

11 March, 2013 FSE 2013 @ Singapore

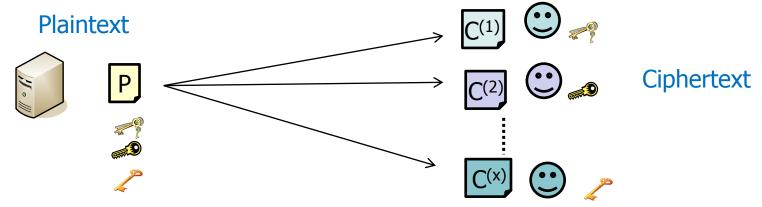
Full Plaintext Recovery Attack on Broadcast RC4

<u>Takanori Isobe (Kobe University)</u> Toshihiro Ohigashi (Hiroshima University) Yuhei Watanabe (Kobe University) Masakatu Morii (Kobe University)

Target

Broadcast setting

- Same plaintext is encrypted with different (user) keys
 - Example : Group mail, multi session (SSL/TLS)



- Plaintext Recovery Attack in the broadcast setting
 - Recover the plaintext from ONLY ciphertexts encrypted by different keys
 - Passive attack
 - What attacker do is to collect ciphertexts.
 - NOT use additional information such as side channel information.

Summary of Our Results

Practical Security Evaluation of RC4 in the Broadcast Setting

Results

Efficient plaintext recovery attack in the first 257 bytes

- Based on strong biases set of the first 257 bytes including new biases
- Given 2³² ciphertexts with different keys, any byte of first 257 bytes of the plaintext are recovered with probability of more than 0.5.
 2³² ciphertexts

Sequential plaintext recovery attack after 258 bytes

- Combine use of our bias set and Mantin's long term bias in EUROCRYPT 2005
- Given 2³⁴ ciphertexts with different keys, contiguous 1000 T bytes of the plaintext are recovered with probability of 0.99

- RC4 Stream Cipher
- Known Plaintext Recovery Attacks
- Efficient Plaintext Recovery Attack of the first 257 bytes
- Sequential plaintext recovery attack after 258 bytes
- Conclusion

RC4

- Stream Cipher designed by Ron Rivest in 1987
 - One of most famous stream ciphers
 - Used in SSL/TLS, WEP/WPA and more.
- Parameter
 - 1-256 byte key (typically 16 byte (=128 bit) key)
 - State size N bytes (typically N = 256)

 $\Rightarrow Z_1, Z_2, \dots$ Keystream

- 16 byte (128 bit) key

We focus on

- 256 byte state

Cryptanalysis

- State Recovery attacks [KMPRV+98, MK08]
- Distinguish attacks [FM00, M'05, SVV10, SMPS12]
- Plaintext Recovery attacks [MS01, MPS11, SMPS12]
- Other attacks
 - Key Collision [M'09, CM12]
 - Key Recovery from Internal State [SM07,BC08]

RC4

- Stream Cipher designed by Ron Rivest in 1987
 - One of most famous stream ciphers
 - Used in SSL/TLS, WEP/WPA and more.
- Parameter
 - 1-256 byte key (typically 16 byte (=128 bit) key)
 - State size N bytes (typically N = 256)

 \Rightarrow Z₁, Z₂, ... Keystream

- 16 byte (128 bit) key

We focus on

- 256 byte state

Cryptanalysis

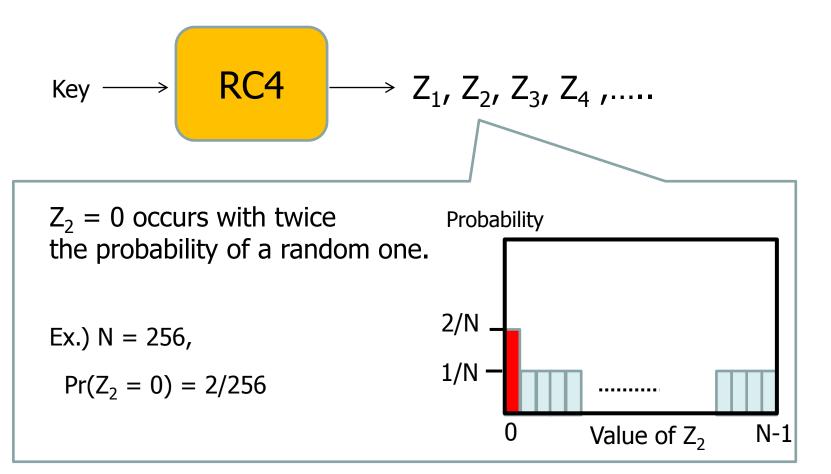
- State Recovery attacks [KMPRV+98, MK08]
- Distinguish attacks [FM00, M'05, SVV10, SMPS12]
- Plaintext Recovery attacks [MS01, MPS11, SMPS12]
- Other attacks
 - Key Collision [M'09, CM12]
 - Key Recovery from Internal State [SM07,BC08]

Known Plaintext Recovery Attacks

Mantin-Shamir Attack [MS01]

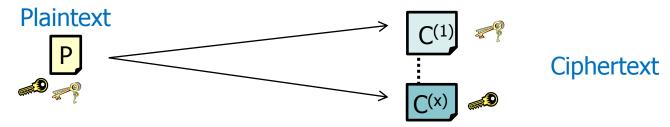
Proposed in FSE 2001 [MS01]

Second byte of the keystream is strongly biased to "0"



Plaintext Recovery Attack [MS01]

Broadcast setting : same plaintext is encrypted with different keys



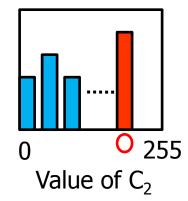
Relation : " $C_2 = P_2 XOR Z_2$ "

- If $Z_2 = 0$ (strong bias), then $C_2 = P_2$
- Most frequent value of C₂ can be regarded as P₂

Evaluation

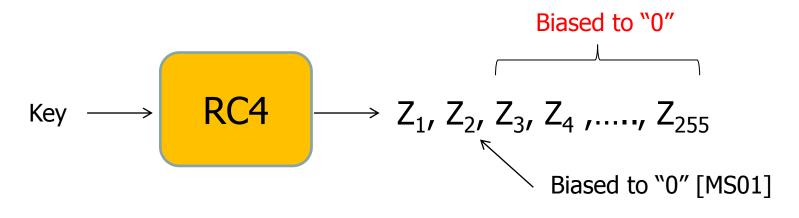
- Given Ω (N) ciphertexts encrypted by different keys,
 - P_2 can be extracted with high probability.

Frequency Table of C₂



Maitra-Paul-Sen Gupta Attack [MPS11, SMPS12]

- Proposed in FSE 2011 (later improved in JoC [SMPS12])
- $Z_3 Z_{255}$ are also biased to "0"
 - Exploit biases of the state after KSA



- Plaintext Recovery Attack in the Broadcast setting
 - Ω (N³) ciphertexts encrypted by different keys allow us to extract P₃,..., P₂₅₅ with high probability

Biases of $Z_r = 0$ (2<r <256) are strongest biases for the initial bytes 1 to 255?

While the previous results [MS01, MSP11] estimate only lower bounds (Ω), how many ciphertexts encrypted with different keys are actually required for a practical attack on broadcast RC4?

Is it possible to efficiently recover the later bytes of the plaintext, after byte 256?

Biases of $Z_r = 0$ (2<r <256) are strongest biases for the initial bytes 1 to 255?

While the previous results [MS01, MSP11] estimate only lower bounds (Ω), how many ciphertexts encrypted with different keys are actually required for a practical attack on broadcast RC4?

Is it possible to efficiently recover the later bytes of the plaintext, after byte 256?

We provide all answers to these questions

Biases of $Z_r = 0$ (2<r <256) are strongest biases for the initial bytes 1 to 255?

While the previous results [MS01, MSP11] estimate only lower bounds (Ω), how many ciphertexts encrypted with different keys are actually required for a practical attack on broadcast RC4?

Is it possible to efficiently recover the later bytes of the plaintext, after byte 256?

We provide all answers to these questions

We show four new biases, which are stronger than $Z_r = 0$, with theoretical reasons.

We show four new biases, which are stronger than $Z_r = 0$, with theoretical reasons.

Key
$$\longrightarrow$$
 RC4 \longrightarrow $Z_{1'}$ Z_{2}
= 0 = 0

Conditional bias regarding Z₁

- When $Z_2 = 0$, Z_1 is strongly biased to "0"
- $Pr(Z_1 = 0 | Z_2 = 0) = 2^{-8} (1 + 2^{-0.996})$
- Similar biases was proposed by Fluhrer and McGrew as along term bias [FM00] but our bias is stronger than it.

We show four new biases, which are stronger than $Z_r = 0$, with theoretical reasons.

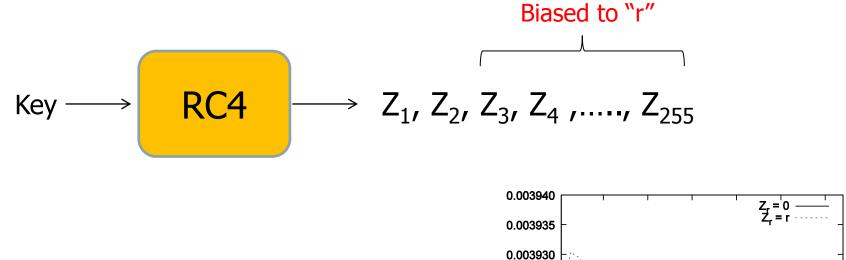
Key
$$\longrightarrow$$
 RC4 \longrightarrow Z₁, Z₂, Z₃
= 131

 $Z_3 = 131$

Strongest biases in Z₃

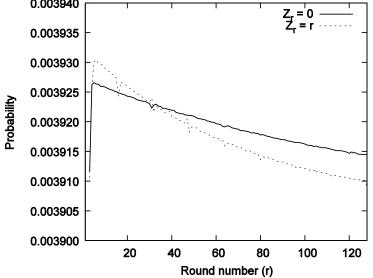
- Pr $(Z_3 = 0) = 2^{-8} (1 + 2^{-9.512})$ [MSP11]
- Pr ($Z_3 = 131$) = 2⁻⁸ (1 + 2^{-8.089})

We show four new biases, which are stronger than $Z_r = 0$, with theoretical reasons.



■ Z_r=r (3 ≦ r ≦ 255)

- Occur in 3 to 255 bytes similar to $Z_r = 0$
 - Stronger than $Z_r = 0$ for $5 \le r \le 31$



We show four new biases, which are stronger than $Z_r = 0$, with theoretical reasons.

$$Key \longrightarrow RC4 \longrightarrow Z_{1}, .., Z_{16}, .., Z_{32}, .., Z_{48}, .., Z_{64}, .., Z_{80}, .., Z_{96}, .., Z_{112}$$

=-16 =-32 =-48 =-64 =-80 =-96 =-112
[SVV10]

Extended key length dependent bias

 A extension of key-length dependent biases s.t. Z_I = -I (I : key length in byte) [SVV10, SMPS12]

•
$$Z_{I \cdot x} = -I \cdot x$$
 for $x = 2, 3, 4, 5, 6, 7$ (I = 16)

Other new biases

We also experimentally found other two biases regarding "0" but there are no theoretical reasons.

Key
$$\longrightarrow$$
 RC4 \longrightarrow Z₁, Z₂,..., Z₂₅₅, Z₂₅₆, Z₂₅₇
=0 =0
Z₂₅₆ = 0 Negative
• Negative biases
• Pr(Z₂₅₆ = 0) = 2⁻⁸(1 - 2^{-9.407})
Z₂₅₇ = 0
• Pr(Z₂₅₆ = 0) = 2⁻⁸(1 + 2^{-9.531})

Six new biases, which is stronger than $Z_r = 0$, were found!

Cumulative list of strong biases

- Construct a set of known strongest biases in the first 257 bytes when a 128 bit key is used.
 - Consist of (non-conditional) strongest biases of each bytes except Z₁
 - We experimentally confirmed that these value are most/least frequency values of each bytes.

r	Strongest known bias of Z_r	Prob.(Theoretical) ⁴	Prob.(Experimental)
1	$Z_1 = 0 Z_2 = 0$ (Our)	$2^{-8} \cdot (1 + 2^{-1.009})$	$2^{-8} \cdot (1 + 2^{-1.036})$
2	$Z_2 = 0$ [11]	$2^{-8} \cdot (1+2^0)$	$2^{-8} \cdot (1+2^{0.002})$
3	$Z_3 = 131$ (Our)	$2^{-8} \cdot (1 + 2^{-8.089})$	$2^{-8} \cdot (1 + 2^{-8.109})$
4	$Z_4 = 0$ [8]	$2^{-8} \cdot (1 + 2^{-7.581})$	$2^{-8} \cdot (1 + 2^{-7.611})$
5-15	$Z_r = r$ (Our)	max: $2^{-8} \cdot (1 + 2^{-7.627})$	max: $2^{-8} \cdot (1 + 2^{-7.335})$
		min: $2^{-8} \cdot (1 + 2^{-7.737})$	min: $2^{-8} \cdot (1 + 2^{-7.535})$
16	$Z_{16} = 240$ [5]	$2^{-8} \cdot (1 + 2^{-4.671})$	$2^{-8} \cdot (1 + 2^{-4.811})$
17 - 31	$Z_r = r$ (Our)	max: $2^{-8} \cdot (1 + 2^{-7.759})$	max: $2^{-8} \cdot (1 + 2^{-7.576})$
		min: $2^{-8} \cdot (1 + 2^{-7.912})$	min: $2^{-8} \cdot (1 + 2^{-7.839})$
32	$Z_{32} = 224$ (Our)	$2^{-8} \cdot (1 + 2^{-5.176})$	$2^{-8} \cdot (1 + 2^{-5.383})$
33 - 47	$Z_r = 0$ [8]	max: $2^{-8} \cdot (1 + 2^{-7.897})$	max: $2^{-8} \cdot (1 + 2^{-7.868})$
		min: $2^{-8} \cdot (1 + 2^{-8.050})$	min: $2^{-8} \cdot (1 + 2^{-8.039})$
	$Z_{48} = 208$ (Our)	$2^{-8} \cdot (1 + 2^{-5.651})$	$2^{-8} \cdot (1 + 2^{-5.938})$
49-63	$Z_r = 0$ [8]	max: $2^{-8} \cdot (1 + 2^{-8.072})$	max: $2^{-8} \cdot (1 + 2^{-8.046})$
		min: $2^{-8} \cdot (1 + 2^{-8.224})$	min: $2^{-8} \cdot (1 + 2^{-8.238})$
	$Z_{64} = 192$ (Our)	$2^{-8} \cdot (1 + 2^{-6.085})$	$2^{-8} \cdot (1 + 2^{-6.496})$
65 - 79	$Z_r = 0$ [8]	max: $2^{-8} \cdot (1 + 2^{-8.246})$	max: $2^{-8} \cdot (1 + 2^{-8.223})$
	8	min: $2^{-8} \cdot (1 + 2^{-8.398})$	min: $2^{-8} \cdot (1 + 2^{-8.376})$
	$Z_{80} = 176$ (Our)	$2^{-8} \cdot (1 + 2^{-6.574})$	$2^{-8} \cdot (1 + 2^{-7.224})$
81-95	$Z_r = 0$ [8]	max: $2^{-8} \cdot (1 + 2^{-8.420})$	max: $2^{-8} \cdot (1 + 2^{-8.398})$
	7	min: $2^{-8} \cdot (1 + 2^{-8.571})$	min: $2^{-8} \cdot (1 + 2^{-8.565})$
	$Z_{96} = 160 \text{ (Our)}$	$2^{-8} \cdot (1 + 2^{-6.970})$	$2^{-8} \cdot (1 + 2^{-7.911})$
97–111	$Z_r = 0 \ [8]$	max: $2^{-8} \cdot (1 + 2^{-8.592})$	max: $2^{-8} \cdot (1 + 2^{-8.570})$
110		min: $2^{-8} \cdot (1 + 2^{-8.741})$	min: $2^{-8} \cdot (1 + 2^{-8.722})$
	$Z_{112} = 144$ (Our)	$2^{-8} \cdot (1 + 2^{-7.300})$	$2^{-8} \cdot (1 + 2^{-8.666})$
113-255	$Z_r = 0$ [8]	max: $2^{-8} \cdot (1 + 2^{-8.763})$	max: $2^{-8} \cdot (1 + 2^{-8.760})$
050		min: $2^{-8} \cdot (1 + 2^{-10.052})$	min: $2^{-8} \cdot (1 + 2^{-10.041})$
256	$Z_r = 0$ (negative bias) (Our)	N/A	$2^{-8} \cdot (1 - 2^{-9.407})$
257	$Z_r = 0$ (Our)	N/A	$2^{-8} \cdot (1 + 2^{-9.531})$

Cumulative list of strong biases

- Construct a set of known strongest biases in the first 257 bytes when a 128 bit key is used.
 - Consist of (non-conditional) strongest biases of each bytes except Z₁
 - We experimentally confirmed that these value are most/least frequency values of each bytes.

r	Strongest known bias of Z_r	$Prob.(Theoretical)^4$	Prob.(Experimental)
1	$Z_1 = 0 Z_2 = 0$ (Our)	$2^{-8} \cdot (1 + 2^{-1.009})$	$2^{-8} \cdot (1 + 2^{-1.036})$
2	$Z_2 = 0$ [11]	$2^{-8} \cdot (1+2^0)$	$2^{-8} \cdot (1 + 2^{0.002})$
3	$Z_3 = 131$ (Our)	$2^{-8} \cdot (1 + 2^{-8.089})$	$2^{-8} \cdot (1 + 2^{-8.109})$
4	$Z_4 = 0$ [8]	$2^{-8} \cdot (1 + 2^{-7.581})$	$2^{-8} \cdot (1 + 2^{-7.611})$
5-15	$Z_r = r$ (Our)		max: $2^{-8} \cdot (1 + 2^{-7.335})$
		min: $2^{-8} \cdot (1 + 2^{-7.737})$	min: $2^{-8} \cdot (1 + 2^{-7.535})$
16	$Z_{16} = 240$ [5]	$2^{-8} \cdot (1 + 2^{-4.671})$	$2^{-8} \cdot (1 + 2^{-4.811})$

We can obtain the stronger bias set in the first 257 byte

			8 . 8050	8 . 8 000
			min: $2^{-8} \cdot (1 + 2^{-8.050})$	min: $2^{-8} \cdot (1 + 2^{-8.039})$
	48	$Z_{48} = 208 \text{ (Our)}$		$2^{-8} \cdot (1 + 2^{-5.938})$
4	9–63	$Z_r = 0$ [8]		max: $2^{-8} \cdot (1 + 2^{-8.046})$
				min: $2^{-8} \cdot (1 + 2^{-8.238})$
	64	$Z_{64} = 192 \text{ (Our)}$		$2^{-8} \cdot (1 + 2^{-6.496})$
6	5 - 79	$Z_r = 0$ [8]		max: $2^{-8} \cdot (1 + 2^{-8.223})$
			min: $2^{-8} \cdot (1 + 2^{-8.398})$	min: $2^{-8} \cdot (1 + 2^{-8.376})$
	80	$Z_{80} = 176 \text{ (Our)}$	$2^{-8} \cdot (1 + 2^{-6.574})$	$2^{-8} \cdot (1 + 2^{-7.224})$
8	1 - 95	$Z_r = 0$ [8]		max: $2^{-8} \cdot (1 + 2^{-8.398})$
				min: $2^{-8} \cdot (1 + 2^{-8.565})$
	96	$Z_{96} = 160 \text{ (Our)}$		$2^{-8} \cdot (1 + 2^{-7.911})$
97	7–111	$Z_r = 0$ [8]		max: $2^{-8} \cdot (1 + 2^{-8.570})$
				min: $2^{-8} \cdot (1 + 2^{-8.722})$
	112	$Z_{112} = 144$ (Our)		$2^{-8} \cdot (1 + 2^{-8.666})$
11	3 - 255	$Z_r = 0$ [8]	max: $2^{-8} \cdot (1 + 2^{-8.763})$	max: $2^{-8} \cdot (1 + 2^{-8.760})$
			min: $2^{-8} \cdot (1 + 2^{-10.052})$	min: $2^{-8} \cdot (1 + 2^{-10.041})$
	256	$Z_r = 0$ (negative bias) (Our)	N/A	$2^{-8} \cdot (1 - 2^{-9.407})$
	257	$Z_r = 0$ (Our)	N/A	$2^{-8} \cdot (1 + 2^{-9.531})$

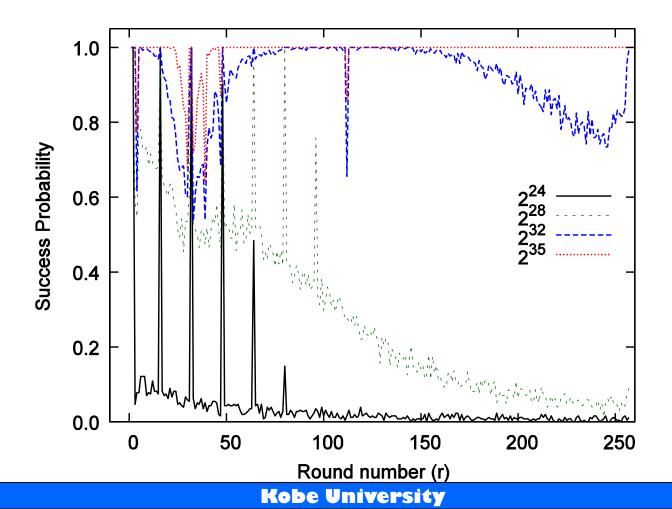
Biases of $Z_r = 0$ (2<r <256) are strongest biases for the initial bytes 1 to 255?

While the previous results [MS01, MSP11] estimate only lower bounds (Ω), how many ciphertexts encrypted with different keys are actually required for a practical attack on broadcast RC4?

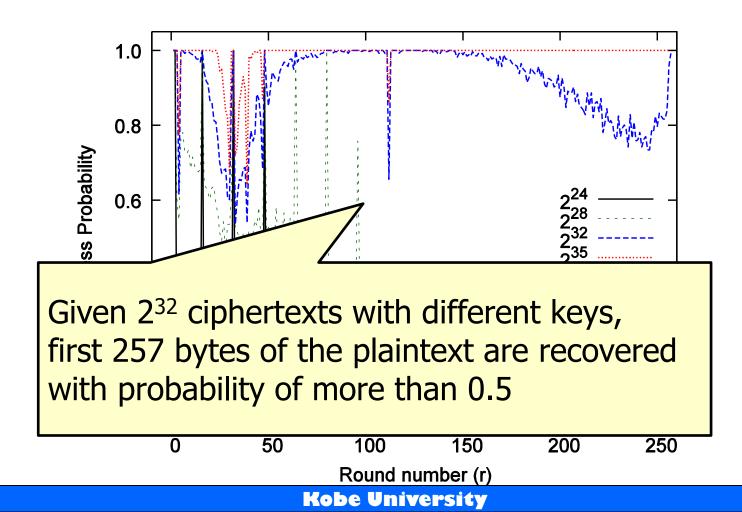
Is it possible to efficiently recover the later bytes of the plaintext, after byte 256?

We provide all answers to these questions

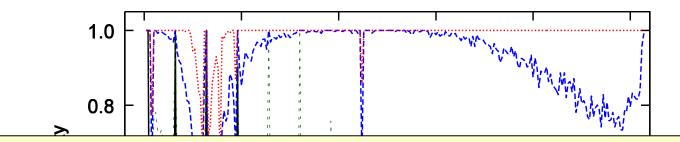
We have performed the experiment for in the cases where 2⁶, 2⁷,..., 2³⁵ ciphertexts with randomly-chosen keys are given.



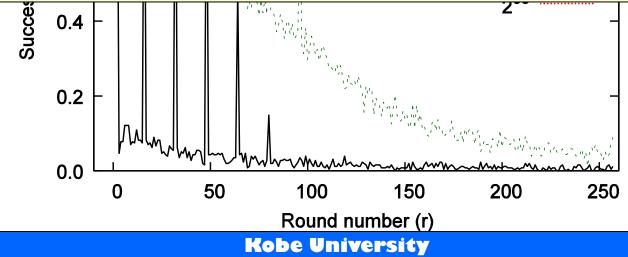
We have performed the experiment for in the cases where 2⁶, 2⁷, . . , 2³⁵ ciphertexts with randomly-chosen keys are given.



We have performed the experiment for in the cases where 2⁶, 2⁷,..., 2³⁵ ciphertexts with randomly-chosen keys are given.



We estimate the number of ciphertexts for the plaintext recovery attack in the broadcast setting



Biases of $Z_r = 0$ (2<r <256) are strongest biases for the initial bytes 1 to 255?

While the previous results [MS01, MSP11] estimate only lower bounds (Ω), how many ciphertexts encrypted with different keys are actually required for a practical attack on broadcast RC4?

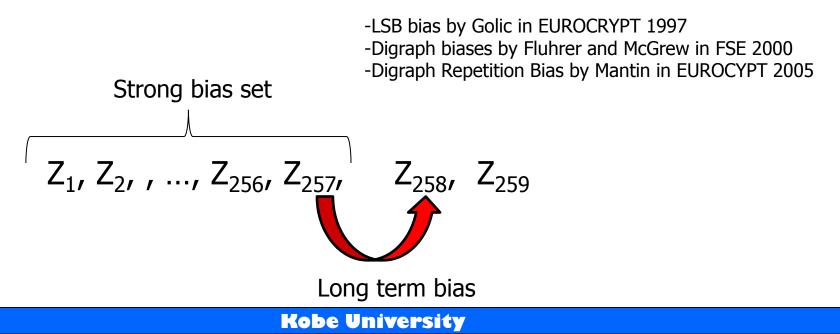
Is it possible to efficiently recover the later bytes of the plaintext, after byte 256?

We provide all answers to these questions

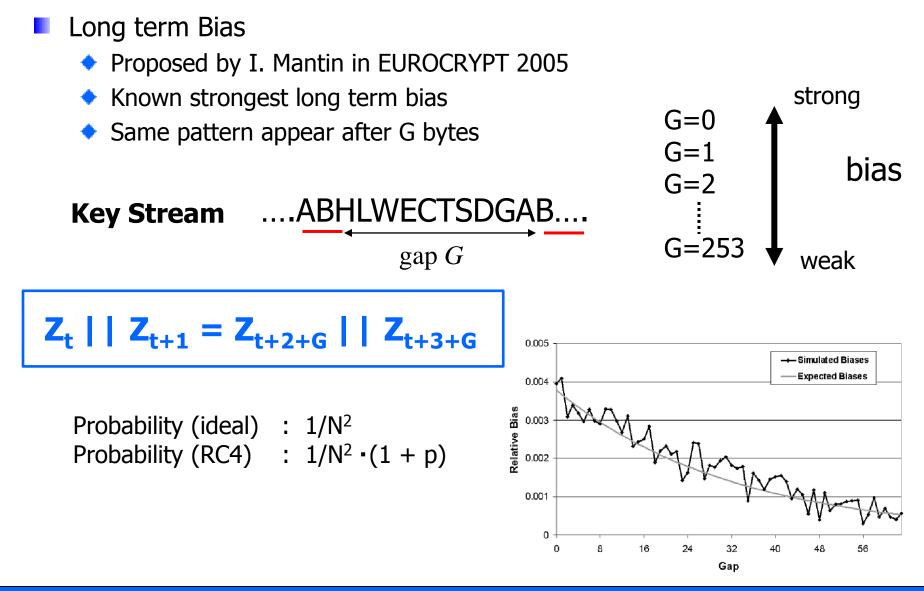
How to Recover Later bytes

- Efficient method using the strong bias set are not directly applicable to later bytes, after Z₂₅₈.
 - We could not find such strong biases after Z₂₅₈
- Sequential method
 - Combination of our strong bias set and long term biases

=> occur any position of the keystream



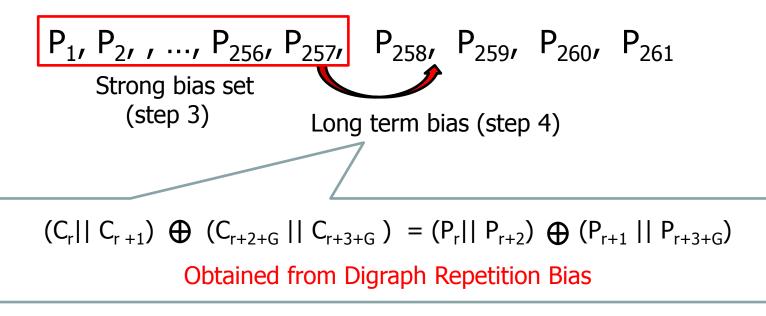
Digraph Repetition Bias



- Algorithm
 - Step 1 : Collect X ciphertexts
 - Step 2 : Set i = 0
 - Step 3 : Obtain candidates of $P_1, \dots, P_{257 + i}$ by using our strong bias set
 - Step 4 : Guess $P_{258 + i}$ by using digraph biases for G = 1,...,63
 - Step 5 : Increment i and Repeat 3 and 4

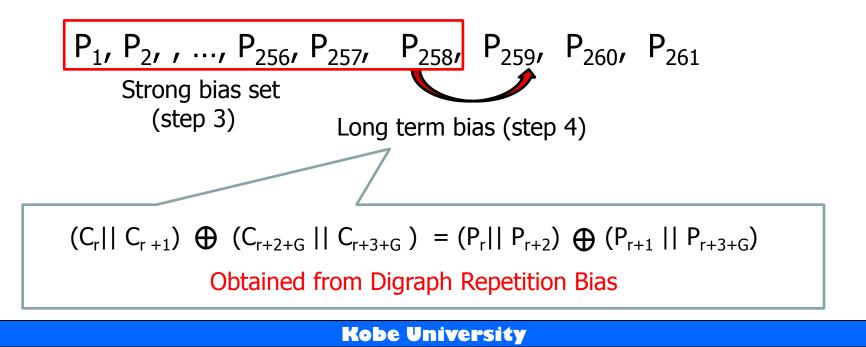
Algorithm

- Step 1 : Collect X ciphertexts
- Step 2 : Set i = 0
- Step 3 : Obtain candidates of $P_1, \dots, P_{257 + i}$ by using our strong bias set
- Step 4 : Guess $P_{258 + i}$ by using digraph biases for G = 1,...,63
- Step 5 : Increment i and Repeat 3 and 4



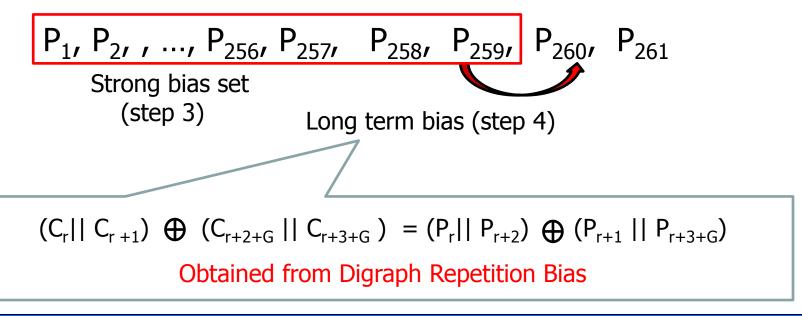
Algorithm

- Step 1 : Collect X ciphertexts
- Step 2 : Set i = 0
- Step 3 : Obtain candidates of $P_1, \dots, P_{257 + i}$ by using our strong bias set
- Step 4 : Guess $P_{258 + i}$ by using digraph biases for G = 1,...,63
- Step 5 : Increment i and Repeat 3 and 4



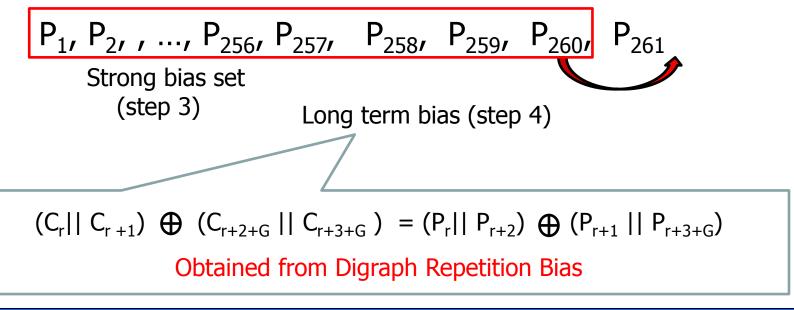
Algorithm

- Step 1 : Collect X ciphertexts
- Step 2 : Set i = 0
- Step 3 : Obtain candidates of $P_1, \dots, P_{257 + i}$ by using our strong bias set
- Step 4 : Guess $P_{258 + i}$ by using digraph biases for G = 1,...,63
- Step 5 : Increment i and Repeat 3 and 4



Algorithm

- Step 1 : Collect X ciphertexts
- Step 2 : Set i = 0
- Step 3 : Obtain candidates of $P_1, \dots, P_{257 + i}$ by using our strong bias set
- Step 4 : Guess $P_{258 + i}$ by using digraph biases for G = 1,...,63
- Step 5 : Increment i and Repeat 3 and 4



We have performed the experimentation.

• P_{258} , ..., P_{261} can be recovered from 2^{34} ciphertexts with probability of one

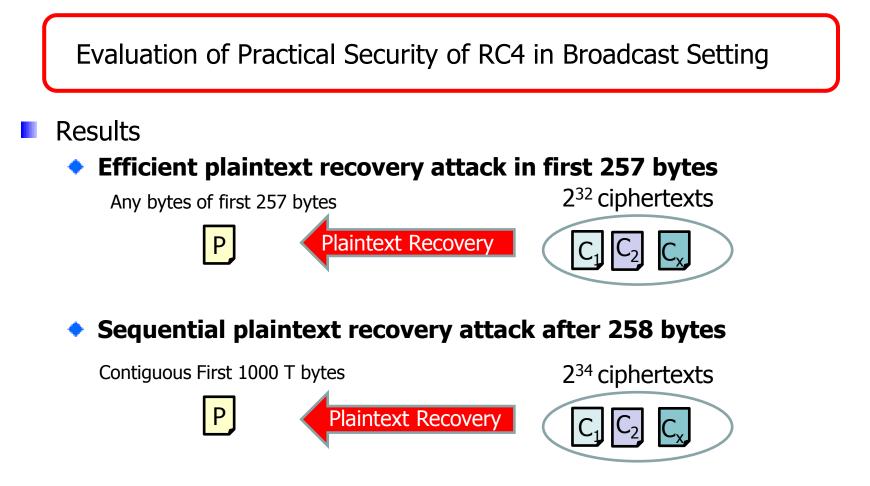
Table 1: Success Probability of our algorithm for recovering $P_r \ (r \ge 258)$ on Broadcast RC4

	# of ciphertexts				
	2^{30}	2^{31}	2^{32}	2^{33}	2^{34}
P_{258}	0.0039	0.0391	0.3867	0.9648	1.0000
P_{259}	0.0039	0.0078	0.1523	0.9414	1.0000
P_{260}	0.0000	0.0039	0.0703	0.9219	1.0000
P_{261}	0.0000	0.0078	0.0273	0.9023	1.0000

Theoretical estimation

 ◆ Given 2³⁴ ciphertexts with different keys, 2⁴⁰ ≒ 1000 T bytes of the plaintext are recovered with probability of 0.99

Conclusion



RC4 is not to be recommended for the broadcast encryption

Conclusion

- If the initial 256 bytes of the keystream are disregarded in the protocol, our attack does not work.
 - Same type of the attack seem to be applicable

For SSL/TLS, the broadcast setting is converted into the multi-session setting where the target plaintext block are repeatedly sent in the same position in the plaintexts in multiple SSL/TLS sessions.

Thank you for your attention