
Attacks and Security Proofs of
EAX-Prime

Kazuhiko Minematsu, NEC Corporation

Stefan Lucks, Bauhaus-Universität Weimar

Hiraku Morita, Nagoya University

Tetsu Iwata, Nagoya University

Fast Software Encryption 2013, March 10 -- 13, 2013, Singapore
1

Authenticated Encryption (AE)

• Authentication + Encryption

• Prevents eavesdropping and forgery

• Widely used in practice

– Internet (Wifi, SSL/TLS), storage, mobile, satellite,
and many more

2

EAX-Prime (EAX’)

• AE based on AES

• Defined at ANSI C12.22

– Smart grid / Smart meter Protocol

– also appears at IEEE 1703 and MC1222 (Canada)

– proposed to NIST in 2011

• Some real products, e.g. smart meters and
their management systems

3

EAX and EAX-Prime

• EAX-Prime is derived from EAX

• EAX

– developed by Bellare, Rogaway, and Wagner at
FSE 2004

– has a proof of security

• EAX-Prime

– modified version of EAX

– some “optimizations” : reducing # of blockcipher
calls and the size of memory

– no formal analysis

4

Our Results

• Security of EAX-Prime is sharply separated
w.r.t. cleartext (an input variable), as we show ;

5

1. When cleartext is one-block, effective attacks
exist
– Forgery, distinguisher, and plaintext recovery

2. When cleartext is more-than-one-block, it has
a proof of security based on the standard
assumption

(Original) EAX Encryption

• Enc-then-Auth, by CTR and CMAC

• CMAC is tweaked (creating 3 variants)

M (plaintext)N (nonce) H (header)

CTR mode

CMAC(0)

C (ciphertext)

N (IV for CTR)

T (tag) 6

CMAC(1)

CMAC(2)

Input (N,M,H)
Output (C,T)

EAX-Prime Encryption

7

M (plaintext)N (cleartext)

CTR’ mode

CMAC[D]

C (ciphertext)

N (IV for CTR)

T (tag)

CMAC[Q]

(truncated to 32 bits)

Input (N,M)
Output (C,T)

EAX-Prime Encryption

8

M (plaintext)N (cleartext)

CTR’ mode

CMAC[D]

C (ciphertext)

N (IV for CTR)

T (tag)

CMAC[Q]

(truncated to 32 bits)

Input (N,M)
Output (C,T)

Cleartext combines Nonce and Header

Modified counter mode :
Some bits of the initial counter
value are set to 0 to suppress carry-
bit propagation

Different tweaking method of CMAC

Tweaking Method of CMAC

• CMAC[D] and CMAC[Q]

– 2 variants

– Slightly more efficient than the original

– … and makes our attacks possible

9

CMAC (NIST SP800-38B)

• CBC-MAC w/ last masking 2L or 4L

• L = EK(0
n)

• 2L : Doubling in GF(2n), 4L : Twice Doubling

10

EK EK EK

M[1] M[m-1] M[m] || 10…0

…

CMACK(M)

2L (|M[m|=n)

4L (otherwise)
or

L = EK(0
n)

Tweaked CMAC in EAX

• 3 variants with CMAC(tweak) = CMAC(tweak || X),
tweak = 0,1,2 (in n bits)

– EK(tweak) can be cached as initial mask

11

EK EK EK

M[1] M[m-1] M[m] || 10…0

…

CMACK
(t)(M)

(|M[m|=n)

(otherwise)

t = 0 or 1 or 2

or
2L

4L

Tweak

L = EK(0
n)EK

Tweaked CMAC in EAX-Prime

• 2 variants with CMAC[D] and CMAC[Q]

(tweak = D, Q)

• Use D=2L or Q=4L as initial mask

12

EK EK EK

M[1] M[m-1] M[m] || 10…0

…

CMACK[t](M)

(|M[m|=n)

(otherwise)
oror
2L

4L

D (=2L)

Q (=4L)

Tweak t

L = EK(0
n)

Observation

• CMAC[D] and CMAC[Q] fail to provide
(independent) PRFs

• In case |M| ≤ n;

13

EK

EK(M1)

D

M1

D

CMAC[D] when |M1|=n

EK

EK(M2||10…0)

Q

M2||10…0

Q

CMAC[Q] when 0≤|M2|<n

Making M1 = M2||10…0 yields the same outputs ->
unlikely for two independent PRFs

Forgery Attack

14

M (plaintext)N (cleartext)

CTR’ mode

CMAC[D]

C (ciphertext)

N (IV for CTR)

CMAC[Q]

T (tag)

EK(N)

EK(C||10…0)=EK(N)

032=

• Throw (N,C,T) to the
decryption oracle;
– |N| =n, |C| < n
– C||10..0 = N
– T = 032

• always successful
• No enc-query
• Dec-oracle sees

random plaintext,
giving a great
speculation for attack
(thanks to Greg Rose)

• Variants
– |N|<n & |C|=n etc.

Distinguishing Attack

15

• One enc-query to
distinguish the response
from random
– |N| =n, N = 10..0

– |M| = 0 (empty)

• See if T = 032

• almost always successful

• Variants
– short M is also attackable

M (plaintext)N (cleartext)

CTR’ mode

CMAC[D]

C (ciphertext)

N (IV for CTR)

CMAC[Q]

T (tag)

EK(N)=EK(10…0)

EK(C||10…0)=EK(10…0)

empty string=

032=

(Chosen-Ciphertext) Plaintext Recovery

16

Alice Bob

Eve

(N* , C* , T*)
M*

K K

• Scenario
– Eve eavesdrops (N*, C* , T*)

– corresponding M* is unknown

• Eve can ask other (N , C , T) to Bob (Dec-oracle)

• The goal is to find (a part of) M*

M / ⊥

M*

(N , C , T)

(Chosen-Ciphertext) Plaintext Recovery

17

M (plaintext)N* (cleartext)

CTR mode

CMAC[D]

C (ciphertext)

N (IV for CTR)

CMAC[Q]

T (tag)

EK(N*)

EK(C||10…0)=EK(N*)

032=

1. Suppose (N*,C*,T*)
satisfies |N*|=n, |C*|<n

2. Do Forgery attack with
N=N*, C s.t. C||10..0 = N*

3. Dec-oracle returns M�

4. KS = C ⊕ M� is the
keystream for N*

5. M* is recoverd as KS ⊕ C*

• If |C*|≥n, it still recovers the first
|C| bits of M*

• Succeeds with probability 1

Applicability to ANSI C12.22

• All attacks require one-block cleartext (|N| ≤ n)

• Is this possible in C12.22 ?

• We have no clear answer (despite some efforts)

• Cleartext-length check is needed anyway

– for both encryption and decryption sides

18

Applicability to ANSI C12.22

• All attacks require one-block cleartext (|N| ≤ n)

• Is this possible in C12.22 ?

• We have no clear answer (despite some efforts)

• Cleartext-length check is needed anyway

– for both encryption and decryption sides

• Is EAX-Prime secure if |N| > n is guaranteed ?

19

-> Yes, it is provably secure

Problem Setting
• Adversary queries to :

– Enc-oracle : takes (N,M), returns (C,T)
– Dec-oracle : takes (N� , C�, T�), returns M� or ⊥

• Cleartext has at least two blocks (|N|, |N� | > n)
• Any enc-query (N,M) is allowed provided N is unique (nonce-

respecting)
• dec-query has no such limitation

20

Adversary Enc-oracle
(N, M)

(C, T)

Dec-oracle

(N� , C�, T�)

M� or ⊥

Adversary

Security notions

• Two (standard) notions

• Privacy (PRIV) : ciphertexts are pseudorandom
– Distinguish two Enc-oracles, EAX’ and random ($)

• Authenticity (AUTH) : a successful forgery is hard
– Receiving (non-trivial) ≠⊥ response from Dec-oracle

21

Adversary

EAX’
Enc-o

$
Enc-o

Adversary

EAX’
Enc-o

EAX’
Dec-o

or

“EAX’” or
“$”

(win if ≠⊥)

Security Bounds

• Our results (w/ n-bit random perm., τ-bit tag)

• Privacy

σpriv : Total blocks of N and M

EAX’ specifies τ = 32

22

σauth : Total blocks of N, M, N� , and
C�

qv : # of dec. queries

• Authenticity

Proof Strategy

1. Redefine EAX’ as a mode of “OMAC-
e(xtension)”
* a pair of functions (OMAC-e(0), OMAC-e(1))

2. Prove OMAC-e is a pair of (computationally)
independent PRFs
* Most technical part

3. Prove the security of EAX’ with perfect
OMAC-e (pair of random. functions)

– Following the original EAX proof [BRW04], with
some techniques from OMAC proofs [Iwata-
Kurosawa 03a, 03b]

23

OMAC-e(0)
• Uses an n-bit random permutation P and a random value U
• Computes CMAC[D] and CTR’ (key stream computation,

given the output length)
• Input >n bits

24

P P P

N[1] N[m-1] N[m] || 10…0

…
2L 2L or 4L

P

^α +1

P

…
P

+1

Key Stream

d (specify the output length)

L = P(0n)

^α : 2 bits off

CTR’ Enc

U
random

N ⊕ U

OMAC-e(1)
• Computes CMAC[Q]
• Use the same U as in OMAC-e(0)

25

P P P

C[1] C[m-1] C[m] || 10…0

…
4L

• OMAC-e can simulate EAX-Prime (U is canceled out)
• Disclaimer : the use of U is missing in the pre-proceeding (thus

buggy).
Proceeding version (and a forthcoming full version) will fix this

2L or 4L

U

T ⊕ U

Decomposition of OMAC-e

• We need to prove “OMAC-e is a pair of
random functions”

2626

P P P

N[1] N[2] N[3] || 10

2L 4L

P

^α +1

P

Key Stream

d =2

U

N ⊕ U

Decomposition of OMAC-e

• We need to prove “OMAC-e is a pair of
random functions”

• For this we introduce helper random variables

2727

P P P

N[1] N[2] N[3] || 10

2L 4L ⊕ Rnd1

P

^α +1

P

Key Stream

d =2

U

N ⊕ U

Rnd1 Rnd1

Rnd1

Decomposition of OMAC-e
• and decompose it into a set of ten functions, Q =

{Q1 , … , Q10}, including the helper variables
• Proving “Q = set of rand. functions” is rather

easy

2828

Q1

N[1] N[2]

Key Stream

d =2
Q3

Q6

N[3] || 10

N ⊕ U

Finalization
• OMAC-e is simulatable

by Q

• Q is indistinguishable
from R (set of rand.
functions)

• OMAC-e simulated by
R is indistinguishable
from a pair of rand.
functions

• AE by a pair of rand.
functions behaves
ideally, the proof goes...

29

M (plaintext)N (nonce)

CTR’ mode

CMAC[D]

C (ciphertext)

N (IV for CTR)

T (tag)

CMAC[Q]

OMAC-e

Finalization
• OMAC-e is simulatable

by Q

• Q is indistinguishable
from R (set of rand.
functions)

• OMAC-e simulated by
R is indistinguishable
from a pair of rand.
functions

• AE by a pair of rand.
functions behaves
ideally, the proof goes...

30

M (plaintext)N (nonce)

CTR’ mode

CMAC[D]

C (ciphertext)

N (IV for CTR)

T (tag)

CMAC[Q]

Random Function 1

Random
Function 2

How to safely use |N| ≤ n ?

• Suppose we do not want to change the
algorithm of EAX-Prime

• Method 1. Prepend to N, e.g. 0n||N instead of N

31

EAX-Prime [EK]

N M

C T

0n || N M

EAX-Prime [EK]

C T

How to safely use |N| ≤ n ?

• Method 2. Use two blockcipher keys, K and K’
– EK(X) for |N| > n, otherwise EK’(X) w/ prepending

to N
• Independent keys (safer, but expensive)

• K’ generated from K ⊕ const (e.g., const = 1|K|)
– the choice of constant needs cares

– very limited form of RK-security is required

32

EAX-Prime [EK]

N M

C T

N M

EAX-Prime [EK]

C T

M

EAX-Prime [EK’]

C T

0n || N

Two keys, K and K’

|N| > n |N| ≤ n

How to safely use |N| ≤ n ?

• Method 3. Use tweakable blockcipher with
additional independent n-bit key, L

– EK(X) for |N| >n, otherwise E�	K,L(X) = EK(X ⊕	L) w/
prepending to N

• Each method has good and bad points

33

EAX-Prime [EK]

N M

C T

N M

EAX-Prime [EK]

C T

M

EAX-Prime [E�	K,L]

C T

0n || N

|N| > n |N| ≤ n

Two keys, K and L

Lessons learned

• A seemingly small change can result in fatal
consequences

– A repeated problem in real-world crypto…

• CMAC is one PRF : generating multiple PRFs
needs cares
– EAX employs a simple and secure method

• The importance of security proofs

– Our proof shows that cleartext length check is
sufficient for secure (though cumbersome) use of
EAX-Prime

34

35via http://nekofont.upat.jp/

36via http://nekofont.upat.jp/

