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Our Contributions

Study the underlying algebraic structure of
polynomial-evaluation MACs and hash functions
Present a generalised forgery attack that:

m extends Cycling Attacks (from FSE 2012)
m describes all existing attacks against GCM
m leads to a length extension attack against GCM

Identify many weak key classes for polynomial-based MAC
constructions

m almost every subset of the keyspace is weak
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Polynomial-Evaluation-Based Hash Functions

Consider a message containing ciphertext, additional authenticated
data and message length:

M=(Mi,....Mp) €K™
The hash function family # = {hy : K* — K|H € K} is defined by
a polynomial:

hy(M) => " MH € K
i=1

This family is used for performance and low collision probabilities



Message Authentication

We can use H to construct fast and secure MACs
The authentication tag is the encryption of the hash, perhaps:

MACHHk(M) :Ek(N) + hH(M)
or
MAC k(M) =Ex(hp(M))

In both cases:

Hash collision = MAC forgery



Real Examples

GCM [MV05] CWC [KVWO03]

m Field: K = Fjis m Field: K = Foir_;
m Hash key: H = E,(0) m Hash key: H = E,(110'2°)
m Tag encryption: Additive m Tag encryption: Both
Poly-1305 [B05] SGCM [S12]
m Field: K= F2130_5 m Field: K = ]F212s+12451
m Hash key: 128 bits m Hash key: H = E,(0)
(some specific bits zero) m Tag encryption: Additive

m Tag encryption: Additive



GCM's MAC

v

A1 1 G Length

Ex(")
@ @ @

Tag




Overview

Forgeries



Adversary Model

The adversary can:
m Obtain T for (N, M) of his choosing

m but can't repeat nonces
m Ask whether (N, M, T) is valid
Goal:
m Find (N, M, T) that is valid - without querying (N, M)

One Method:

Obtain T for (N, M)
Find M’ with hp(M) = hp(M')
Then (N, M', T) is valid




Algebraic Background

Let H be the (unknown) hash key.
Suppose q(x) = qix + g2x*> + -+ - + g,x" and that q(H) =0

Then hy(M) => " M;H’
i=1

Z —i—Zq,H’

Z M; + g;)H'"  (zero pad the shorter of M and q)
=1

—hH( Q) (Q=aq4ll---llg,, blockwise addition)



Generalised Forgery

m We can find a hash collision by finding
q(x) = gix + gax? + ... + g,x" such that g(H) =0
m Hash collision = MAC forgery

MAC forgery

Suppose we know that (N, M, T) is valid, then:

(N,M+ Q, T) valid < g(H) =0
< H e {x € K|q(x) =0}

Similar observation made in [HP08]



Choosing q(x)

m Choosing g(x) is difficult

m we don't know H, so we don't know whether g(H) =0

m Forgery Probability: %ﬂdq

m Want g(x) with many roots:
m high degree
® no repeated roots

‘The Naive Approach’

Consider D C K, then:

g = [ (x—H)
H;eD
or H;=0




Examples of g(x)

All known attacks against GCM can be described in terms of the
q(x) that are used in the attacks

Ferguson: Attacks GCM when used with short tags

m Uses linearised polynomials

m Relies on linearity of squaring in Fyu2s
m g(x) ‘looks like' x +x2 4+ x* + ... +x2"
m can keep track of roots using a matrix

Joux: Attacks GCM when nonces are repeated

m Need (N, M, T) and (N, M’, T') valid (same N)
m then hy(M) + hy(M') =T+ T’
mso hy(M+M)—(T+T')=0

a(H)
A




Examples of g(x)

Saarinen: looks for subgroups of Faus, so H with Ht =1
m Hi=1=HM =H& HT —H=0
——
q(H)
m hy(M) = MiH+ ...+ My H 4 M H™
=M H4 ...+ MiH 4 M H™

= hy(M')

m Suggested fix:

m use Fous, 10451 very few H with H*! = H



Targeted-Bit Forgeries

It may be useful to have some control over the message that is
forged So far we know that M; — M; + g;, for example:

m If M; is additional authenticated data, then we know the value
of the authenticated data in the forged message

m If Char(K) =2 and M; = P; + Ex(CTR) is counter mode
encrypted ciphertext, then we know that P; — P; + g;

We can do better:
g(H)=0< aq(H)=0 VaecK\ {0}

m M; — M; + agqj: we can choose any « we like

m For one message block, we can choose the value of M; + ag;

Similar observation made in [S12]



Length Extension Against GCM

In GCM:
M = tengthl|A]] ... IALIICi]] . |G,

length is only used to compute the hash (it's not sent)

Pick a forgery polynomial g(x)

Find the value of M; = length,, in the valid message
m it correctly encodes the length of the message

Find the length of (M + aQ)
m we know M and @

Choose a € K:
m so that length), — length,, + aq: = lengthy .o



Length Extension Against GCM

m With a cycling attack:
m best we can do is a success probability of

T
m m is the length of the message in the valid (Message, Tag) pair

m Now we can increase the length of the message:

m can achieve better success probabilities
m with much shorter valid (Message, Tag) pair

m Now we have a success probability maﬁg{'m}

m max{m} is the maximum permissible message length
® as in original security proofs for GCM
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Weak Keys

The identification of weak keys is an important part of the security
assessment of any scheme.

Definition [HPO08]

A set of keys D for a MAC algorithm is weak if:
m Forgery probability higher than otherwise expected

m Use can be detected:
m by trying < |D| keys, and
m using < |D| tag verification queries



Known Weak Keys

Handschuh and Preneel 2008

m D = {0} is weak
m Because hy(M) =0 VM

Saarinen 2012

m D; = {H|H" = 1} is weak
m Can swap M; and M ; to detect




New Weak Key Classes

We show that almost every subset of the keyspace is weak (for any
hash function based on polynomial evaluation), in particular:

m D >3
2 [D|>2and0€D

Requires 1 valid tag, < 2 verification queries

Test if He DU {0}
Test if H =0, if necessary




Consequences

m These are properties of all polynomial hashes
m not specific to GCM
m No ‘safe’ fields

m SGCM not much better
m does protect against some methods of finding good g(x)

m It is well known that message length is important
m maximum permissible message length is what matters
m also the size of the field is important
m All polynomial evaluation hashes have many weak keys
m maybe it's better to talk of an unavoidable property from the
algebraic structure, rather than the number of weak keys?
m does having lots of weak keys make the algorithm weak?



The End - Thank You
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