

No one Uses Any More.

Hotels
 No one Uses
 WEPAny More.

Restaurants

Wireless Networks in Singapore: 20\% WEP

No one Uses WEP Any More.

Singapore is not alone. The same problem in most Asia.

RC4

Reminder on RC4

RC4

Reminder on RC4 RC4/WEP

Reminder on RC4

 RC4/WEP
Tornado Attack on WEP

Reminder on RC4 RC4/WEP
Tornado Attack on WEP Challenges

Reminder on RC4 RC4/WEP
Tornado Attack on WEP Challenges

1: for $\mathrm{i}=0$ to $\mathrm{N}-1$ do
2: $\quad S[i] \leftarrow i$
3: end for
4: $\mathrm{j} \leftarrow 0$
5: for $\mathrm{i}=0$ to $\mathrm{N}-1$ do
6: $\quad \mathrm{j} \leftarrow \mathrm{j}+\mathrm{S}[\mathrm{i}]+\mathrm{K}[i \bmod \mathrm{~L}]$
7: $\quad \operatorname{swap}(S[i], S[j])$
8: end for

KSA

1: for $\mathrm{i}=0$ to $\mathrm{N}-1$ do
2: $\quad S[i] \leftarrow i$
3: end for
4: $\mathrm{j} \leftarrow 0$
5: for $\mathrm{i}=0$ to $\mathrm{N}-1$ do
6: $\quad \mathrm{j} \leftarrow \mathrm{j}+\mathrm{S}[\mathrm{i}]+\mathrm{K}[\mathrm{i} \bmod \mathrm{L}]$
7: $\quad \operatorname{swap}(S[i], S[j])$
8: end for

KSA

1: for $\mathrm{i}=0$ to $\mathrm{N}-1$ do
2: $\quad S[i] \leftarrow i$
3: end for
4: $\mathrm{j} \leftarrow 0$
5: for $\mathrm{i}=0$ to $\mathrm{N}-1$ do
6: $\quad \mathrm{j} \leftarrow \mathrm{j}+\mathrm{S}[\mathrm{i}]+\mathrm{K}[\mathrm{i} \bmod \mathrm{L}]$
7: $\quad \operatorname{swap}(S[i], S[j])$
8: end for

KSA

1: for $\mathrm{i}=0$ to $\mathrm{N}-1$ do
2: $\quad S[i] \leftarrow i$
3: end for
4: $\mathrm{j} \leftarrow 0$
5: for $\mathrm{i}=0$ to $\mathrm{N}-1$ do
6: $\quad \mathrm{j} \leftarrow \mathrm{j}+\mathrm{S}[\mathrm{i}]+\mathrm{K}[i \bmod \mathrm{~L}]$
7: $\quad \operatorname{swap}(\mathrm{S}[\mathrm{i}], \mathrm{S}[\mathrm{j}])$
8: end for

KSA

1: for $\mathrm{i}=0$ to $\mathrm{N}-1$ do
2: $\quad S[i] \leftarrow i$
3: end for
4: $\mathrm{j} \leftarrow 0$
5: for $\mathrm{i}=0$ to $\mathrm{N}-1$ do
6: $\quad \mathrm{j} \leftarrow \mathrm{j}+\mathrm{S}[\mathrm{i}]+\mathrm{K}[\mathrm{i} \bmod \mathrm{L}]$
7: $\quad \operatorname{swap}(\mathrm{S}[\mathrm{i}], \mathrm{S}[\mathrm{j}])$
8: end for

KSA

$1: i \leftarrow 0$
2: $\mathrm{j} \leftarrow 0$
3: loop
4: $\quad \mathrm{i} \leftarrow \mathrm{i}+1$
5: $\quad \mathrm{j} \leftarrow \mathrm{j}+\mathrm{S}[\mathrm{i}]$
6: $\quad \operatorname{swap}(S[i], S[j])$
7: \quad output $z_{i}=S[S[i]+S[j]]$
8: end loop

PRGA

$1: \mathrm{i} \leftarrow 0$
2: $\mathrm{j} \leftarrow 0$
3: loop
4: $\quad i \leftarrow i+1$
5: $\quad \mathrm{j} \leftarrow \mathrm{j}+\mathrm{S}[\mathrm{i}]$
6: $\quad \operatorname{swap}(S[i], S[j])$
7: \quad output $z_{i}=S[S[i]+S[j]]$
8: end loop

PRGA

$1: \mathrm{i} \leftarrow 0$
2: $\mathrm{j} \leftarrow 0$
3: loop
4: $\quad i \leftarrow i+1$
5: $\quad \mathrm{j} \leftarrow \mathrm{j}+\mathrm{S}[\mathrm{i}]$
6: $\quad \operatorname{swap}(S[i], S[j])$
7: \quad output $z_{i}=S[S[i]+S[j]]$
8: end loop

PRGA

$1: \mathrm{i} \leftarrow 0$
2: $\mathrm{j} \leftarrow 0$
3: loop
4: $\quad \mathrm{i} \leftarrow \mathrm{i}+1$
5: $\quad \mathrm{j} \leftarrow \mathrm{j}+\mathrm{S}[\mathrm{i}]$
6: $\quad \operatorname{swap}(S[i], S[j])$
7: \quad output $z_{i}=S[S[i]+S[j]]$
8: end loop

PRGA

Keystream byte $=$ S[7+3]=S[10]=189

Reminder on RC4 RC4/WEP
Tornado attack on WEP Challenges

Reminder on RC4 RC4/WEP
Tornado attack on WEP Challenges
$k[0] k[1] k[2] k[3] \ldots \mathrm{RC}[15] \longrightarrow \mathrm{z1} \mathrm{z2} 23 \ldots$
$\mathrm{k}[0] \mathrm{k}[1] \mathrm{k}[2] \mathrm{k}[3] \ldots \mathrm{k}[15] \longrightarrow \mathrm{WEP} \longrightarrow \mathrm{z1} \mathrm{z2} \mathrm{z3} \mathrm{..}$.

Reminder on RC4 RC4/WEP
Tornado Attack on WEP Challenges

Reminder on RC4 RC4/WEP
Tornado Attack on WEP Challenges

Conditional biases: pairs of $\bar{f}_{j}, \mathrm{p}_{\mathrm{j}}$ with a predicate $\overline{\mathrm{g}}_{\mathrm{j}}$

$$
\operatorname{Pr}\left[\overline{\mathrm{K}}[i]=\overline{\mathrm{f}}_{\mathrm{j}}(\mathrm{z}, \text { clue }) \mid \overline{\mathrm{g}}_{\mathrm{j}}(\mathrm{z}, \text { clue })\right]=\mathrm{p}_{\mathrm{j}}
$$

?

Conditional biases: pairs of $\bar{f}_{j}, \mathrm{p}_{\mathrm{j}}$ with a predicate $\overline{\mathrm{g}}_{\mathrm{j}}$

$$
\operatorname{Pr}\left[\bar{K}[i]=\bar{f}_{j}(z, \text { clue }) \mid \bar{g}_{j}(z, \text { clue })\right]=p_{j}
$$

?

row	reference	\bar{f}		\bar{g}
i	A_u15	$2-\sigma_{i}$	$S_{t}[i]=0, z_{2}=0$	$P_{\text {fixed }-j}^{1}$

Conditional biases: pairs of $\bar{f}_{j}, \mathrm{p}_{\mathrm{j}}$ with a predicate $\overline{\mathrm{g}}_{\mathrm{j}}$

$$
\operatorname{Pr}\left[\bar{K}[i]=\bar{f}_{j}(z, \text { clue }) \mid \bar{g}_{j}(z, \text { clue })\right]=p_{j}
$$

22 Biases

?

row	reference	\bar{f}		\bar{g}
i	A_u15	$2-\sigma_{i}$	$S_{t}[i]=0, z_{2}=0$	$P_{\text {fixed }-j}^{1}$

Roos, A.: A class of weak keys in RC4 stream cipher.

Attack on WEP

compute the ranking \mathcal{L}_{15} for $I=(15)$ and $I_{0}=\{0,1,2\}$
truncate \mathcal{L}_{15} to its first ρ_{15} terms
for each \bar{k}_{15} in \mathcal{L}_{15} do
4: run recursive attack on input \bar{k}_{15}
5: end for
6: stop: attack failed
recursive attack with input $\left(\bar{k}_{15}, \bar{k}_{3}, \ldots, \bar{k}_{i-1}\right)$:
7: If input is only \bar{k}_{15}, set $i=3$.
8 : if $i \leq i_{\text {max }}$ then
9: \quad compute the ranking \mathcal{L}_{i} for $I=(i)$ and $I_{0}=\{0, \ldots, i-1,15\}$
10: \quad truncate \mathcal{L}_{i} to its first ρ_{i} terms
11: for each \bar{k}_{i} in \mathcal{L}_{i} do
12: run recursive attack on input $\left(\bar{k}_{15}, \bar{k}_{3}, \ldots, \bar{k}_{i-1}, \bar{k}_{i}\right)$
13: end for
14: else
15: for each $\bar{k}_{i_{\max }+1}, \ldots, \bar{k}_{14}$ do
16: test key $\left(\bar{k}_{3}, \ldots, \bar{k}_{14}, \bar{k}_{15}\right)$ and stop if correct
17: end for
18: end if

Attack on WEP

: compute the ranking \mathcal{L}_{15} for $I=(15)$ and $I_{0}=\{0,1,2\}$
2: truncate \mathcal{L}_{15} to its first ρ_{15} terms
3: for each \bar{k}_{15} in \mathcal{L}_{15} do
4: run recursive attack on input \bar{k}_{15}
5: end for

Y_{x} : counter for x $R(x)$: rank of x

6: stop: attack failed
recursive attack with input $\left(\bar{k}_{15}, \bar{k}_{3}, \ldots, \bar{k}_{i-1}\right)$:
7: If input is only \bar{k}_{15}, set $i=3$.
: if $i \leq i_{\text {max }}$ then
9: \quad compute the ranking \mathcal{L}_{i} for $I=(i)$ and $I_{0}=\{0, \ldots, i-1,15\}$
10: \quad truncate \mathcal{L}_{i} to its first ρ_{i} terms
11: for each \bar{k}_{i} in \mathcal{L}_{i} do
12: run recursive attack on input $\left(\bar{k}_{15}, \bar{k}_{3}, \ldots, \bar{k}_{i-1}, \bar{k}_{i}\right)$
13: end for
14: else
15: for each $\bar{k}_{i_{\max }+1}, \ldots, \bar{k}_{14}$ do
16: test key $\left(\bar{k}_{3}, \ldots, \bar{k}_{14}, \bar{k}_{15}\right)$ and stop if correct
17: end for
18: end if

Attack on WEP

: compute the ranking \mathcal{L}_{15} for $I=(15)$ and $I_{0}=\{0,1,2\}$
2: truncate \mathcal{L}_{15} to its first ρ_{15} terms
3: for each \bar{k}_{15} in \mathcal{L}_{15} do
4: run recursive attack on input \bar{k}_{15}
5: end for

$\mathrm{Y}_{\mathrm{x}:}$ counter for x $R(x)$: rank of x

6: stop: attack failed
recursive attack with input $\left(\bar{k}_{15}, \bar{k}_{3}, \ldots, \bar{k}_{i-1}\right)$:
7: If input is only \bar{k}_{15}, set $i=3$.
: if $i \leq i_{\text {max }}$ then
9: \quad compute the ranking \mathcal{L}_{i} for $I=(i)$ and $I_{0}=\{0, \ldots, i-1,15\}$
10: truncate \mathcal{L}_{i} to its first ρ_{i} terms
11: for each \bar{k}_{i} in \mathcal{L}_{i} do
12: run recursive attack on input $\left(\bar{k}_{15}, \bar{k}_{3}, \ldots, \bar{k}_{i-1}, \bar{k}_{i}\right)$
13: end for
14: else
15: for each $\bar{k}_{i_{\text {max }}+1}, \ldots, \bar{k}_{14}$ do
16: test key ($\left.\bar{k}_{3}, \ldots, \bar{k}_{14}, \bar{k}_{15}\right)$ and stop if correct
17: end for
18: end if
The parameters are all optimized

Reminder on RC4 RC4/WEP
Tornado Attack on WEP Challenges

Reminder on RC4 RC4/WEP
Tornado Attack on WEP Challenges

In our EUROCRYPT'11 Paper:

We made a heuristic assumption that $V\left(Y_{\text {good }}\right) \approx V\left(Y_{\text {bad }}\right)$.

In practice: $V\left(Y_{\text {good }}\right) \neq V\left(Y_{\text {bad }}\right)$

We made a heuristic approximation that $\left(Y_{\text {good }}-Y_{i}\right)$'s are independent for all bad i 's.

In practice: $\left(Y_{\text {good }}-Y_{i}\right)$'s are not independent.

Assume the rank R of the correct counter to be normally distributed.

In practice: R is not normally distributed.

Assume R is following Poisson distribution.

In practice $E(R) \neq V(R)$.

$$
\operatorname{Pr}[X=x]=\frac{\Gamma(x+r)}{x!\Gamma(r)}(I-p)^{r} p^{x}
$$

Rank of the correct counter follows the Pólya distribution.

$$
\operatorname{Pr}[R=0]=\operatorname{Pr}\left[Y_{\text {good }}>Y_{\text {bad(1) }}, \ldots, Y_{\text {good }}>Y_{\text {bad(255) }}\right]
$$

$551.578 .7: 551.577 .36: 551.501 .45$
(Advisory Committee on Weather Control, Washington D. C.)

The Frequency of Hail Occurrence

By

H. C. S. Thom

Summary. Hail occurrence, being a comparatively rare event, is fit well by the Poisson distribution providing the hail storms are independent. When this condition is not met, hail occurrence follows the negative binomial distribution. A test is given which determines whether the Poisson distribution may be used, or whether the negative binomial is necessary. The parameter of the Poisson distribution is always estimated efficiently by the method of moments. The parameters of the negative binomial distribution, however, are only efficiently estimated by the method of moments under certain conditions; when the method of moments fails, the method of maximum likelihood must be employed. A criterion to determine when this method must be used is given together with the method of obtaining the estimates. The methods

$$
\operatorname{Pr}[X=x]=\frac{\Gamma(x+r)}{x!\Gamma(r)}(1-p)^{r} p^{x}
$$

Rank of the correct counter follows the Pólya distribution.

$$
\operatorname{Pr}[R=0]=\operatorname{Pr}\left[Y_{\text {good }}>Y_{\text {bad(1) }}, \ldots, Y_{\text {good }}>Y_{\text {bad(255) }}\right]
$$

George Pólya (1887-1985)

TORNADO PROBABILITIES

H. C. S. THOM

Office of Climatology, U.S. Weather Bureau, Washington D.C.
Manuscript received July 2, 1963; revised August 7. 1963]

ABSTRACT

The frequency distributions of tornado path width and length are developed using data series from Iowa and Kansas. From these, the distribution of path area is derived. Direction of path and annual frequency are discussed. It is found that all but about 1 percent of Iowa tornadoes had path directions toward the northeast and southeast quadrants. The annual frequency for a group of Iowa counties is found to have a negative binomial distribution indicating that the climatological series is formed from a Polya stochastic process. This resembles the situation for other types of storms where the events tend to cluster. A new map of annual frequency for the United States is presented for the period 1953-62, during which it is believed tornado observation was fairly stable. The expected value of tornado area is derived from the area distribution. From this and the annual frequency, the probability of a tornado striking a point is found.

$$
\operatorname{Pr}[X=x]=\frac{\Gamma(x+r)}{x!\Gamma(r)}(1-p)^{r} p^{x}
$$

Rank of the correct counter follows the Pólya distribution.

$$
\operatorname{Pr}[R=0]=\operatorname{Pr}\left[Y_{\text {good }}>Y_{\text {bad(1) }}, \ldots, Y_{\text {good }}>Y_{\text {bad(255) }}\right]
$$

George Pólya (1887-1985)

IEEE 802.11 Data Frames: Active vs. Passive Attacks

	ARP Packet
OxAA	DSAP
0xAA	SSAP
0x03	CTRL
$\begin{array}{\|l\|} \hline 0 \mathrm{x} 00 \\ 0 \mathrm{x} 00 \\ 0 \mathrm{x} 00 \end{array}$	ORG Code
0x08	ARP
0x06	
0x00	Ethernet
0x01	
0x08	IP
0x00	
0x06	Hardware size
0x04	Protocol
0x00	Opcode Request/Reply
0x??	
0x??	MAC addr src
0x??	
0x??	IP src
0x??	
0x??	
0x??	
0x??	MAC addr dst
0x??	

TCP/IPv4 Packet	
0xAA	DSAP
0xAA	SSAP
0x03	CTRL
$\begin{array}{\|l\|} \hline 0 \times 00 \\ 0 \times 00 \\ 0 \times 00 \end{array}$	ORG Code
0x08	IP
0x00	
0x45	IP Version + Header length
0x00	Type of Service
0x??	Packet length
0x??	
0x??	IP ID RFC815
0x??	
0x40	Fragment type and offset
0x??	
0x??	TTL
0x06	TCP type
0x??	Header checksum
0x??	
0x??	IP src
0x??	
0x??	
0x??	
0x??	IP dst
0x??	
0x??	
0x??	
0x??	Port src
0x??	
0x??	Port dst
0x??	

Comparison with Aircrack-ng

Conclusion

Conclusion

Providing the fastest attack on WEP to the date

All the theory behind WEP attack with a proof

Necessity of practical evaluation to ensure the correctness of theory

Good understanding of the behaviour of all biases in WEP

A better understanding of WPA security

Questions?

