
On Weak Keys and Forgery Attacks
Against Polynomial-based MAC Schemes

Gordon Procter and Carlos Cid

Information Security Group,
Royal Holloway, University of London

Our Contributions

1 Study the underlying algebraic structure of
polynomial-evaluation MACs and hash functions

2 Present a generalised forgery attack that:

extends Cycling Attacks (from FSE 2012)
describes all existing attacks against GCM
leads to a length extension attack against GCM

3 Identify many weak key classes for polynomial-based MAC
constructions

almost every subset of the keyspace is weak

Overview

1 Introduction

2 Forgeries

3 Weak Keys

Overview

1 Introduction

2 Forgeries

3 Weak Keys

Polynomial-Evaluation-Based Hash Functions

Consider a message containing ciphertext, additional authenticated
data and message length:

M = (M1, . . . ,Mm) ∈ Km

The hash function family H = {hH : K? → K|H ∈ K} is defined by
a polynomial:

hH(M) =
m∑
i=1

MiH
i ∈ K

This family is used for performance and low collision probabilities

Message Authentication

We can use H to construct fast and secure MACs
The authentication tag is the encryption of the hash, perhaps:

MACH||k(M) =Ek(N) + hH(M)

or

MACH||k(M) =Ek(hH(M))

In both cases:

Hash collision⇒ MAC forgery

Real Examples

GCM [MV05]

Field: K = F2128

Hash key: H = Ek(0)

Tag encryption: Additive

Poly-1305 [B05]

Field: K = F2130−5

Hash key: 128 bits
(some specific bits zero)

Tag encryption: Additive

CWC [KVW03]

Field: K = F2127−1

Hash key: H = Ek(110126)

Tag encryption: Both

SGCM [S12]

Field: K = F2128+12451

Hash key: H = Ek(0)

Tag encryption: Additive

GCM’s MAC

A1 C1 C2

⊕ ⊕

×H×H ×H

Length

⊕

×H ⊕

Tag

Ek(·)

IV

Overview

1 Introduction

2 Forgeries

3 Weak Keys

Adversary Model

The adversary can:

Obtain T for (N,M) of his choosing

but can’t repeat nonces

Ask whether (N,M,T) is valid

Goal:

Find (N,M,T) that is valid - without querying (N,M)

One Method:

1 Obtain T for (N,M)

2 Find M ′ with hH(M) = hH(M ′)

3 Then (N,M ′,T) is valid

Algebraic Background

Let H be the (unknown) hash key.
Suppose q(x) = q1x + q2x

2 + · · ·+ qrx
r and that q(H) = 0

Then hH(M) =
m∑
i=1

MiH
i

=
m∑
i=1

MiH
i +

r∑
i=1

qiH
i

=
r∑

i=1

(Mi + qi)H
i (zero pad the shorter of M and q)

=hH(M + Q) (Q = q1|| . . . ||qr , blockwise addition)

Generalised Forgery

We can find a hash collision by finding
q(x) = q1x + q2x

2 + . . .+ qrx
r such that q(H) = 0

Hash collision⇒ MAC forgery

MAC forgery

Suppose we know that (N,M,T) is valid, then:

(N,M + Q,T) valid ⇔ q(H) = 0

⇔ H ∈ {x ∈ K|q(x) = 0}

Similar observation made in [HP08]

Choosing q(x)

Choosing q(x) is difficult

we don’t know H, so we don’t know whether q(H) = 0

Forgery Probability: #roots of q
|K|

Want q(x) with many roots:

high degree
no repeated roots

‘The Näıve Approach’

Consider D ⊆ K, then:

q(x) =
∏
Hi∈D

or Hi=0

(x − Hi)

Examples of q(x)

All known attacks against GCM can be described in terms of the
q(x) that are used in the attacks

Ferguson: Attacks GCM when used with short tags

Uses linearised polynomials
Relies on linearity of squaring in F2128

q(x) ‘looks like’ x + x2 + x4 + . . .+ x2
17

can keep track of roots using a matrix

Joux: Attacks GCM when nonces are repeated

Need (N,M,T) and (N,M ′,T ′) valid (same N)

then hH(M) + hH(M ′) = T + T ′

so hH(M + M ′)− (T + T ′)︸ ︷︷ ︸
q(H)
H

= 0

Examples of q(x)

Saarinen: looks for subgroups of F2128 , so H with Ht = 1

Ht = 1⇒ Ht+1 = H ⇔ Ht+1 − H︸ ︷︷ ︸
q(H)

= 0

hH(M) = M1H + . . .+ Mt+1H
t+1 + . . .+ MmH

m

= Mt+1H + . . .+ M1H
t+1 + . . .+ MmH

m

= hH(M ′)

Suggested fix:

use F2128+12451: very few H with H t+1 = H

Targeted-Bit Forgeries

It may be useful to have some control over the message that is
forged So far we know that Mi → Mi + qi , for example:

If Mi is additional authenticated data, then we know the value
of the authenticated data in the forged message

If Char(K) = 2 and Mi = Pi + Ek(CTR) is counter mode
encrypted ciphertext, then we know that Pi → Pi + qi

We can do better:

q(H) = 0⇔ αq(H) = 0 ∀α ∈ K \ {0}

Mi → Mi + αqi : we can choose any α we like

For one message block, we can choose the value of Mi + αqi

Similar observation made in [S12]

Length Extension Against GCM

In GCM:
M = length||A1|| . . . ||Aa||C1|| . . . ||Cp

length is only used to compute the hash (it’s not sent)

1 Pick a forgery polynomial q(x)

2 Find the value of M1 = lengthM in the valid message

it correctly encodes the length of the message

3 Find the length of (M + αQ)

we know M and Q

4 Choose α ∈ K:

so that lengthM → lengthM + αq1 = lengthM+αQ

Length Extension Against GCM

With a cycling attack:

best we can do is a success probability of m
|K|

m is the length of the message in the valid (Message, Tag) pair

Now we can increase the length of the message:

can achieve better success probabilities
with much shorter valid (Message, Tag) pair

Now we have a success probability max{m}
|K|

max{m} is the maximum permissible message length

as in original security proofs for GCM

Overview

1 Introduction

2 Forgeries

3 Weak Keys

Weak Keys

The identification of weak keys is an important part of the security
assessment of any scheme.

Definition [HP08]

A set of keys D for a MAC algorithm is weak if:

Forgery probability higher than otherwise expected

Use can be detected:

by trying < |D| keys, and
using < |D| tag verification queries

Known Weak Keys

Handschuh and Preneel 2008

D = {0} is weak

Because h0(M) = 0 ∀M

Saarinen 2012

Dt = {H|Ht = 1} is weak

Can swap Mi and Mi+λt to detect

New Weak Key Classes

We show that almost every subset of the keyspace is weak (for any
hash function based on polynomial evaluation), in particular:

D is weak if:

|D| ≥ 3

|D| ≥ 2 and 0 ∈ D

Method

Requires 1 valid tag, ≤ 2 verification queries

1 Test if H ∈ D ∪ {0}
2 Test if H = 0, if necessary

Consequences

These are properties of all polynomial hashes

not specific to GCM

No ‘safe’ fields

SGCM not much better
does protect against some methods of finding good q(x)

It is well known that message length is important

maximum permissible message length is what matters
also the size of the field is important

All polynomial evaluation hashes have many weak keys

maybe it’s better to talk of an unavoidable property from the
algebraic structure, rather than the number of weak keys?
does having lots of weak keys make the algorithm weak?

The End - Thank You

These are properties of all polynomial hashes

not specific to GCM

No ‘safe’ fields

SGCM not much better
does protect against some methods of finding good q(x)

It is well known that message length is important

maximum permissible message length is what matters
also the size of the field is important

All polynomial evaluation hashes have many weak keys

maybe it’s better to talk of an unavoidable property from the
algebraic structure, rather than the number of weak keys?
does having lots of weak keys make the algorithm weak?

	Introduction
	Forgeries
	Weak Keys

