniform
distribution of KSDsamong all the tables. Some observations (Example in
Section 3.2):
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d and l becomes larger.
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The second improvement is based on NCA-2.0 byutilizing the non-uniform
distribution of KSDsamong all the tables. Some observations (Example in
Section 3.2):

1. Some tables like table-0x0000, table-0x0008, table-0x0004 contains more rows than
those like table-0x0012 and table-0x0048.

2. Table-0x0000 contains the most rows among all the tables.
3. Most tables like table-0xfe00, table-0xfd68 and table-0xfad1 only contain a single

row.
4. The tables with low Hamming weight indexes satisfyingwH(KSD) ≤ 3 (special

tables) contain about 80% of all theV(n, d) different ISDs.

Assumption
On average, the special tables can cover50% of all the V(n∗, d) different ISDs, when
d and l becomes larger.

The assumption indicates that in the off-line stage, we onlyneed to construct
those special tables.
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Complexity Analysis of NCA-3.0

All the complexities remain unchanged except
T2 = min{l3 · m · logm, m2 · log l3}.
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All the complexities remain unchanged except
T2 = min{l3 · m · logm, m2 · log l3}.

Table: The attack complexity on Grain with variousl based on special tables

l P∗ T1 T2 T3 T
92 273.1 241.9 260.5 275.4 275.4

94 273.1 241.9 260.6 273.4 273.4

96 273.1 241.9 260.7 271.4 271.4

n∗ = 139, d = 10, M = 262.8 bits,D = 267.8 bits keystream.
Strategy I is chosen in Step 3.
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Complexity Analysis of NCA-3.0

All the complexities remain unchanged except
T2 = min{l3 · m · logm, m2 · log l3}.

Table: The attack complexity on Grain with variousl based on special tables

l P∗ T1 T2 T3 T
92 273.1 241.9 260.5 275.4 275.4

94 273.1 241.9 260.6 273.4 273.4

96 273.1 241.9 260.7 271.4 271.4

n∗ = 139, d = 10, M = 262.8 bits,D = 267.8 bits keystream.
Strategy I is chosen in Step 3.

We can obtain an attack ofT = 271.4, M = 262.8 andD = 267.8 with the
pre-computation complexityP = 273.1. We name this enhanced attack as
NCA-3.0.
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Simulation and Results-Reduced Version

The reduced version of Grain v1 cipher consists of an LFSR of 32 bits and an
NFSR of 32 bits. The update functions of LFSR and NFSR are designed in a
similar way as full version.
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Simulation and Results-Reduced Version

The reduced version of Grain v1 cipher consists of an LFSR of 32 bits and an
NFSR of 32 bits. The update functions of LFSR and NFSR are designed in a
similar way as full version.

LFSR update function:l′i+32 = l′i+30 + l′i+25 + l′i+16 + l′i . NFSR update function:

n′i+32 = l′i + n′i+25 + n′i+23 + n′i+15 + n′i+8 + n′i + n′i+25n
′
i+23 + n′i+15n

′
i+8

+ n′i+25n
′
i+23n

′
i+15 + n′i+23n

′
i+15n

′
i+8 + n′i+25n

′
i+23n

′
i+15n

′
i+8.

The output function asz′i =
∑

k∈A′ n′i+k + h(l′i+3, l
′
i+11, l

′
i+21, l

′
i+25, n

′
i+24), where

A = {1, 4, 10, 21}.

Given the value of 53 particular state bits (including 32 bits LFSR and 21 bits
NFSR) and the first 11 keystream bits, another 11 internal state bits can be
deduced directly. Thenthe sampling resistance isR′ = 2−11.
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Verification of Assumption 1

We randomly chose 104 ISDs with Hamming weightd ≤ 4 and generate their
corresponding KSDs with the proportions. For each ISD,N random internal
states were generated to determine the projection from ISD to KSD.
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Similar to the process of the off-line stage, we only consider at mostη KSDs
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states were generated to determine the projection from ISD to KSD.
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Similar to the process of the off-line stage, we only consider at mostη KSDs
whose proportions are the firstη largest among all the KSDs. Finally, we count
the number of different ISDs in these special tables.

Table: Verification of Assumption 1

η l No. of ISDs Proportion
50 24 9842 98.4%

1000 24 9851 98.5%
50 32 9202 92.0%
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n = 53, d = 4.
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Simulations

In the off-line stage, we setη = 50,N = 212 andd = 4.
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Table: Theoretical complexity on reduced version of Grain

Attack l P D M T
NCA-2.0 24 236.3 229.2 223.9 236.2

NCA-3.0 24 236.3 229.2 223.9 236.2

NCA-2.0 32 236.7 229.2 223.9 231.4

NCA-3.0 32 236.7 229.2 223.9 228.2

η = 50, N = 212, d = 4.
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Table: Theoretical complexity on reduced version of Grain

Attack l P D M T
NCA-2.0 24 236.3 229.2 223.9 236.2

NCA-3.0 24 236.3 229.2 223.9 236.2

NCA-2.0 32 236.7 229.2 223.9 231.4

NCA-3.0 32 236.7 229.2 223.9 228.2

η = 50, N = 212, d = 4.

Table: Pre-computation time of NCA-2.0& NCA-3.0

Attack l Time Memory No. of tables
NCA-2.0 24 9 hours, 50 mins 643 MB 8192
NCA-3.0 24 6 hours, 35 mins 216 MB 378
NCA-2.0 32 27 hours,41 mins 4.45 GB 2097152
NCA-3.0 32 6 hours, 37 mins 11.6 MB 1562
η = 50, N = 212, d = 4.
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Simulations

We apply NCA-2.0 and NCA-3.0 to the reduced version of Grain respectively for
140 randomly generated (K,IV) pairs.
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Further Discussion

The success probability needs to be stabilized.
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reducing the complexity of recovering the NFSR given the LFSR and the state
difference. We will provide the details in the upcoming papers.

We can also see that the experimental success probability ofNCA-2.0 is lower
than estimated in theory. The reason is that we choose a restricted value ofη and
N. These two parameters directly influence the size and the number of the
pre-computed tables, hence affect the success probability.
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Further Discussion

The success probability needs to be stabilized.

Our attack need to be refined further and we indeed get some improvements by
reducing the complexity of recovering the NFSR given the LFSR and the state
difference. We will provide the details in the upcoming papers.

We can also see that the experimental success probability ofNCA-2.0 is lower
than estimated in theory. The reason is that we choose a restricted value ofη and
N. These two parameters directly influence the size and the number of the
pre-computed tables, hence affect the success probability.

How to theoretically derive the relationship between the success probability and
these two parameters is our future work.
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Our attack has been verified on a reduced version of Grain v1 and an
extrapolation of the results indicates an attack on the original Grain v1.

Our attack is just a starting point for further analysis of Grain-like stream ciphers
and hopefully it provides some new insights on the design of such compact
stream ciphers.
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Thanks for your attention!
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