Higher-Order Side Channel Security and Mask Refreshing

J.-S. Coron, E. Prouff, M. Rivain and <u>T. Roche</u> thomas.roche@ssi.gouv.fr

FSE 2013 – March 2013

T. Roche, ANSSI Higher-Order Side Channel Security and Mask Refreshing

Side Channel Analysis

Side Channel Attacks (SCA) appear 15 years ago

- 1996 : Timing Attacks
- ► 1998 : Power Analysis
- ► 2000 : Electromagnetic Analysis

Numerous attacks

- 1998 : (single-bit) DPA KocherJaffeJune1999
- ▶ 1999 : (multi-bit) DPA Messerges99
- ► 2000 : Higher-order SCA Messerges2000
- ► 2002 : Template SCA ChariRaoRohatgi2002
- ► 2004 : CPA BrierClavierOlivier2004
- ▶ 2005 : Stochastic SCA SchindlerLemkePaar2006
- ► 2008 : Mutual Information SCA GierlichsBatinaTuyls2008
- ► etc.

Side Channel Analysis

Side Channel Attacks (SCA) appear 15 years ago

- 1996 : Timing Attacks
- ▶ 1998 : Power Analysis
- ► 2000 : Electromagnetic Analysis
- Numerous attacks
 - ▶ 1998 : (single-bit) DPA KocherJaffeJune1999
 - ▶ 1999 : (multi-bit) DPA Messerges99
 - ► 2000 : Higher-order SCA Messerges2000
 - ► 2002 : Template SCA ChariRaoRohatgi2002
 - ► 2004 : CPA BrierClavierOlivier2004
 - ► 2005 : Stochastic SCA SchindlerLemkePaar2006
 - ► 2008 : Mutual Information SCA GierlichsBatinaTuyls2008
 - etc.

■ Masking [IBM Team at CRYPTO 1999].

- Efficient against SCA in practice.
- Difficult to implement for non-linear transformations.
- Shuffling [Researchers from Graz University at ACNS 2006].
 - Less efficient against SCA in practice.
 - Easy to implement for every transformation.
- Whitening [Kocher Jaffe June, CRYPTO 1999].
 - Less efficient than masking when used alone and costly in Hardware.
 - Easy to implement for every transformation.

■ Masking [IBM Team at CRYPTO 1999].

- Efficient against SCA in practice.
- Difficult to implement for non-linear transformations.
- Shuffling [Researchers from Graz University at ACNS 2006].
 - Less efficient against SCA in practice.
 - Easy to implement for every transformation.
- Whitening [Kocher Jaffe June, CRYPTO 1999].
 - Less efficient than masking when used alone and costly in Hardware.
 - Easy to implement for every transformation.

- Masking [IBM Team at CRYPTO 1999].
 - Efficient against SCA in practice.
 - Difficult to implement for non-linear transformations.
- Shuffling [Researchers from Graz University at ACNS 2006].
 - Less efficient against SCA in practice.
 - Easy to implement for every transformation.
- Whitening [Kocher Jaffe June, CRYPTO 1999].
 - Less efficient than masking when used alone and costly in Hardware.
 - Easy to implement for every transformation.

- Masking [IBM Team at CRYPTO 1999].
 - Efficient against SCA in practice.
 - Difficult to implement for non-linear transformations.
- Shuffling [Researchers from Graz University at ACNS 2006].
 - Less efficient against SCA in practice.
 - Easy to implement for every transformation.
- Whitening [Kocher Jaffe June, CRYPTO 1999].
 - Less efficient than masking when used alone and costly in Hardware.
 - Easy to implement for every transformation.

Idea : consists in securing the implementation using secret sharing techniques.

- First Ideas in GoubinPatarin99 and ChariJutlaRaoRohatgi99.
- Soundness based on the following remark :

[Chari-Jutla-Rao-Rohatgi CRYPTO'99]

- Bit x masked $\mapsto x_0, x_1, \ldots, x_d$
- Leakage : $L_i \sim x_i + \mathcal{N}(\mu, \sigma^2)$
- # of leakage samples to test $((L_i)_i | x = 0) = ((L_i)_i | x = 1)$:

 $q \ge O(1)\sigma^d$

Idea : consists in securing the implementation using secret sharing techniques.

- **First Ideas in** GoubinPatarin99 **and** ChariJutlaRaoRohatgi99.
- Soundness based on the following remark :

[Chari-Jutla-Rao-Rohatgi CRYPTO'99]

- Bit x masked $\mapsto x_0, x_1, \ldots, x_d$
- Leakage : $L_i \sim x_i + \mathcal{N}(\mu, \sigma^2)$
- # of leakage samples to test $((L_i)_i | x = 0) = ((L_i)_i | x = 1)$:

 $q \ge O(1)\sigma^d$

Idea : consists in securing the implementation using secret sharing techniques.

- **First Ideas in** GoubinPatarin99 **and** ChariJutlaRaoRohatgi99.
- Soundness based on the following remark :

[Chari-Jutla-Rao-Rohatgi CRYPTO'99]

- Bit x masked $\mapsto x_0, x_1, \ldots, x_d$
- Leakage : $L_i \sim x_i + \mathcal{N}(\mu, \sigma^2)$
- # of leakage samples to test $((L_i)_i | x = 0) = ((L_i)_i | x = 1)$:

$$q \ge O(1)\sigma^d$$

Idea : consists in securing the implementation using secret sharing techniques.

- **First Ideas in** GoubinPatarin99 **and** ChariJutlaRaoRohatgi99.
- Soundness based on the following remark :

[Chari-Jutla-Rao-Rohatgi CRYPTO'99]

- Bit x masked $\mapsto x_0, x_1, \ldots, x_d$
- Leakage : $L_i \sim x_i + \mathcal{N}(\mu, \sigma^2)$
- # of leakage samples to test $((L_i)_i | x = 0) = ((L_i)_i | x = 1)$:

$$q \ge O(1)\sigma^d$$

Probing Adversary

- Notion introduced in IshaiSahaiWagner, CRYPTO 2003
- A dth-order probing adversary is allowed to observe at most d intermediate results during the overall algorithm processing.
 - ► Hardware interpretation : *d* is the maximum of wires observed in the circuit.
 - Software interpretation : d is the maximum of different timings during the processing.
- dth-order probing adversary = dth-order SCA as introduced in Messerges99.
- Countermeasures proved to be secure against a dth-order probing adv. :
 - ► d = 1 : KocherJaffeJune99, BlömerGuajardoKrummel04, ProuffRivain07.
 - d = 2 : RivainDottaxProuff08.
 - ► d ≥ 1 : IshaiSahaiWagner03, ProuffRoche11, GenelleProuffQuisquater11, CarletGoubinProuffQuisquaterRivain12.

Probing Adversary

- Notion introduced in IshaiSahaiWagner, CRYPTO 2003
- A dth-order probing adversary is allowed to observe at most d intermediate results during the overall algorithm processing.
 - ► Hardware interpretation : *d* is the maximum of wires observed in the circuit.
 - Software interpretation : d is the maximum of different timings during the processing.
- dth-order probing adversary = dth-order SCA as introduced in Messerges99.
- Countermeasures proved to be secure against a dth-order probing adv. :
 - ► d = 1 : KocherJaffeJune99, BlömerGuajardoKrummel04, ProuffRivain07.
 - d = 2: RivainDottaxProuff08.
 - $d \ge 1$: IshaiSahaiWagner03, ProuffRoche11,

 $Genelle Prouff Quisquater 11, \ Carlet Goubin Prouff Quisquater Rivain 12.$

Higher-Order Masking Schemes

Achieving security in the probing adversary model

Definition

A *dth-order masking scheme* for an encryption algorithm $c \leftarrow \mathcal{E}(m, k)$ is an algorithm

$$(c_0, c_1, \ldots, c_d) \leftarrow \mathcal{E}'((m_0, m_1, \ldots, m_d), (k_0, k_1, \ldots, k_d))$$

Completeness : there exists R s.t. :

 $R(c_0,\cdots,c_d)=\mathcal{E}(m,k)$

• Security : $\forall \{iv_1, iv_2, \dots, iv_d\} \subseteq \{\text{intermediate var. of } \mathcal{E}'\}$: $\Pr(k \mid iv_1, iv_2, \dots, iv_d) = \Pr(k)$

For SPN (eg. DES, AES) the main issue is masking the S-box.

Higher-Order Masking Schemes

Achieving security in the probing adversary model

Definition

A *dth-order masking scheme* for an encryption algorithm $c \leftarrow \mathcal{E}(m, k)$ is an algorithm

$$(c_0, c_1, \ldots, c_d) \leftarrow \mathcal{E}'((m_0, m_1, \ldots, m_d), (k_0, k_1, \ldots, k_d))$$

Completeness : there exists R s.t. :

 $R(c_0,\cdots,c_d)=\mathcal{E}(m,k)$

• Security : $\forall \{iv_1, iv_2, \dots, iv_d\} \subseteq \{\text{intermediate var. of } \mathcal{E}'\}$: $\Pr(k \mid iv_1, iv_2, \dots, iv_d) = \Pr(k)$

For SPN (eg. DES, AES) the main issue is masking the S-box.

Original work of Ishai, Sahai and Wagner

- Original idea limited to GF(2) IshaiSahaiWagner2003
- Extended to any field in RivainProuff2010 and EaustRabinRevzinTromerVaikuntanathan2011
- Data are split by bitwise addition : $x \longrightarrow x_0, \dots, x_d$ s.t. $x_i \leftarrow$ \$, i > 0, and $x_0 = \bigoplus_i x_i$.
- Masking of Linear Transformations L is easy :

$$L(x) \to \underbrace{L(x_0), L(x_1), \cdots, L(x_d)}_{L(x_0) \oplus L(x_1) \oplus \cdots \oplus L(x_d) = L(x)}$$

Masking of non-linear transformations is an issue since the operations cannot be done on each shares separately.

 → Problem reduces to secure multiplications !

Original work of Ishai, Sahai and Wagner

Main idea : split the S-box computation into elementary operations and protect each of them individually.

- Original idea limited to GF(2) IshaiSahaiWagner2003
- Extended to any field in RivainProuff2010 and

Faust Rabin Reyzin Tromer Vaikun tanathan 2011.

- Data are split by bitwise addition : $x \longrightarrow x_0, \dots, x_d$ s.t. $x_i \leftarrow$ \$, i > 0, and $x_0 = \bigoplus_i x_i$.
- Masking of Linear Transformations L is easy :

$$L(x) \to \underbrace{L(x_0), L(x_1), \cdots, L(x_d)}_{L(x_0) \oplus L(x_1) \oplus \cdots \oplus L(x_d) = L(x)}$$

Masking of non-linear transformations is an issue since the operations cannot be done on each shares separately.

 → Problem reduces to secure multiplications !

Original work of Ishai, Sahai and Wagner

Main idea : split the S-box computation into elementary operations and protect each of them individually.

- Original idea limited to GF(2) IshaiSahaiWagner2003
- Extended to any field in RivainProuff2010 and

Faust Rabin Reyzin Tromer Vaikunt anathan 2011.

- Data are split by bitwise addition : $x \longrightarrow x_0, \dots, x_d$ s.t. $x_i \leftarrow$ \$, i > 0, and $x_0 = \bigoplus_i x_i$.
- Masking of Linear Transformations L is easy :

$$L(x) \to \underbrace{L(x_0), L(x_1), \cdots, L(x_d)}_{L(x_0) \oplus L(x_1) \oplus \cdots \oplus L(x_d) = L(x)}$$

Masking of non-linear transformations is an issue since the operations cannot be done on each shares separately.

 → Problem reduces to secure multiplications !

Original work of Ishai, Sahai and Wagner

Main idea : split the S-box computation into elementary operations and protect each of them individually.

- Original idea limited to GF(2) IshaiSahaiWagner2003
- Extended to any field in RivainProuff2010 and

Faust Rabin Reyzin Tromer Vaikunt anathan 2011.

- Data are split by bitwise addition : $x \longrightarrow x_0, \dots, x_d$ s.t. $x_i \leftarrow$ \$, i > 0, and $x_0 = \bigoplus_i x_i$.
- Masking of Linear Transformations L is easy :

$$L(x) \to \underbrace{L(x_0), L(x_1), \cdots, L(x_d)}_{L(x_0) \oplus L(x_1) \oplus \cdots \oplus L(x_d) = L(x)}$$

- Masking of non-linear transformations is an issue since the operations cannot be done on each shares separately.
 - $\blacktriangleright \quad \rightarrow \text{ Problem reduces to secure multiplications }!$

Ishai-Sahai-Wagner Scheme (ISW)

Outlines of the scheme :

- Input : $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
- Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = a \times b$

$$\bigoplus_i c_i = (\bigoplus_i a_i) \times (\bigoplus_i b_i) = \bigoplus_{i,j} a_i \times b_j$$

• Example (d = 2):

Ishai et al. prove (d/2)th-order security

Ishai-Sahai-Wagner Scheme (ISW)

Outlines of the scheme :

- Input : $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
- Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = a \times b$

$$\bigoplus_{i} c_{i} = (\bigoplus_{i} a_{i}) \times (\bigoplus_{i} b_{i}) = \bigoplus_{i,j} a_{i} \times b_{j}$$

• Example (d = 2):

Ishai et al. prove (d/2)th-order security

Ishai-Sahai-Wagner Scheme (ISW)

Outlines of the scheme :

- Input : $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
- Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = a \times b$

$$\bigoplus_{i} c_{i} = (\bigoplus_{i} a_{i}) \times (\bigoplus_{i} b_{i}) = \bigoplus_{i,j} a_{i} \times b_{j}$$

• Example (d = 2):

(a_0b_0)	a_0b_1	a_0b_2
a_1b_0	a_1b_1	a_1b_2
$\langle a_2 b_0 \rangle$	a_2b_1	a ₂ b ₂ /

Ishai *et al.* prove (d/2)th-order security

Ishai-Sahai-Wagner Scheme (ISW)

Outlines of the scheme :

- Input : $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
- Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = a \times b$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \times \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} \times b_{j}$$

Example (*d* = 2) :

$$\begin{pmatrix} a_0 b_0 & a_0 b_1 & a_0 b_2 \\ 0 & a_1 b_1 & a_1 b_2 \\ 0 & 0 & a_2 b_2 \end{pmatrix} \oplus \begin{pmatrix} 0 & 0 & 0 \\ a_1 b_0 & 0 & 0 \\ a_2 b_0 & a_2 b_1 & 0 \end{pmatrix}$$

Ishai et al. prove (d/2)th-order security

Ishai-Sahai-Wagner Scheme (ISW)

Outlines of the scheme :

- Input : $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
- Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = a \times b$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \times \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} \times b_{j}$$

Example (*d* = 2) :

$$\begin{pmatrix} a_0 b_0 & a_0 b_1 & a_0 b_2 \\ 0 & a_1 b_1 & a_1 b_2 \\ 0 & 0 & a_2 b_2 \end{pmatrix} \oplus \begin{pmatrix} 0 & a_1 b_0 & a_2 b_0 \\ 0 & 0 & a_2 b_1 \\ 0 & 0 & 0 \end{pmatrix}$$

Ishai et al. prove (d/2)th-order security

Ishai-Sahai-Wagner Scheme (ISW)

Outlines of the scheme :

- Input : $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
- Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = a \times b$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \times \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} \times b_{j}$$

■ Example (*d* = 2) :

$$\begin{pmatrix} a_0b_0 & a_0b_1 \oplus a_1b_0 & a_0b_2 \oplus a_2b_0 \\ 0 & a_1b_1 & a_1b_2 \oplus a_2b_1 \\ 0 & 0 & a_2b_2 \end{pmatrix}$$

Ishai *et al.* prove (d/2)th-order security

Ishai-Sahai-Wagner Scheme (ISW)

Outlines of the scheme :

- Input : $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
- Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = a \times b$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \times \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} \times b_{j}$$

■ Example (*d* = 2) :

$$\begin{pmatrix} a_0b_0 & a_0b_1 \oplus a_1b_0 & a_0b_2 \oplus a_2b_0 \\ 0 & a_1b_1 & a_1b_2 \oplus a_2b_1 \\ 0 & 0 & a_2b_2 \end{pmatrix}$$

Ishai *et al.* prove (d/2)th-order security

T. Roche, ANSSI Higher-Order Side Channel Security and Mask Refreshing

Ishai-Sahai-Wagner Scheme (ISW)

Outlines of the scheme :

- Input : $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
- Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = a \times b$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \times \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} \times b_{j}$$

■ Example (*d* = 2) :

$$\begin{pmatrix} a_0b_0 & a_0b_1 \oplus a_1b_0 & a_0b_2 \oplus a_2b_0 \\ 0 & a_1b_1 & a_1b_2 \oplus a_2b_1 \\ 0 & 0 & a_2b_2 \end{pmatrix} \oplus \begin{pmatrix} 0 & r_{0,1} & r_{0,2} \\ 0 & 0 & r_{1,2} \\ 0 & 0 & 0 \end{pmatrix}$$

Ishai *et al.* prove (d/2)th-order security

Ishai-Sahai-Wagner Scheme (ISW)

Outlines of the scheme :

- Input : $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
- Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = a \times b$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \times \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} \times b_{j}$$

 $\begin{array}{c|c} \bullet & \text{Example } (d=2): \\ \begin{pmatrix} a_0 b_0 & a_0 b_1 \oplus a_1 b_0 & a_0 b_2 \oplus a_2 b_0 \\ 0 & a_1 b_1 & a_1 b_2 \oplus a_2 b_1 \\ 0 & 0 & a_2 b_2 \end{pmatrix} \oplus \begin{pmatrix} 0 & r_{0,1} & r_{0,2} \\ r_{0,1} & 0 & r_{1,2} \\ r_{0,2} & r_{1,2} & 0 \end{pmatrix}$

Ishai *et al.* prove (d/2)th-order security

Ishai-Sahai-Wagner Scheme (ISW)

Outlines of the scheme :

- Input : $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
- Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = a \times b$

$$\bigoplus_{i} c_{i} = (\bigoplus_{i} a_{i}) \times (\bigoplus_{i} b_{i}) = \bigoplus_{i,j} a_{i} \times b_{j}$$

■ Example (*d* = 2) :

 $\begin{pmatrix} a_0b_0 & (a_0b_1 \oplus r_{0,1}) \oplus a_1b_0 & (a_0b_2 \oplus r_{0,2}) \oplus a_2b_0 \\ r_{0,1} & a_1b_1 & (a_1b_2 \oplus r_{1,2}) \oplus a_2b_1 \\ r_{0,2} & r_{1,2} & a_2b_2 \end{pmatrix}$

Ishai *et al.* prove (d/2)th-order security

Ishai-Sahai-Wagner Scheme (ISW)

Outlines of the scheme :

- Input : $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
- Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = a \times b$

$$\bigoplus_{i} c_{i} = (\bigoplus_{i} a_{i}) \times (\bigoplus_{i} b_{i}) = \bigoplus_{i,j} a_{i} \times b_{j}$$

■ Example (*d* = 2) :

 $\begin{pmatrix} a_0 b_0 & (a_0 b_1 \oplus r_{0,1}) \oplus a_1 b_0 & (a_0 b_2 \oplus r_{0,2}) \oplus a_2 b_0 \\ r_{0,1} & a_1 b_1 & (a_1 b_2 \oplus r_{1,2}) \oplus a_2 b_1 \\ r_{0,2} & r_{1,2} & a_2 b_2 \end{pmatrix}$

Ishai *et al.* prove (d/2)th-order security

Ishai-Sahai-Wagner Scheme (ISW)

Outlines of the scheme :

- Input : $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
- Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = a \times b$

$$\bigoplus_{i} c_{i} = \left(\bigoplus_{i} a_{i}\right) \times \left(\bigoplus_{i} b_{i}\right) = \bigoplus_{i,j} a_{i} \times b_{j}$$

Example (*d* = 2) :

 $\begin{pmatrix} a_0 b_0 & (a_0 b_1 \oplus r_{0,1}) \oplus a_1 b_0 & (a_0 b_2 \oplus r_{0,2}) \oplus a_2 b_0 \\ r_{0,1} & a_1 b_1 & (a_1 b_2 \oplus r_{1,2}) \oplus a_2 b_1 \\ r_{0,2} & r_{1,2} & a_2 b_2 \end{pmatrix}$

Ishai *et al.* prove (d/2)th-order security

Ishai-Sahai-Wagner Scheme (ISW)

Outlines of the scheme :

- Input : $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
- Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = a \times b$

$$\bigoplus_{i} c_{i} = (\bigoplus_{i} a_{i}) \times (\bigoplus_{i} b_{i}) = \bigoplus_{i,j} a_{i} \times b_{j}$$

Example (*d* = 2) :

(a_0b_0)	$(a_0b_1\oplus r_{0,1})\oplus a_1b_0$	$(a_0b_2\oplus r_{0,2})\oplus a_2b_0$
<i>r</i> _{0,1}	a_1b_1	$(a_1b_2\oplus r_{1,2})\oplus a_2b_1$
\ <i>r</i> _{0,2}	<i>r</i> _{1,2}	a2b2 /
<i>c</i> ₁	<i>c</i> ₂	

Ishai *et al.* prove (d/2)th-order security

Ishai-Sahai-Wagner Scheme (ISW)

Outlines of the scheme :

- Input : $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
- Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = a \times b$

$$\bigoplus_{i} c_{i} = (\bigoplus_{i} a_{i}) \times (\bigoplus_{i} b_{i}) = \bigoplus_{i,j} a_{i} \times b_{j}$$

Example (*d* = 2) :

(a_0b_0)	$(a_0b_1\oplus r_{0,1})\oplus a_1b_0$	$(a_0b_2\oplus r_{0,2})\oplus a_2b_0$
<i>r</i> _{0,1}	a_1b_1	$(a_1b_2\oplus r_{1,2})\oplus a_2b_1$
\ <i>r</i> _{0,2}	<i>r</i> _{1,2}	a_2b_2
<i>c</i> ₁	<i>c</i> ₂	<i>C</i> 3

Ishai *et al.* prove (d/2)th-order security

Ishai-Sahai-Wagner Scheme (ISW)

Outlines of the scheme :

- Input : $(a_i)_i$, $(b_i)_i$ s.t. $\bigoplus_i a_i = a$, $\bigoplus_i b_i = b$
- Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = a \times b$

$$\bigoplus_{i} c_{i} = (\bigoplus_{i} a_{i}) \times (\bigoplus_{i} b_{i}) = \bigoplus_{i,j} a_{i} \times b_{j}$$

Example (*d* = 2) :

(a_0b_0)	$(a_0b_1\oplus r_{0,1})\oplus a_1b_0$	$(a_0b_2\oplus r_{0,2})\oplus a_2b_0$
<i>r</i> _{0,1}	a_1b_1	$(a_1b_2\oplus r_{1,2})\oplus a_2b_1$
\ <i>r</i> _{0,2}	<i>r</i> _{1,2}	a2b2 /
<i>c</i> ₁	<i>c</i> ₂	<i>C</i> 3

Ishai *et al.* prove (d/2)th-order security

Application to Secure Power Functions

... with a focus on the AES power function $x \mapsto x^{254}$

Let $\text{Exp} : x \mapsto x^r$ be a power function defined over a finite field $GF(2^n)$.

- Split Exp into a sequence of multiplications and squarings.
- Squaring is a GF(2)-linear operation \rightarrow easy to mask :

• masked square : $x^2 \rightarrow x_0^2, x_1^2, \cdots, x_d^2$

- Multiplications masked with ISW Scheme
- To reduce the overall cost of the securing, favour squaring over multiplication in the Exp evaluation method :
 - amount to look at small addition chains for r
- For AES non-linear function (r = 254), Rivain and Prouff proves that the evaluation can be done with 4 multiplications only (optimal).

Application to Secure Power Functions

... with a focus on the AES power function $x \mapsto x^{254}$

Let $\text{Exp} : x \mapsto x^r$ be a power function defined over a finite field $GF(2^n)$.

- Split Exp into a sequence of multiplications and squarings.
- Squaring is a GF(2)-linear operation \rightarrow easy to mask :
 - masked square : $x^2 \rightarrow x_0^2, x_1^2, \cdots, x_d^2$
- Multiplications masked with ISW Scheme
- To reduce the overall cost of the securing, favour squaring over multiplication in the Exp evaluation method :
 - amount to look at small addition chains for r
- For AES non-linear function (r = 254), Rivain and Prouff proves that the evaluation can be done with 4 multiplications only (optimal).

Application to Secure Power Functions

... with a focus on the AES power function $x \mapsto x^{254}$

Let $\text{Exp} : x \mapsto x^r$ be a power function defined over a finite field $GF(2^n)$.

- Split Exp into a sequence of multiplications and squarings.
- Squaring is a GF(2)-linear operation \rightarrow easy to mask :
 - masked square : $x^2 \rightarrow x_0^2, x_1^2, \cdots, x_d^2$
- Multiplications masked with ISW Scheme
- To reduce the overall cost of the securing, favour squaring over multiplication in the Exp evaluation method :
 - amount to look at small addition chains for r
- For AES non-linear function (r = 254), Rivain and Prouff proves that the evaluation can be done with 4 multiplications only (optimal).

Application to Secure Power Functions

... with a focus on the AES power function $x \mapsto x^{254}$

Let $\text{Exp} : x \mapsto x^r$ be a power function defined over a finite field $GF(2^n)$.

- Split Exp into a sequence of multiplications and squarings.
- Squaring is a GF(2)-linear operation \rightarrow easy to mask :
 - masked square : $x^2 \rightarrow x_0^2, x_1^2, \cdots, x_d^2$
- Multiplications masked with ISW Scheme
- To reduce the overall cost of the securing, favour squaring over multiplication in the Exp evaluation method :
 - amount to look at small addition chains for r
- For AES non-linear function (r = 254), Rivain and Prouff proves that the evaluation can be done with 4 multiplications only (optimal).

RivainProuff10

Algorithmic description :

Input : shares \mathbf{x}_i s.t. $\bigoplus_i \mathbf{x}_i = \mathbf{x}_i$ **Output :** shares y_i s.t. $\bigoplus_i y_i = \mathbf{x}^{254}$ **1.** $(z_i)_i \leftarrow (x_i^2)_i$ $[\bigoplus_i z_i = x^2]$ **2.** RefreshMasks $((z_i)_i)$ **3.** $(y_i)_i \leftarrow \text{ISW}((z_i)_i, (x_i)_i)$ $\left[\bigoplus_{i} y_{i} = x^{3}\right]$ $\left[\bigoplus_{i} w_{i} = x^{12}\right]$ **4.** $(w_i)_i \leftarrow (v_i^4)_i$ **5.** RefreshMasks $((w_i)_i)$ **6.** $(y_i)_i \leftarrow \text{ISW}((y_i)_i, (w_i)_i)$ $[\bigoplus_i y_i = x^{15}]$ $\left[\bigoplus_{i} y_{i} = x^{240}\right]$ **7.** $(v_i)_i \leftarrow (v_i^{16})_i$ $\left[\bigoplus_{i} y_{i} = x^{252}\right]$ **8.** $(y_i)_i \leftarrow \text{ISW}((y_i)_i, (w_i)_i)$ $[\bigoplus_{i} y_i = x^{254}]$ **9.** $(y_i)_i \leftarrow \text{ISW}((y_i)_i, (z_i)_i)$

RivainProuff10

Algorithmic description :

Input : shares \mathbf{x}_i s.t. $\bigoplus_i \mathbf{x}_i = \mathbf{x}_i$ **Output :** shares y_i s.t. $\bigoplus_i y_i = \mathbf{x}^{254}$ **1.** $(z_i)_i \leftarrow (x_i^2)_i$ $[\bigoplus_i z_i = x^2]$ **2.** RefreshMasks $((z_i)_i)$ **3.** $(y_i)_i \leftarrow \mathsf{ISW}((z_i)_i, (x_i)_i)$ $\left[\bigoplus_{i} y_{i} = x^{3}\right]$ $\left[\bigoplus_{i} w_{i} = x^{12}\right]$ **4.** $(w_i)_i \leftarrow (v_i^4)_i$ **5.** RefreshMasks $((w_i)_i)$ **6.** $(y_i)_i \leftarrow \text{ISW}((y_i)_i, (w_i)_i)$ $[\bigoplus_i y_i = x^{15}]$ $\left[\bigoplus_{i} y_{i} = x^{240}\right]$ **7.** $(v_i)_i \leftarrow (v_i^{16})_i$ $\left[\bigoplus_{i} y_{i} = x^{252}\right]$ **8.** $(y_i)_i \leftarrow \mathsf{ISW}((y_i)_i, (w_i)_i)$ $[\bigoplus_{i} y_i = x^{254}]$ **9.** $(y_i)_i \leftarrow \text{ISW}((y_i)_i, (z_i)_i)$

RivainProuff10

Algorithmic description :

Input : shares \mathbf{x}_i s.t. $\bigoplus_i \mathbf{x}_i = \mathbf{x}_i$ **Output :** shares y_i s.t. $\bigoplus_i y_i = \mathbf{x}^{254}$ **1.** $(z_i)_i \leftarrow (x_i^2)_i$ $[\bigoplus_i z_i = x^2]$ **2.** RefreshMasks $((z_i)_i)$ **3.** $(y_i)_i \leftarrow \text{ISW}((z_i)_i, (x_i)_i)$ $\left[\bigoplus_{i} y_{i} = x^{3}\right]$ $\left[\bigoplus_{i} w_{i} = x^{12}\right]$ **4.** $(w_i)_i \leftarrow (v_i^4)_i$ **5.** RefreshMasks $((w_i)_i)$ **6.** $(y_i)_i \leftarrow \text{ISW}((y_i)_i, (w_i)_i)$ $[\bigoplus_i y_i = x^{15}]$ $\left[\bigoplus_{i} y_{i} = x^{240}\right]$ **7.** $(v_i)_i \leftarrow (v_i^{16})_i$ $\left[\bigoplus_{i} y_{i} = x^{252}\right]$ **8.** $(y_i)_i \leftarrow \text{ISW}((y_i)_i, (w_i)_i)$ $[\bigoplus_{i} y_i = x^{254}]$ **9.** $(y_i)_i \leftarrow \text{ISW}((y_i)_i, (z_i)_i)$

RivainProuff10

Algorithmic description :

Input : shares \mathbf{x}_i s.t. $\bigoplus_i \mathbf{x}_i = \mathbf{x}_i$ **Output :** shares y_i s.t. $\bigoplus_i y_i = \mathbf{x}^{254}$ **1.** $(z_i)_i \leftarrow (x_i^2)_i$ $[\bigoplus_i z_i = x^2]$ **2.** RefreshMasks $((z_i)_i)$ **3.** $(y_i)_i \leftarrow \text{ISW}((z_i)_i, (x_i)_i)$ $\left[\bigoplus_{i} y_{i} = x^{3}\right]$ $\left[\bigoplus_{i} w_{i} = x^{12}\right]$ **4.** $(w_i)_i \leftarrow (v_i^4)_i$ **5.** RefreshMasks $((w_i)_i)$ **6.** $(y_i)_i \leftarrow \text{ISW}((y_i)_i, (w_i)_i)$ $[\bigoplus_i y_i = x^{15}]$ $\left[\bigoplus_{i} y_{i} = x^{240}\right]$ **7.** $(v_i)_i \leftarrow (v_i^{16})_i$ $\left[\bigoplus_{i} y_{i} = x^{252}\right]$ **8.** $(y_i)_i \leftarrow \text{ISW}((y_i)_i, (w_i)_i)$ $[\bigoplus_{i} y_i = x^{254}]$ **9.** $(y_i)_i \leftarrow \text{ISW}((y_i)_i, (z_i)_i)$

Security

- Security proved against a dth-order probing adversary
- RefreshMasks assumed to be out of the scope of the proof.
- A simple (and assumed to be secure) algorithm is proposed to refresh the masks :

Input: shares z_i s.t. $\bigoplus_i z_i = z$ **Output**: new shares z'_i s.t. $\bigoplus_i z'_i = z$ **1. for** i = 1 **to** d **do 2.** $tmp \leftarrow rand(n)$ **3.** $z_0 \leftarrow z_0 \oplus tmp$ **4.** $z'_i \leftarrow z_i \oplus tmp$

Let us focus on the three first steps of Rivain-Prouff's scheme.

1.
$$(z_i)_i \leftarrow (x_i^2)_i$$

2. $(z'_i)_i \leftarrow \text{RefreshMasks}((z_i)_i)$
3. $(y_i)_i \leftarrow \text{ISW}((z'_i)_i, (x_i)_i)$

By construction, at the $d/2^{\text{th}}$ iteration of RefreshMasks :

By definition, ISW involves the following processings (cross-products) :

$$z'_i imes x_{i+d/2}$$

Let us focus on the three first steps of Rivain-Prouff's scheme.

1.
$$(z_i)_i \leftarrow (x_i^2)_i$$

2. $(z'_i)_i \leftarrow \text{RefreshMasks}((z_i)_i)$
3. $(y_i)_i \leftarrow \text{ISW}((z'_i)_i, (x_i)_i)$

By construction, at the $d/2^{\text{th}}$ iteration of RefreshMasks :

$$z_0 = z \oplus igoplus_{1 \leq i \leq d/2} z'_i \oplus igoplus_{d/2+1 \leq i \leq d} z_i$$

By definition, ISW involves the following processings (cross-products) :

$$z'_i imes x_{i+d/2}$$

Let us focus on the three first steps of Rivain-Prouff's scheme.

1.
$$(z_i)_i \leftarrow (x_i^2)_i$$

2. $(z'_i)_i \leftarrow \mathsf{RefreshMasks}((z_i)_i)$
3. $(y_i)_i \leftarrow \mathsf{ISW}((z'_i)_i, (x_i)_i)$

By construction, at the $d/2^{\text{th}}$ iteration of RefreshMasks :

$$z_0 = z \oplus igoplus_{1 \le i \le d/2} z'_i \oplus igoplus_{d/2+1 \le i \le d} {x_i}^2$$

By definition, ISW involves the following processings (cross-products) :

$$z'_i imes x_{i+d/2}$$

Let us focus on the three first steps of Rivain-Prouff's scheme.

1.
$$(z_i)_i \leftarrow (x_i^2)_i$$

2. $(z'_i)_i \leftarrow \mathsf{RefreshMasks}((z_i)_i)$
3. $(y_i)_i \leftarrow \mathsf{ISW}((z'_i)_i, (x_i)_i)$

By construction, at the $d/2^{\text{th}}$ iteration of RefreshMasks :

$$z_0 = z \oplus igoplus_{1 \le i \le d/2} z'_i \oplus igoplus_{d/2+1 \le i \le d} x_i^2$$

By definition, ISW involves the following processings (cross-products) :

$$z'_i imes x_{i+d/2}$$

$$z_{0} = z \oplus \bigoplus_{1 \le i \le d/2} z'_{i} \oplus \bigoplus_{d/2+1 \le i \le d} x_{i}^{2} \longrightarrow \ell_{0}$$
$$z'_{i} \times x_{i+d/2} \quad \forall i \in [1; d/2] \longrightarrow \ell_{i}$$

- The d/2 leakage values ℓ_i bring information on all the shares z'_i and $x_{i+d/2}$ for $i \le d/2$.
- This information is combined with ℓ_0 to retrieve information on (a.k.a. unmask) z.
 - Indeed $\Pr[z \mid (\ell_i)_i, \ell_o] \neq \Pr[z]$.

First (natural) Countermeasure

Replace the RefreshMasks call by a call to ISW s.t. :

- the first input is the sharing (of x) to refresh and
- the second input is a sharing of 1.

By definition, ISW will indeed outputs a new sharing of $x \times 1$.

We get :

$$\begin{array}{ll} 1. \ (z_i)_i \leftarrow (x_i^2)_i \\ 2. \ (z_i)_i \leftarrow ISW((z_i)_i, (1_i)_i) \\ 3. \ (y_i)_i \leftarrow ISW((z_i)_i, (x_i)_i) \\ 4. \ (w_i)_i \leftarrow (y_i^4)_i \\ 5. \ (w_i)_i \leftarrow ISW((w_i)_i, ((1'_i)_i) \\ 6. \ (y_i)_i \leftarrow ISW((y_i)_i, (w_i)_i) \\ 7. \ (y_i)_i \leftarrow (y_i^{16})_i \\ 8. \ (y_i)_i \leftarrow ISW((y_i)_i, (w_i)_i) \\ 9. \ (y_i)_i \leftarrow ISW((y_i)_i, (z_i)_i) \end{array}$$

$$\begin{array}{l} \bullet \quad Problem : security difficult to prove ! \end{array}$$

Second Countermeasure Proposal

Principle : Replace every processing of $h(x) = x \cdot x^{2^{j}}$ s.t.

- **1.** $(z_i)_i \leftarrow (x_i^{2^j})_i$ $(z_i)_i$ sharing of x^{2^j} **2.** Refreshmasks $((z_i)_i)$
- **3.** $(y_i)_i \leftarrow \text{ISW}((z_i)_i, (x_i)_i)$ $(y_i)_i \text{ sharing of } x \cdot x^{2^j}$

by a single processing of a new algorithm ISW'Core idea :

$$y = \bigoplus_{i} a_{i} \cdot \bigoplus_{i} a_{i}^{2^{j}}$$

$$= \bigoplus_{i} a_{i}^{2^{j+1}} \oplus \bigoplus_{i < k} \left(a_{i} \cdot a_{k}^{2^{j}} \oplus a_{k} \cdot a_{i}^{2^{j}} \right)$$

$$= \bigoplus_{i} h(a_{i}) \oplus \bigoplus_{i < k} f(a_{i}, a_{k})$$

involve the new function $f(x, y) = x \cdot y^{2^j} \oplus x^{2^j} \cdot y$

f is bilinear, thus we have

 $(Property *) \qquad f(x, y) = h(x \oplus y) \oplus h(x) \oplus h(y)$

Second Countermeasure Proposal

Principle : Replace every processing of $h(x) = x \cdot x^{2^{j}}$ s.t.

- **1.** $(z_i)_i \leftarrow (x_i^{2^j})_i$ $(z_i)_i$ sharing of x^{2^j} **2.** Refreshmasks $((z_i)_i)$
- **3.** $(y_i)_i \leftarrow \text{ISW}((z_i)_i, (x_i)_i)$ $(y_i)_i \text{ sharing of } x \cdot x^{2^j}$

by a single processing of a new algorithm ISW'Core idea :

$$y = \bigoplus_{i} a_{i} \cdot \bigoplus_{i} a_{i}^{2^{j}}$$

$$= \bigoplus_{i} a_{i}^{2^{j+1}} \oplus \bigoplus_{i < k} \left(a_{i} \cdot a_{k}^{2^{j}} \oplus a_{k} \cdot a_{i}^{2^{j}} \right)$$

$$= \bigoplus_{i} h(a_{i}) \oplus \bigoplus_{i < k} f(a_{i}, a_{k})$$

involve the new function $f(x, y) = x \cdot y^{2^j} \oplus x^{2^j} \cdot y$

f is bilinear, thus we have

 $(Property *) \qquad f(x, y) = h(x \oplus y) \oplus h(x) \oplus h(y)$

Second Countermeasure Proposal

Principle : Replace every processing of $h(x) = x \cdot x^{2^{j}}$ s.t.

- **1.** $(z_i)_i \leftarrow (x_i^{2^j})_i$ $(z_i)_i$ sharing of x^{2^j} **2.** Refreshmasks $((z_i)_i)$
- **3.** $(y_i)_i \leftarrow \text{ISW}((z_i)_i, (x_i)_i)$ $(y_i)_i \text{ sharing of } x \cdot x^{2^j}$

by a single processing of a new algorithm ISW'Core idea :

$$y = \bigoplus_{i} a_{i} \cdot \bigoplus_{i} a_{i}^{2^{j}}$$

$$= \bigoplus_{i} a_{i}^{2^{j+1}} \oplus \bigoplus_{i < k} \left(a_{i} \cdot a_{k}^{2^{j}} \oplus a_{k} \cdot a_{i}^{2^{j}} \right)$$

$$= \bigoplus_{i} h(a_{i}) \oplus \bigoplus_{i < k} f(a_{i}, a_{k})$$

involve the new function $f(x, y) = x \cdot y^{2^j} \oplus x^{2^j} \cdot y$

f is bilinear, thus we have

 $(Property *) \qquad f(x, y) = h(x \oplus y) \oplus h(x) \oplus h(y)$

Outlines of the new scheme ISW'

- I/O :
 - Input : $(a_i)_i$ s.t. $\bigoplus_i a_i = a$
 - Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = h(a) = a \times a^{2^i}$
- Example (*d* = 2) :

Outlines of the new scheme ISW'

- I/O :
 - Input : $(a_i)_i$ s.t. $\bigoplus_i a_i = a$
 - Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = h(a) = a \times a^{2^i}$
- Example (*d* = 2) :

$$\begin{pmatrix} a_0^{2^j+1} & a_0 \cdot a_1^{2^j} & a_0 \cdot a_2^{2^j} \\ a_1 \cdot a_0^{2^j} & a_1^{2^j+1} & a_1 \cdot a_2^{2^j} \\ a_2 \cdot a_0^{2^j} & a_2 \cdot a_1^{2^j} & a_2^{2^j+1} \end{pmatrix}$$

Outlines of the new scheme ISW'

- I/O :
 - Input : $(a_i)_i$ s.t. $\bigoplus_i a_i = a$
 - Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = h(a) = a \times a^{2^i}$
- Example (*d* = 2) :

$$\begin{pmatrix} a_0^{2^{j+1}} & a_0 \cdot a_1^{2^j} & a_0 \cdot a_2^{2^j} \\ 0 & a_1^{2^{j+1}} & a_1 \cdot a_2^{2^j} \\ 0 & 0 & a_2^{2^{j+1}} \end{pmatrix} \oplus \begin{pmatrix} 0 & 0 & 0 \\ a_1 \cdot a_0^{2^j} & 0 & 0 \\ a_2 \cdot a_0^{2^j} & a_2 \cdot a_1^{2^j} & 0 \end{pmatrix}$$

Outlines of the new scheme ISW'

- I/O :
 - Input : $(a_i)_i$ s.t. $\bigoplus_i a_i = a$
 - Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = h(a) = a \times a^{2^i}$
- Example (*d* = 2) :

$$\begin{pmatrix} a_0^{2^{j+1}} & a_0 \cdot a_1^{2^{j}} & a_0 \cdot a_2^{2^{j}} \\ 0 & a_1^{2^{j+1}} & a_1 \cdot a_2^{2^{j}} \\ 0 & 0 & a_2^{2^{j+1}} \end{pmatrix} \oplus \begin{pmatrix} 0 & a_1 \cdot a_0^{2^{j}} & a_2 \cdot a_0^{2^{j}} \\ 0 & 0 & a_2 \cdot a_1^{2^{j}} \\ 0 & 0 & 0 \end{pmatrix}$$

Outlines of the new scheme ISW'

- I/O :
 - Input : $(a_i)_i$ s.t. $\bigoplus_i a_i = a$
 - Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = h(a) = a \times a^{2^i}$
- Example (*d* = 2) :

$$\begin{pmatrix} a_0^{2^j+1} & a_0 \cdot a_1^{2^j} \oplus a_1 \cdot a_0^{2^j} & a_0 \cdot a_2^{2^j} + a_2 \cdot a_0^{2^j} \\ 0 & a_1^{2^j+1} & a_1 \cdot a_2^{2^j} \oplus a_2 \cdot a_1^{2^j} \\ 0 & 0 & a_2^{2^j+1} \end{pmatrix}$$

Outlines of the new scheme ISW'

- I/O :
 - Input : $(a_i)_i$ s.t. $\bigoplus_i a_i = a$
 - Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = h(a) = a \times a^{2^i}$
- Example (*d* = 2) :

$$\begin{pmatrix} h(a_0) & f(a_0, a_1) & f(a_0, a_2) \\ 0 & h(a_1) & f(a_1, a_2) \\ 0 & 0 & h(a_2) \end{pmatrix}$$

Outlines of the new scheme ISW'

- I/O :
 - Input : $(a_i)_i$ s.t. $\bigoplus_i a_i = a$
 - Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = h(a) = a \times a^{2^i}$
- Example (*d* = 2) :

$$\begin{pmatrix} h(a_0) & f(a_0, a_1) & f(a_0, a_2) \\ 0 & h(a_1) & f(a_1, a_2) \\ 0 & 0 & h(a_2) \end{pmatrix}$$

Outlines of the new scheme ISW'

- I/O :
 - Input : $(a_i)_i$ s.t. $\bigoplus_i a_i = a$
 - Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = h(a) = a \times a^{2^i}$
- Example (*d* = 2) :

$$\begin{pmatrix} h(a_0) & f(a_0, a_1) & f(a_0, a_2) \\ 0 & h(a_1) & f(a_1, a_2) \\ 0 & 0 & h(a_2) \end{pmatrix} \oplus \begin{pmatrix} 0 & r_{0,1} & r_{0,2} \\ 0 & 0 & r_{1,2} \\ 0 & 0 & 0 \end{pmatrix}$$

Outlines of the new scheme ISW'

- I/O :
 - Input : $(a_i)_i$ s.t. $\bigoplus_i a_i = a$
 - Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = h(a) = a \times a^{2^i}$
- Example (*d* = 2) :

$$\begin{pmatrix} h(a_0) & f(a_0, a_1) & f(a_0, a_2) \\ 0 & h(a_1) & f(a_1, a_2) \\ 0 & 0 & h(a_2) \end{pmatrix} \oplus \begin{pmatrix} 0 & r_{0,1} & r_{0,2} \\ r_{0,1} & 0 & r_{1,2} \\ r_{0,2} & r_{1,2} & 0 \end{pmatrix}$$

Outlines of the new scheme ISW'

- I/O :
 - Input : $(a_i)_i$ s.t. $\bigoplus_i a_i = a$
 - Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = h(a) = a \times a^{2^i}$
- Example (*d* = 2) :

$$\begin{pmatrix} h(a_0) & f(a_0, a_1) + r_{0,1} & f(a_0, a_2) + r_{0,2} \\ r_{0,1} & h(a_1) & f(a_1, a_2) + r_{1,2} \\ r_{0,2} & r_{1,2} & h(a_2) \end{pmatrix}$$

Outlines of the new scheme ISW'

- I/O :
 - Input : $(a_i)_i$ s.t. $\bigoplus_i a_i = a$
 - Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = h(a) = a \times a^{2^i}$
- Example (*d* = 2) :

$$\begin{pmatrix} h(a_0) & f(a_0, a_1) + r_{0,1} & f(a_0, a_2) + r_{0,2} \\ r_{0,1} & h(a_1) & f(a_1, a_2) + r_{1,2} \\ r_{0,2} & r_{1,2} & h(a_2) \end{pmatrix}$$

Outlines of the new scheme ISW'

■ I/O :

- Input : $(a_i)_i$ s.t. $\bigoplus_i a_i = a$
- Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = h(a) = a \times a^{2^i}$

• Example (d = 2): by Property * on f

$$f(a_i, a_j) \oplus r_{i,j} = h(a_i \oplus a_j) \oplus h(a_i) \oplus h(a_j) \oplus r_{i,j}$$

= $\left(h((a_i \oplus r'_{i,j}) \oplus a_j) \oplus h(r'_{i,j})\right) \oplus \left(h(a_i \oplus r'_{i,j}) \oplus r_{i,j} \oplus h(a_j \oplus r'_{i,j})\right)$

Outlines of the new scheme ISW'

- I/O :
 - Input : $(a_i)_i$ s.t. $\bigoplus_i a_i = a$
 - Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = h(a) = a \times a^{2^i}$
- Example (*d* = 2) :

$$f(a_i, a_j) \oplus r_{i,j} = h(a_i \oplus a_j) \oplus h(a_i) \oplus h(a_j) \oplus r_{i,j}$$

= $\left(h((a_i \oplus r'_{i,j}) \oplus a_j) \oplus h(r'_{i,j})\right) \oplus \left(h(a_i \oplus r'_{i,j}) \oplus r_{i,j} \oplus h(a_j \oplus r'_{i,j})\right)$

Outlines of the new scheme ISW'

- I/O :
 - Input : $(a_i)_i$ s.t. $\bigoplus_i a_i = a$
 - Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = h(a) = a \times a^{2^i}$
- Example (*d* = 2) :

$$f(a_i, a_j) \oplus r_{i,j} = h(a_i \oplus a_j) \oplus h(a_i) \oplus h(a_j) \oplus r_{i,j}$$

= $\left(h((a_i \oplus r'_{i,j}) \oplus a_j) \oplus h(r'_{i,j})\right) \oplus \left(h(a_i \oplus r'_{i,j}) \oplus r_{i,j} \oplus h(a_j \oplus r'_{i,j})\right)$

Outlines of the new scheme ISW'

■ I/O :

- Input : $(a_i)_i$ s.t. $\bigoplus_i a_i = a$
- Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = h(a) = a \times a^{2^i}$

 Security against dthorder probing adversary is given in the paper.

Outlines of the new scheme ISW'

■ I/O :

- Input : $(a_i)_i$ s.t. $\bigoplus_i a_i = a$
- Output : $(c_i)_i$ s.t. $\bigoplus_i c_i = h(a) = a \times a^{2^i}$

Second Countermeasure Final Proposal

We eventually get :

1.
$$(z_i)_i \leftarrow (x_i^2)_i$$

2. $(y_i)_i \leftarrow ISW'((x_i)_i, j = 1)$
3. $(w_i)_i \leftarrow (y_i^4)_i$
4. $(y_i)_i \leftarrow ISW'((y_i)_i, j = 2)$
5. $(y_i)_i \leftarrow (y_i^{16})_i$
6. $(y_i)_i \leftarrow ISW((y_i)_i, (w_i)_i)$
7. $(y_i)_i \leftarrow ISW((y_i)_i, (z_i)_i)$

It is not only more secure than the first Rivain-Prouff proposal, but also more efficient \rightarrow see timings in the paper.

Second Countermeasure Final Proposal

We eventually get :

1.
$$(z_i)_i \leftarrow (x_i^2)_i$$

2. $(y_i)_i \leftarrow ISW'((x_i)_i, j = 1)$
3. $(w_i)_i \leftarrow (y_i^4)_i$
4. $(y_i)_i \leftarrow ISW'((y_i)_i, j = 2)$
5. $(y_i)_i \leftarrow (y_i^{16})_i$
6. $(y_i)_i \leftarrow ISW((y_i)_i, (w_i)_i)$
7. $(y_i)_i \leftarrow ISW((y_i)_i, (z_i)_i)$

It is not only more secure than the first Rivain-Prouff proposal, but also more efficient \rightarrow see timings in the paper.

Second Countermeasure Final Proposal

We eventually get :

1.
$$(z_i)_i \leftarrow (x_i^2)_i$$

2. $(y_i)_i \leftarrow ISW'((x_i)_i, j = 1)$
3. $(w_i)_i \leftarrow (y_i^4)_i$
4. $(y_i)_i \leftarrow ISW'((y_i)_i, j = 2)$
5. $(y_i)_i \leftarrow (y_i^{16})_i$
6. $(y_i)_i \leftarrow ISW((y_i)_i, (w_i)_i)$
7. $(y_i)_i \leftarrow ISW((y_i)_i, (z_i)_i)$

It is not only more secure than the first Rivain-Prouff proposal, but also more efficient \rightarrow see timings in the paper.

Security enhancement

No need of the Refresh Mask Procedure

Global security of the Masking Scheme yet to prove : e.g. $y = x^{14}$ 1. $(z_i)_i \leftarrow (x_i^2)_i$ 2. $(y_i)_i \leftarrow ISW'((x_i)_i, j = 1)$ 3. $(w_i)_i \leftarrow (y_i^4)_i$ 4. $(y_i)_i \leftarrow ISW((z_i)_i, (w_i)_i)$

i.e. composable security of *d*th-order secure sub-routines.

Security enhancement

- No need of the Refresh Mask Procedure
- Global security of the Masking Scheme yet to prove : e.g. $y = x^{14}$ 1. $(z_i)_i \leftarrow (x_i^2)_i$ 2. $(y_i)_i \leftarrow ISW'((x_i)_i, j = 1)$ 3. $(w_i)_i \leftarrow (y_i^4)_i$ 4. $(y_i)_i \leftarrow ISW((z_i)_i, (w_i)_i)$

i.e. composable security of *d*th-order secure sub-routines.

Efficiency enhancement

- h(x) = x ⋅ x^{2^j} are processed efficiently (lookup tables).
 → only 2 expensive secure multiplication in the AES s-box processing.
- can we do better ?

 \hookrightarrow find the optimal expression of $x \mapsto x^{2^{254}}$ w.r.t. the number of multiplications, squarings and $h(\cdot)$.

Efficiency enhancement

- h(x) = x ⋅ x^{2^j} are processed efficiently (lookup tables).
 → only 2 expensive secure multiplication in the AES s-box processing.
- can we do better?

 \hookrightarrow find the optimal expression of $x \mapsto x^{2^{254}}$ w.r.t. the number of multiplications, squarings and $h(\cdot)$.

