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Keccak sponge function family

Two main parameters: r (bitrate), c (capacity)

For SHA-3 candidates, r + c = 1600 bits

A security/performance trade-off by choosing r and c values
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Keccak-f[1600] permutation

Keccak-f[1600] permutation consists of 24 rounds.

Each round has 5 steps: θ, ρ, π, χ, and ι.

Rounds differ only in ι (different values of round constants).
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Steps of Keccak-f[1600]

θ : a linear map, which adds to each bit in a column the parity of two
other columns (only XORs)

ρ : rotations inside 64-bit words (called ‘lanes’)

π : permutation between whole lanes

χ : the only non-linear mapping of Keccak, working on each of the
320 rows independently (ANDs and XORs)

ι : one lane is XORed with a 64-bit constant (each round has a
different constant)
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Rotational cryptanalysis — main idea

Bitwise rotation (8-bit word ’00010100’ rotated by 3 gives ’10000010’)

In the rotational analysis, the adversary investigates the propagation
of the rotational relations through the cryptographic primitive.

Operation ........input

Operation ........rotated input

Rotational relation 
preserved?
(hopefully yes)
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Bitwise XOR operation

8-bit inputs inputs rotated by 2

00101000
00101011

00001010
11001010XOR

00000011
XOR

11000000

Bitwise XOR operation preserves rotational relation.
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Bitwise AND operation

Two 8-bit inputs inputs rotated by 2

00101000
00101011

00001010
11001010

00101000
AND AND

00001010

Bitwise AND operation preserves rotational relation.
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Bitwise rotation (circular shift) operation

0001010001010000

8-bit input input rotated by 2

00101000 00001010
rotate by 7 rotate by 7

Bitwise rotation operation in a natural way preserves rotational
relation.
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XORing with constant — root of all evil

XOR

8-bit input input rotated by 2

00101000
00000001

00001010
00000001XOR

00101001 000010110 1

'inversions'

XORing with constant does not preserve rotational relations.

The more 1’s in a constant, the more ‘inversions’ introduced.

Luckily, in Keccak Hamming weights of constants are very low.
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Rotational pair of states

1600-bit state
Each lane rotated by n

equal values

opposite values

unknown relation
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Evolution of a rotational pair

Round 1

equal values

opposite values

unknown relation

Round 2
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Non-linear χ and rotational relations

AND =

AND =

Non-linear step χ introduces an uncertainty in rotational relation
between the corresponding bits. (similar to differential cryptanalysis)
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Evolution of a rotational pair

Round 3

equal values

opposite values

unknown relation

Round 4
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3-round preimage attack on Keccak-512

Keccak-512 (r = 576, c = 1024, hash= 512)

Message structure: first 8 lanes (512 bits) are unknown (to be
determined by the attacker). Last 62 bits of the message are set to 1.
The message is padded with two 1’s giving a block of 576 bits.

It is expected that among 2512 possible messages there is, on average,
one preimage of a given hash.
With such structure, to guess a rotational counterpart of a state we
need to care only about 512 unknown bits. (A lane with all 0’s or all
1’s stays the same before and after rotation.)
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3-round preimage attack — main ideas

The main idea is to find a rotational counterpart of the preimage and
show that the workload for this task is below exhaustively trying all
2512 values. Once we have a rotational counterpart of the preimage,
we simply rotate it back and get the preimage.
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3-round preimage attack — main ideas

Every∗ 512-bit preimage has 64 possible rotational counterparts (lanes
rotated by 1, or lanes rotated by 2, ..., or lanes rotated by 64). Then
the probability that we guess one of the rotational counterpart is
2−512 · 64 = 2−506.

So 2506 guesses and we hit a rotational counterpart of the preimage.
But how to check which rotational number the guessed rotational
counterpart actually has?? (We can not check 64 possibilities as we
would end up with 2512 — exhaustive search effort)

Help comes from rotational distinguishers!
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Use of 3-round distinguishers

In precomputation: generate 3-round distinguisher for all 64
rotational numbers. Remember positions of yellow and black squares
(in first 512 bits of the state).

first 512 bits (hash) 
known for an attacker

If a guessed preimage is actually the rotational counterpart of the
preimage we’re looking for, then values of hashes should be as one of
the distinguishers shows.
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Main loop of the attack

1 guess first 8 lanes (512 bits) of the state, the other bits are fixed
according to the structure of the message.

2 run 3-round Keccak-f[1600] on the guessed state.

3 do rotational relations agree with any of 64 distinguishers?

...

64 rotational distinguishers
(each with a different rotational number)

...

4 if (rotational relations agreed) then rotate back the guessed state by
n bits and run 3-round Keccak-512 on it to check whether the state is
the preimage of a given hash.
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Complexity of the attack

The workload of the attack is 2256 (checking special messages) +
2506 (main loop) + 2502 (checking false positive candidates). Thus
complexity of the attack is roughly 2506 Keccak-512 calls, 64 times
better than the exhaustive search.
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Extension to 4 rounds

Direct extension is not possible as there are no yellow or black squares
at the end of the 4th round.

To extend the attack, instead of running Keccak-f[1600] permutation
on a guessed state, we run a modified version (without ι step). In
consequence, fewer black squares appear and it leads to fewer red,
undesirable squares.

After θ, ρ, and π in the 4th round there are still yellow and black
squares (in the first 512 bits). It is good enough for mounting the
attack as we can go back to that step from the hash (invert ι and χ
from the hash).
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Our attacks and related work

Table: Best known preimage attacks on the Keccak variants proposed as SHA-3
candidates. The number in the column ‘Variant’ denotes a hash length.

Rounds Variant Time Memory Reference

6/7/8 512 2506/2507/2511.5 2176/2320/2508 Bernstein, 2010

4 224/256 2217.3/2249.3 261 Bernstein, 2010

4 384/512 2377.3/2505.3 261 Bernstein, 2010

4 512 2506 negligible this work

4 384 2378 negligible this work

4 256 2252 negligible this work

4 224 2221 negligible this work
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Conclusion

Main result: 4-round preimage attack, up to 64 times faster than
exhaustive search, negligible amount of memory used in the attack

5-round distinguisher on Keccak-f[1600] permutation

Our attack takes advantage of low Hamming weight of constans. (It
would be much harder if there were more 1’s in constants.)
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Thank you for your attention!
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