
Smashing WEP
in A Passive Attack

1

POUYAN SEPEHRDAD
PETR SUSIL
SERGE VAUDENAY
MARTIN VUAGNOUX

2

2

No one Uses WEP

Any More.

2

No one Uses WEP

Any More.

Airports

Hotels

Restaurants

2

No one Uses WEP

Any More.

Airports

Hotels

Restaurants

Wireless Networks in
Singapore: 20% WEP

Singapore is not alone.
The same problem in most Asia.

RC4

3

Reminder on RC4

RC4

3

Reminder on RC4

RC4 RC4/WEP

3

Reminder on RC4

RC4 RC4/WEP

Tornado Attack on WEP

3

Reminder on RC4

RC4 RC4/WEP

Tornado Attack on WEP

3

Challenges

Reminder on RC4

RC4 RC4/WEP

Tornado Attack on WEP

Reminder on RC4

3

Challenges

Key KeystreamKSA PRGASN-1

4

KSA

row reference f̄ p

i != 1 MaitraPaul(i, I0) K̄[i] = zi+1 −σi PMP(i,t)
i KleinImproved(i, I0) K̄[i] = S−1

t [−zi + i]−σi PKI(i,t)
1 SVV bb 000 K̄[1] = z1 −1 1.04237/N
2 SVV bb 003 K̄[2] = z2 −3 0.65300/N

i = 16i′ SVV 008(i, I0) K̄[i] = zi + i−σi P008(i,t)
i = 16i′ SVV 009(i, I0) K̄[i] = −zi − i−σi P009(i,t)

I n c β cond.biases

1u I = (2,3,13,14) 239.85 242.85 0.5 without

1c I = (2,3,13,14) 239.42 251.59 0.5 with

2u I = (15,2,3,14) 237.94 246.76 0.5 without

2c I = (15,2,3,14) 237.82 256.19 0.5 with

KSA PRGA

1: for i = 0 to N−1 do
2: S[i] ← i
3: end for
4: j ← 0
5: for i = 0 to N−1 do
6: j ← j+S[i]+K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i← 0
2: j← 0
3: loop
4: i← i+1
5: j← j+S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i]+S[j]]
8: end loop

Fig. 4. RC4 KSA and PRGA Algorithms

19

5

KSA

0 1 2 3 4 5 6 7 8 9 10 11 12 ... 255

i j

row reference f̄ p

i != 1 MaitraPaul(i, I0) K̄[i] = zi+1 −σi PMP(i,t)
i KleinImproved(i, I0) K̄[i] = S−1

t [−zi + i]−σi PKI(i,t)
1 SVV bb 000 K̄[1] = z1 −1 1.04237/N
2 SVV bb 003 K̄[2] = z2 −3 0.65300/N

i = 16i′ SVV 008(i, I0) K̄[i] = zi + i−σi P008(i,t)
i = 16i′ SVV 009(i, I0) K̄[i] = −zi − i−σi P009(i,t)

I n c β cond.biases

1u I = (2,3,13,14) 239.85 242.85 0.5 without

1c I = (2,3,13,14) 239.42 251.59 0.5 with

2u I = (15,2,3,14) 237.94 246.76 0.5 without

2c I = (15,2,3,14) 237.82 256.19 0.5 with

KSA PRGA

1: for i = 0 to N−1 do
2: S[i] ← i
3: end for
4: j ← 0
5: for i = 0 to N−1 do
6: j ← j+S[i]+K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i← 0
2: j← 0
3: loop
4: i← i+1
5: j← j+S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i]+S[j]]
8: end loop

Fig. 4. RC4 KSA and PRGA Algorithms

19

5

KSA

7 1 2 3 4 5 6 0 8 9 10 11 12 ... 255

i j

row reference f̄ p

i != 1 MaitraPaul(i, I0) K̄[i] = zi+1 −σi PMP(i,t)
i KleinImproved(i, I0) K̄[i] = S−1

t [−zi + i]−σi PKI(i,t)
1 SVV bb 000 K̄[1] = z1 −1 1.04237/N
2 SVV bb 003 K̄[2] = z2 −3 0.65300/N

i = 16i′ SVV 008(i, I0) K̄[i] = zi + i−σi P008(i,t)
i = 16i′ SVV 009(i, I0) K̄[i] = −zi − i−σi P009(i,t)

I n c β cond.biases

1u I = (2,3,13,14) 239.85 242.85 0.5 without

1c I = (2,3,13,14) 239.42 251.59 0.5 with

2u I = (15,2,3,14) 237.94 246.76 0.5 without

2c I = (15,2,3,14) 237.82 256.19 0.5 with

KSA PRGA

1: for i = 0 to N−1 do
2: S[i] ← i
3: end for
4: j ← 0
5: for i = 0 to N−1 do
6: j ← j+S[i]+K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i← 0
2: j← 0
3: loop
4: i← i+1
5: j← j+S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i]+S[j]]
8: end loop

Fig. 4. RC4 KSA and PRGA Algorithms

19

6

KSA

7 1 2 3 4 5 6 0 8 9 10 11 12 ... 255

i j

row reference f̄ p

i != 1 MaitraPaul(i, I0) K̄[i] = zi+1 −σi PMP(i,t)
i KleinImproved(i, I0) K̄[i] = S−1

t [−zi + i]−σi PKI(i,t)
1 SVV bb 000 K̄[1] = z1 −1 1.04237/N
2 SVV bb 003 K̄[2] = z2 −3 0.65300/N

i = 16i′ SVV 008(i, I0) K̄[i] = zi + i−σi P008(i,t)
i = 16i′ SVV 009(i, I0) K̄[i] = −zi − i−σi P009(i,t)

I n c β cond.biases

1u I = (2,3,13,14) 239.85 242.85 0.5 without

1c I = (2,3,13,14) 239.42 251.59 0.5 with

2u I = (15,2,3,14) 237.94 246.76 0.5 without

2c I = (15,2,3,14) 237.82 256.19 0.5 with

KSA PRGA

1: for i = 0 to N−1 do
2: S[i] ← i
3: end for
4: j ← 0
5: for i = 0 to N−1 do
6: j ← j+S[i]+K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i← 0
2: j← 0
3: loop
4: i← i+1
5: j← j+S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i]+S[j]]
8: end loop

Fig. 4. RC4 KSA and PRGA Algorithms

19

7

KSA

7 12 2 3 4 5 6 0 8 9 10 11 1 ... 255

i j

row reference f̄ p

i != 1 MaitraPaul(i, I0) K̄[i] = zi+1 −σi PMP(i,t)
i KleinImproved(i, I0) K̄[i] = S−1

t [−zi + i]−σi PKI(i,t)
1 SVV bb 000 K̄[1] = z1 −1 1.04237/N
2 SVV bb 003 K̄[2] = z2 −3 0.65300/N

i = 16i′ SVV 008(i, I0) K̄[i] = zi + i−σi P008(i,t)
i = 16i′ SVV 009(i, I0) K̄[i] = −zi − i−σi P009(i,t)

I n c β cond.biases

1u I = (2,3,13,14) 239.85 242.85 0.5 without

1c I = (2,3,13,14) 239.42 251.59 0.5 with

2u I = (15,2,3,14) 237.94 246.76 0.5 without

2c I = (15,2,3,14) 237.82 256.19 0.5 with

KSA PRGA

1: for i = 0 to N−1 do
2: S[i] ← i
3: end for
4: j ← 0
5: for i = 0 to N−1 do
6: j ← j+S[i]+K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i← 0
2: j← 0
3: loop
4: i← i+1
5: j← j+S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i]+S[j]]
8: end loop

Fig. 4. RC4 KSA and PRGA Algorithms

19

8

PRGA

row reference f̄ p

i != 1 MaitraPaul(i, I0) K̄[i] = zi+1 −σi PMP(i,t)
i KleinImproved(i, I0) K̄[i] = S−1

t [−zi + i]−σi PKI(i,t)
1 SVV bb 000 K̄[1] = z1 −1 1.04237/N
2 SVV bb 003 K̄[2] = z2 −3 0.65300/N

i = 16i′ SVV 008(i, I0) K̄[i] = zi + i−σi P008(i,t)
i = 16i′ SVV 009(i, I0) K̄[i] = −zi − i−σi P009(i,t)

I n c β cond.biases

1u I = (2,3,13,14) 239.85 242.85 0.5 without

1c I = (2,3,13,14) 239.42 251.59 0.5 with

2u I = (15,2,3,14) 237.94 246.76 0.5 without

2c I = (15,2,3,14) 237.82 256.19 0.5 with

KSA PRGA

1: for i = 0 to N−1 do
2: S[i] ← i
3: end for
4: j ← 0
5: for i = 0 to N−1 do
6: j ← j+S[i]+K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i ← 0
2: j ← 0
3: loop
4: i ← i+1
5: j ← j+S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i]+S[j]]
8: end loop

Fig. 4. RC4 KSA and PRGA Algorithms

19

9

PRGA

18 3 211 7 81 245 121 5 66 78 189 34 133 ... 32

i j

row reference f̄ p

i != 1 MaitraPaul(i, I0) K̄[i] = zi+1 −σi PMP(i,t)
i KleinImproved(i, I0) K̄[i] = S−1

t [−zi + i]−σi PKI(i,t)
1 SVV bb 000 K̄[1] = z1 −1 1.04237/N
2 SVV bb 003 K̄[2] = z2 −3 0.65300/N

i = 16i′ SVV 008(i, I0) K̄[i] = zi + i−σi P008(i,t)
i = 16i′ SVV 009(i, I0) K̄[i] = −zi − i−σi P009(i,t)

I n c β cond.biases

1u I = (2,3,13,14) 239.85 242.85 0.5 without

1c I = (2,3,13,14) 239.42 251.59 0.5 with

2u I = (15,2,3,14) 237.94 246.76 0.5 without

2c I = (15,2,3,14) 237.82 256.19 0.5 with

KSA PRGA

1: for i = 0 to N−1 do
2: S[i] ← i
3: end for
4: j ← 0
5: for i = 0 to N−1 do
6: j ← j+S[i]+K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i ← 0
2: j ← 0
3: loop
4: i ← i+1
5: j ← j+S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i]+S[j]]
8: end loop

Fig. 4. RC4 KSA and PRGA Algorithms

19

9

PRGA

18 7 211 3 81 245 121 5 66 78 189 34 133 ... 32

i j

row reference f̄ p

i != 1 MaitraPaul(i, I0) K̄[i] = zi+1 −σi PMP(i,t)
i KleinImproved(i, I0) K̄[i] = S−1

t [−zi + i]−σi PKI(i,t)
1 SVV bb 000 K̄[1] = z1 −1 1.04237/N
2 SVV bb 003 K̄[2] = z2 −3 0.65300/N

i = 16i′ SVV 008(i, I0) K̄[i] = zi + i−σi P008(i,t)
i = 16i′ SVV 009(i, I0) K̄[i] = −zi − i−σi P009(i,t)

I n c β cond.biases

1u I = (2,3,13,14) 239.85 242.85 0.5 without

1c I = (2,3,13,14) 239.42 251.59 0.5 with

2u I = (15,2,3,14) 237.94 246.76 0.5 without

2c I = (15,2,3,14) 237.82 256.19 0.5 with

KSA PRGA

1: for i = 0 to N−1 do
2: S[i] ← i
3: end for
4: j ← 0
5: for i = 0 to N−1 do
6: j ← j+S[i]+K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i ← 0
2: j ← 0
3: loop
4: i ← i+1
5: j ← j+S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i]+S[j]]
8: end loop

Fig. 4. RC4 KSA and PRGA Algorithms

19

10

PRGA

18 7 211 3 81 245 121 5 66 78 189 34 133 ... 32

i j

Keystream byte = S[7+3]=S[10]=189

row reference f̄ p

i != 1 MaitraPaul(i, I0) K̄[i] = zi+1 −σi PMP(i,t)
i KleinImproved(i, I0) K̄[i] = S−1

t [−zi + i]−σi PKI(i,t)
1 SVV bb 000 K̄[1] = z1 −1 1.04237/N
2 SVV bb 003 K̄[2] = z2 −3 0.65300/N

i = 16i′ SVV 008(i, I0) K̄[i] = zi + i−σi P008(i,t)
i = 16i′ SVV 009(i, I0) K̄[i] = −zi − i−σi P009(i,t)

I n c β cond.biases

1u I = (2,3,13,14) 239.85 242.85 0.5 without

1c I = (2,3,13,14) 239.42 251.59 0.5 with

2u I = (15,2,3,14) 237.94 246.76 0.5 without

2c I = (15,2,3,14) 237.82 256.19 0.5 with

KSA PRGA

1: for i = 0 to N−1 do
2: S[i] ← i
3: end for
4: j ← 0
5: for i = 0 to N−1 do
6: j ← j+S[i]+K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i ← 0
2: j ← 0
3: loop
4: i ← i+1
5: j ← j+S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i]+S[j]]
8: end loop

Fig. 4. RC4 KSA and PRGA Algorithms

19

11

Reminder on RC4

RC4
Tornado attack on WEP

Challenges

Reminder on RC4

RC4/WEP

12

Reminder on RC4

RC4
Tornado attack on WEP

Challenges

RC4/WEPRC4/WEP

12

k[3] ... k[15] z1 z2 z3 ...RC4k[0] k[1] k[2]

13

k[3] ... k[15] z1 z2 z3 ...RC4k[0] k[1] k[2] WEP

13

k[3] ... k[15] z1 z2 z3 ...RC4 k[0] k[1] k[2]WEP

13

k[3] ... k[15] z1 z2 z3 ...RC4 k[0] k[1] k[2]WEP

the same for each
packet encryption. WEP is vulnerable.

13

Reminder on RC4

RC4 RC4/WEP

Tornado Attack on WEP

Challenges

RC4/WEP

14

Reminder on RC4

RC4 RC4/WEP

Tornado Attack on WEP

Challenges

Tornado Attack on WEP

14

KeystreamKey RC4

15

?

KeystreamKey RC4

15

?

KeystreamKey RC4

15

Pouyan Sepehrdad

�
⇤

⇥

K[i] = RC4KEY[i mod 16]
K̄[i] = K[0] + · · ·+ K[i]
K̄[i+ 16j] = K̄[i] + jK̄[15]

Conditional biases: pairs of f̄j, pj with a predicate ḡj

Pr[K̄[i] = f̄j(z, clue)|ḡj(z, clue)] = pj

Unconditional biases: Conditional biases with ḡj(z, clue) ⇥ 0.7

2.2 Description of RC4 and Notations

The RC4 stream cipher consists of two algorithms: the Key Scheduling Algorithm (KSA) and
the Pseudo Random Generator Algorithm (PRGA). The RC4 engine has a state defined by two
registers (words) i and j and one array (of N words) S defining a permutation over ZN . The KSA
generates an initial state for the PRGA from a random key K of L words as described in Figure 2.1.
It starts with an array {0, 1, . . . , N �1}, where N = 28 and swaps N pairs, depending on the value
of the secret key K. At the end, we obtain the initial state S⇥

0 = SN�1.

KSA PRGA

1: for i = 0 to N � 1 do
2: S[i] ⇤ i
3: end for
4: j ⇤ 0
5: for i = 0 to N � 1 do
6: j ⇤ j + S[i] +K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i ⇤ 0
2: j ⇤ 0
3: loop
4: i ⇤ i+ 1
5: j ⇤ j + S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i] + S[j]]
8: end loop

Figure 2.1: The KSA and the PRGA algorithms of RC4.

Once the initial state S⇥
0 is created, it is used by the second algorithm of RC4, the PRGA. Its

role is to generate a keystream of words of log2N bits, which will be XORed with the plaintext
to obtain the ciphertext. Thus, RC4 computes the loop of the PRGA each time a new keystream
word zi is needed, according to the algorithm in Figure 2.1. Note that each time a word of the
keystream is generated, the internal state of RC4 is updated.

Sometimes, we consider an idealized version RC4�(t) of RC4 defined by a parameter t as shown
in Figure 2.2. Namely, after round t, j is assigned randomly. This model has been already used in
the literature such as in [Max05, Roo95, PM07].

We define all the operators such as addition, subtraction and multiplication in the group ZN ,
where N = 256 (i.e. words are bytes). Thus, x+ y should be read as (x+ y) mod N .

8

Pouyan Sepehrdad

�
⇤

⇥

K[i] = RC4KEY[i mod 16]
K̄[i] = K[0] + · · ·+ K[i]
K̄[i+ 16j] = K̄[i] + jK̄[15]

Conditional biases: pairs of f̄j, pj with a predicate ḡi,j

Pr[K̄[i] = f̄j(z, clue)|ḡj(z, clue)] = pj

Unconditional biases: Conditional biases with ḡj(z, clue) ⇥ 0.7

2.2 Description of RC4 and Notations

The RC4 stream cipher consists of two algorithms: the Key Scheduling Algorithm (KSA) and
the Pseudo Random Generator Algorithm (PRGA). The RC4 engine has a state defined by two
registers (words) i and j and one array (of N words) S defining a permutation over ZN . The KSA
generates an initial state for the PRGA from a random key K of L words as described in Figure 2.1.
It starts with an array {0, 1, . . . , N �1}, where N = 28 and swaps N pairs, depending on the value
of the secret key K. At the end, we obtain the initial state S⇥

0 = SN�1.

KSA PRGA

1: for i = 0 to N � 1 do
2: S[i] ⇤ i
3: end for
4: j ⇤ 0
5: for i = 0 to N � 1 do
6: j ⇤ j + S[i] +K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i ⇤ 0
2: j ⇤ 0
3: loop
4: i ⇤ i+ 1
5: j ⇤ j + S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i] + S[j]]
8: end loop

Figure 2.1: The KSA and the PRGA algorithms of RC4.

Once the initial state S⇥
0 is created, it is used by the second algorithm of RC4, the PRGA. Its

role is to generate a keystream of words of log2N bits, which will be XORed with the plaintext
to obtain the ciphertext. Thus, RC4 computes the loop of the PRGA each time a new keystream
word zi is needed, according to the algorithm in Figure 2.1. Note that each time a word of the
keystream is generated, the internal state of RC4 is updated.

Sometimes, we consider an idealized version RC4�(t) of RC4 defined by a parameter t as shown
in Figure 2.2. Namely, after round t, j is assigned randomly. This model has been already used in
the literature such as in [Max05, Roo95, PM07].

We define all the operators such as addition, subtraction and multiplication in the group ZN ,
where N = 256 (i.e. words are bytes). Thus, x+ y should be read as (x+ y) mod N .

8

?

KeystreamKey RC4

15

Pouyan Sepehrdad

�
⇤

⇥

K[i] = RC4KEY[i mod 16]
K̄[i] = K[0] + · · ·+ K[i]
K̄[i+ 16j] = K̄[i] + jK̄[15]

Conditional biases: pairs of f̄j, pj with a predicate ḡj

Pr[K̄[i] = f̄j(z, clue)|ḡj(z, clue)] = pj

Unconditional biases: Conditional biases with ḡj(z, clue) ⇥ 0.7

2.2 Description of RC4 and Notations

The RC4 stream cipher consists of two algorithms: the Key Scheduling Algorithm (KSA) and
the Pseudo Random Generator Algorithm (PRGA). The RC4 engine has a state defined by two
registers (words) i and j and one array (of N words) S defining a permutation over ZN . The KSA
generates an initial state for the PRGA from a random key K of L words as described in Figure 2.1.
It starts with an array {0, 1, . . . , N �1}, where N = 28 and swaps N pairs, depending on the value
of the secret key K. At the end, we obtain the initial state S⇥

0 = SN�1.

KSA PRGA

1: for i = 0 to N � 1 do
2: S[i] ⇤ i
3: end for
4: j ⇤ 0
5: for i = 0 to N � 1 do
6: j ⇤ j + S[i] +K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i ⇤ 0
2: j ⇤ 0
3: loop
4: i ⇤ i+ 1
5: j ⇤ j + S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i] + S[j]]
8: end loop

Figure 2.1: The KSA and the PRGA algorithms of RC4.

Once the initial state S⇥
0 is created, it is used by the second algorithm of RC4, the PRGA. Its

role is to generate a keystream of words of log2N bits, which will be XORed with the plaintext
to obtain the ciphertext. Thus, RC4 computes the loop of the PRGA each time a new keystream
word zi is needed, according to the algorithm in Figure 2.1. Note that each time a word of the
keystream is generated, the internal state of RC4 is updated.

Sometimes, we consider an idealized version RC4�(t) of RC4 defined by a parameter t as shown
in Figure 2.2. Namely, after round t, j is assigned randomly. This model has been already used in
the literature such as in [Max05, Roo95, PM07].

We define all the operators such as addition, subtraction and multiplication in the group ZN ,
where N = 256 (i.e. words are bytes). Thus, x+ y should be read as (x+ y) mod N .

8

Pouyan Sepehrdad

�
⇤

⇥

K[i] = RC4KEY[i mod 16]
K̄[i] = K[0] + · · ·+ K[i]
K̄[i+ 16j] = K̄[i] + jK̄[15]

Conditional biases: pairs of f̄j, pj with a predicate ḡi,j

Pr[K̄[i] = f̄j(z, clue)|ḡj(z, clue)] = pj

Unconditional biases: Conditional biases with ḡj(z, clue) ⇥ 0.7

2.2 Description of RC4 and Notations

The RC4 stream cipher consists of two algorithms: the Key Scheduling Algorithm (KSA) and
the Pseudo Random Generator Algorithm (PRGA). The RC4 engine has a state defined by two
registers (words) i and j and one array (of N words) S defining a permutation over ZN . The KSA
generates an initial state for the PRGA from a random key K of L words as described in Figure 2.1.
It starts with an array {0, 1, . . . , N �1}, where N = 28 and swaps N pairs, depending on the value
of the secret key K. At the end, we obtain the initial state S⇥

0 = SN�1.

KSA PRGA

1: for i = 0 to N � 1 do
2: S[i] ⇤ i
3: end for
4: j ⇤ 0
5: for i = 0 to N � 1 do
6: j ⇤ j + S[i] +K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i ⇤ 0
2: j ⇤ 0
3: loop
4: i ⇤ i+ 1
5: j ⇤ j + S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i] + S[j]]
8: end loop

Figure 2.1: The KSA and the PRGA algorithms of RC4.

Once the initial state S⇥
0 is created, it is used by the second algorithm of RC4, the PRGA. Its

role is to generate a keystream of words of log2N bits, which will be XORed with the plaintext
to obtain the ciphertext. Thus, RC4 computes the loop of the PRGA each time a new keystream
word zi is needed, according to the algorithm in Figure 2.1. Note that each time a word of the
keystream is generated, the internal state of RC4 is updated.

Sometimes, we consider an idealized version RC4�(t) of RC4 defined by a parameter t as shown
in Figure 2.2. Namely, after round t, j is assigned randomly. This model has been already used in
the literature such as in [Max05, Roo95, PM07].

We define all the operators such as addition, subtraction and multiplication in the group ZN ,
where N = 256 (i.e. words are bytes). Thus, x+ y should be read as (x+ y) mod N .

8

Chapter 6 Computation of the Biases

Table 6.2: The Conditional Biases for RC4, exploitable against WEP and WPA

row reference f̄ ḡ p
i A u15 2� �i St[i] = 0, z2 = 0 P 1

fixed�j

6.3 Computation of the Biases

The biases were computed using the following formulas:

Korbc(i, t) = Rb
c(i, t)PB(i, t) +

1
N�1(1�Rb

c(i, t))(1� PB(i, t))

Pneg(i, t) =
⇧
1�PB(i,t)

N�1

⌃

PSVV10(t) ⇥ 1
N�1

⇤
2Pdb2P 1

A(16, t)PB(16, t)� (Pdb2P 1
A(16, t) + Pdb2PB(16, t)

+P 1
A(16, t)PB(16, t)) + 1

⌅
+ Pdb2P 1

A(16, t)PB(16, t)

P 1
fixed�j =

⇧
NPB(i,t)�1

N�1

⌃
.

1
2P

1
A(i, t)

�
N�1
N

⇥N�i
+ 1

N

⇧
1� P 1

A(i, t)
�
N�1
N

⇥N�i
⌃⌦

+
⇧
1�PB(i,t)

N�1

⌃

P 2
fixed�j = 1

N

⇧
NPB(i,t)�1

N�1

⌃
.

⌥
1
�P

2
A(i, t)

⇧
N

N�1

⌃t�2 �
N�2
N

⇥N�1�i
+

⇧
1� P 2

A(i, t)
�
N�2
N

⇥N�i�1
⌃�

+
⇧
1�PB(i,t)

N�1

⌃

P 3
fixed�j =

⇧
NPB(i,t)�1

N�1

⌃
.
 �

N�1
N

⇥t+1 �N�2
N

⇥N�1�i
. P 2

A(i, t) +
1
N

⇧
1� P 2

A(i, t)
�
N�2
N

⇥N�i�1
⌃⌦

+
⇧
1�PB(i,t)

N�1

⌃

P 4
fixed�j =

⇧
NPB(i,t)�1

N�1

⌃
.

1
2

�
N�1
N

⇥t+1 �N�2
N

⇥N�1�i
. P 2

A(i, t) +
1
N

⇧
1� P 2

A(i, t)
�
N�2
N

⇥N�i�1
⌃⌦

+
⇧
1�PB(i,t)

N�1

⌃

P 5
fixed�j =

⇧
NPB(i,t)�1

N�1

⌃
.

⌥
(N�1

N)t+1(t
N)(N�3

N)N�1�i

(1� 1
N)(N�1

N)t+1(t
N)+ 1

N

. P 3
A(i, t) +

1
N

⇧
1� P 3

A(i, t)
�
N�3
N

⇥N�i�1
⌃�

+
⇧
1�PB(i,t)

N�1

⌃

77

?

KeystreamKey RC4

15

Pouyan Sepehrdad

�
⇤

⇥

K[i] = RC4KEY[i mod 16]
K̄[i] = K[0] + · · ·+ K[i]
K̄[i+ 16j] = K̄[i] + jK̄[15]

Conditional biases: pairs of f̄j, pj with a predicate ḡj

Pr[K̄[i] = f̄j(z, clue)|ḡj(z, clue)] = pj

Unconditional biases: Conditional biases with ḡj(z, clue) ⇥ 0.7

2.2 Description of RC4 and Notations

The RC4 stream cipher consists of two algorithms: the Key Scheduling Algorithm (KSA) and
the Pseudo Random Generator Algorithm (PRGA). The RC4 engine has a state defined by two
registers (words) i and j and one array (of N words) S defining a permutation over ZN . The KSA
generates an initial state for the PRGA from a random key K of L words as described in Figure 2.1.
It starts with an array {0, 1, . . . , N �1}, where N = 28 and swaps N pairs, depending on the value
of the secret key K. At the end, we obtain the initial state S⇥

0 = SN�1.

KSA PRGA

1: for i = 0 to N � 1 do
2: S[i] ⇤ i
3: end for
4: j ⇤ 0
5: for i = 0 to N � 1 do
6: j ⇤ j + S[i] +K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i ⇤ 0
2: j ⇤ 0
3: loop
4: i ⇤ i+ 1
5: j ⇤ j + S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i] + S[j]]
8: end loop

Figure 2.1: The KSA and the PRGA algorithms of RC4.

Once the initial state S⇥
0 is created, it is used by the second algorithm of RC4, the PRGA. Its

role is to generate a keystream of words of log2N bits, which will be XORed with the plaintext
to obtain the ciphertext. Thus, RC4 computes the loop of the PRGA each time a new keystream
word zi is needed, according to the algorithm in Figure 2.1. Note that each time a word of the
keystream is generated, the internal state of RC4 is updated.

Sometimes, we consider an idealized version RC4�(t) of RC4 defined by a parameter t as shown
in Figure 2.2. Namely, after round t, j is assigned randomly. This model has been already used in
the literature such as in [Max05, Roo95, PM07].

We define all the operators such as addition, subtraction and multiplication in the group ZN ,
where N = 256 (i.e. words are bytes). Thus, x+ y should be read as (x+ y) mod N .

8

Pouyan Sepehrdad

�
⇤

⇥

K[i] = RC4KEY[i mod 16]
K̄[i] = K[0] + · · ·+ K[i]
K̄[i+ 16j] = K̄[i] + jK̄[15]

Conditional biases: pairs of f̄j, pj with a predicate ḡi,j

Pr[K̄[i] = f̄j(z, clue)|ḡj(z, clue)] = pj

Unconditional biases: Conditional biases with ḡj(z, clue) ⇥ 0.7

2.2 Description of RC4 and Notations

The RC4 stream cipher consists of two algorithms: the Key Scheduling Algorithm (KSA) and
the Pseudo Random Generator Algorithm (PRGA). The RC4 engine has a state defined by two
registers (words) i and j and one array (of N words) S defining a permutation over ZN . The KSA
generates an initial state for the PRGA from a random key K of L words as described in Figure 2.1.
It starts with an array {0, 1, . . . , N �1}, where N = 28 and swaps N pairs, depending on the value
of the secret key K. At the end, we obtain the initial state S⇥

0 = SN�1.

KSA PRGA

1: for i = 0 to N � 1 do
2: S[i] ⇤ i
3: end for
4: j ⇤ 0
5: for i = 0 to N � 1 do
6: j ⇤ j + S[i] +K[i mod L]
7: swap(S[i],S[j])
8: end for

1: i ⇤ 0
2: j ⇤ 0
3: loop
4: i ⇤ i+ 1
5: j ⇤ j + S[i]
6: swap(S[i],S[j])
7: output zi = S[S[i] + S[j]]
8: end loop

Figure 2.1: The KSA and the PRGA algorithms of RC4.

Once the initial state S⇥
0 is created, it is used by the second algorithm of RC4, the PRGA. Its

role is to generate a keystream of words of log2N bits, which will be XORed with the plaintext
to obtain the ciphertext. Thus, RC4 computes the loop of the PRGA each time a new keystream
word zi is needed, according to the algorithm in Figure 2.1. Note that each time a word of the
keystream is generated, the internal state of RC4 is updated.

Sometimes, we consider an idealized version RC4�(t) of RC4 defined by a parameter t as shown
in Figure 2.2. Namely, after round t, j is assigned randomly. This model has been already used in
the literature such as in [Max05, Roo95, PM07].

We define all the operators such as addition, subtraction and multiplication in the group ZN ,
where N = 256 (i.e. words are bytes). Thus, x+ y should be read as (x+ y) mod N .

8

Chapter 6 Computation of the Biases

Table 6.2: The Conditional Biases for RC4, exploitable against WEP and WPA

row reference f̄ ḡ p
i A u15 2� �i St[i] = 0, z2 = 0 P 1

fixed�j

6.3 Computation of the Biases

The biases were computed using the following formulas:

Korbc(i, t) = Rb
c(i, t)PB(i, t) +

1
N�1(1�Rb

c(i, t))(1� PB(i, t))

Pneg(i, t) =
⇧
1�PB(i,t)

N�1

⌃

PSVV10(t) ⇥ 1
N�1

⇤
2Pdb2P 1

A(16, t)PB(16, t)� (Pdb2P 1
A(16, t) + Pdb2PB(16, t)

+P 1
A(16, t)PB(16, t)) + 1

⌅
+ Pdb2P 1

A(16, t)PB(16, t)

P 1
fixed�j =

⇧
NPB(i,t)�1

N�1

⌃
.

1
2P

1
A(i, t)

�
N�1
N

⇥N�i
+ 1

N

⇧
1� P 1

A(i, t)
�
N�1
N

⇥N�i
⌃⌦

+
⇧
1�PB(i,t)

N�1

⌃

P 2
fixed�j = 1

N

⇧
NPB(i,t)�1

N�1

⌃
.

⌥
1
�P

2
A(i, t)

⇧
N

N�1

⌃t�2 �
N�2
N

⇥N�1�i
+

⇧
1� P 2

A(i, t)
�
N�2
N

⇥N�i�1
⌃�

+
⇧
1�PB(i,t)

N�1

⌃

P 3
fixed�j =

⇧
NPB(i,t)�1

N�1

⌃
.
 �

N�1
N

⇥t+1 �N�2
N

⇥N�1�i
. P 2

A(i, t) +
1
N

⇧
1� P 2

A(i, t)
�
N�2
N

⇥N�i�1
⌃⌦

+
⇧
1�PB(i,t)

N�1

⌃

P 4
fixed�j =

⇧
NPB(i,t)�1

N�1

⌃
.

1
2

�
N�1
N

⇥t+1 �N�2
N

⇥N�1�i
. P 2

A(i, t) +
1
N

⇧
1� P 2

A(i, t)
�
N�2
N

⇥N�i�1
⌃⌦

+
⇧
1�PB(i,t)

N�1

⌃

P 5
fixed�j =

⇧
NPB(i,t)�1

N�1

⌃
.

⌥
(N�1

N)t+1(t
N)(N�3

N)N�1�i

(1� 1
N)(N�1

N)t+1(t
N)+ 1

N

. P 3
A(i, t) +

1
N

⇧
1� P 3

A(i, t)
�
N�3
N

⇥N�i�1
⌃�

+
⇧
1�PB(i,t)

N�1

⌃

77

22 Biases

Roos, A.: A class of weak keys in RC4 stream cipher.
1995

Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the key scheduling algorithm of RC4.
2001

Wagner, D.: Weak keys in RC4.
1995

Borisov, N., Goldberg, I., Wagner, D.: Intercepting mobile communications:
the insecurity of 802.11.
2001

Korek: Next generation of WEP attacks?
2004

Vaudenay, S., Vuagnoux, M.: Passive–only Key Recovery Attacks on RC4
2007

Mantin, I.: A practical attack on the fixed RC4 in the WEP mode.
2005

Klein, A.: Attacks on the RC4 stream cipher.
2006

Devine, C., Otreppe, T.: Aircrack-ng
2004

Martin, J.I.S.: Weplab
2004

Stubblefield, A., Ioannidis, J., Rubin, A.D.: Using the Fluhrer, Mantin, and Shamir Attack to Break WEP.
2002

Tews, E., Weinmann, R., Pyshkin, A.: Breaking 104 Bit WEP in Less Than 60 Seconds.
2007

Beck, M., Tews, E. Practical Attacks Against WEP and WPA.
2009

Sepehrdad, P., Susil, P., Vaudenay, S., Vuagnoux, M.: Smashing WEP in a Passive Attack
2013

Roos, A.: A class of weak keys in RC4 stream cipher.
1995

Fluhrer, S., Mantin, I., Shamir, A.: Weaknesses in the key scheduling algorithm of RC4.
2001

Wagner, D.: Weak keys in RC4.
1995

Borisov, N., Goldberg, I., Wagner, D.: Intercepting mobile communications:
the insecurity of 802.11.
2001

Korek: Next generation of WEP attacks?
2004

Vaudenay, S., Vuagnoux, M.: Passive–only Key Recovery Attacks on RC4
2007

Mantin, I.: A practical attack on the fixed RC4 in the WEP mode.
2005

Klein, A.: Attacks on the RC4 stream cipher.
2006

Devine, C., Otreppe, T.: Aircrack-ng
2004

Martin, J.I.S.: Weplab
2004

Stubblefield, A., Ioannidis, J., Rubin, A.D.: Using the Fluhrer, Mantin, and Shamir Attack to Break WEP.
2002

Tews, E., Weinmann, R., Pyshkin, A.: Breaking 104 Bit WEP in Less Than 60 Seconds.
2007

Beck, M., Tews, E. Practical Attacks Against WEP and WPA.
2009

5500,000

100,000

60,000

40,000

32,700

30,000

19,800Sepehrdad, P., Susil, P., Vaudenay, S., Vuagnoux, M.: Smashing WEP in a Passive Attack
2013

Attack on WEP

17

Pouyan Sepehrdad

Algorithm 8.2 An optimized attack against the WEP protocol

1: compute the ranking L15 for I = (15) and I0 = {0, 1, 2}
2: truncate L15 to its first ⇤15 terms
3: for each k̄15 in L15 do
4: run recursive attack on input k̄15
5: end for
6: stop: attack failed
recursive attack with input (k̄15, k̄3, . . . , k̄i�1):
7: If input is only k̄15, set i = 3.
8: if i ⇥ imax then
9: compute the ranking Li for I = (i) and I0 = {0, . . . , i� 1, 15}

10: truncate Li to its first ⇤i terms
11: for each k̄i in Li do
12: run recursive attack on input (k̄15, k̄3, . . . , k̄i�1, k̄i)
13: end for
14: else
15: for each k̄imax+1, . . . , k̄14 do
16: test key (k̄3, . . . , k̄14, k̄15) and stop if correct
17: end for
18: end if

The expected value and the variance of this random variable can be computed as follows:

ri = E(Ri) = (Nx � 1)⌅(��i)

and

E(R2
i) = E(Ri) + (Nx � 1)(Nx � 2) · E(Ui1.Ui2)

(8.1)

where

E(Ui1.Ui2) =
1

2⇥V (Yxi good)

⌥ ⇥

�⇥
e
�

✓
Y �E(Y

xi good
)

◆2

2V (Y
xi good

)

⇤

⇧1� ⌅

�
Y � E(Yxi bad)�

V (Yxi bad)

⇥2
⌅

⌃ dY

This finally yields

V (Ri) = (Nx � 1)⌅(��i) + (Nx � 1)(Nx � 2) . E(Ui1.Ui2)� (Nx � 1)2⌅(��i)
2 (8.2)

In [SVV11], Ui1 and Ui2 were incorrectly assumed to be independent, leading to

V (Ri) ⇤ (Nx � 1)⌅(��i)(1� ⌅(�i)) ⇤ ri

which did not match our experiment. Now, the fundamental question is what would be the
distribution of Ri. This is discussed in the next section.

8.2.1 Analysis Based on Pólya Distribution

In [SVV11], it was assumed that the distribution of Ri is normal. Running a few experiments,
we noticed that in fact it is following a distribution very close to the Poisson distribution. An

94

Attack on WEP

17

Pouyan Sepehrdad

Algorithm 8.2 An optimized attack against the WEP protocol

1: compute the ranking L15 for I = (15) and I0 = {0, 1, 2}
2: truncate L15 to its first ⇤15 terms
3: for each k̄15 in L15 do
4: run recursive attack on input k̄15
5: end for
6: stop: attack failed
recursive attack with input (k̄15, k̄3, . . . , k̄i�1):
7: If input is only k̄15, set i = 3.
8: if i ⇥ imax then
9: compute the ranking Li for I = (i) and I0 = {0, . . . , i� 1, 15}

10: truncate Li to its first ⇤i terms
11: for each k̄i in Li do
12: run recursive attack on input (k̄15, k̄3, . . . , k̄i�1, k̄i)
13: end for
14: else
15: for each k̄imax+1, . . . , k̄14 do
16: test key (k̄3, . . . , k̄14, k̄15) and stop if correct
17: end for
18: end if

The expected value and the variance of this random variable can be computed as follows:

ri = E(Ri) = (Nx � 1)⌅(��i)

and

E(R2
i) = E(Ri) + (Nx � 1)(Nx � 2) · E(Ui1.Ui2)

(8.1)

where

E(Ui1.Ui2) =
1

2⇥V (Yxi good)

⌥ ⇥

�⇥
e
�

✓
Y �E(Y

xi good
)

◆2

2V (Y
xi good

)

⇤

⇧1� ⌅

�
Y � E(Yxi bad)�

V (Yxi bad)

⇥2
⌅

⌃ dY

This finally yields

V (Ri) = (Nx � 1)⌅(��i) + (Nx � 1)(Nx � 2) . E(Ui1.Ui2)� (Nx � 1)2⌅(��i)
2 (8.2)

In [SVV11], Ui1 and Ui2 were incorrectly assumed to be independent, leading to

V (Ri) ⇤ (Nx � 1)⌅(��i)(1� ⌅(�i)) ⇤ ri

which did not match our experiment. Now, the fundamental question is what would be the
distribution of Ri. This is discussed in the next section.

8.2.1 Analysis Based on Pólya Distribution

In [SVV11], it was assumed that the distribution of Ri is normal. Running a few experiments,
we noticed that in fact it is following a distribution very close to the Poisson distribution. An

94

Yx: counter for x

R(x): rank of x

Attack on WEP

17

Pouyan Sepehrdad

Algorithm 8.2 An optimized attack against the WEP protocol

1: compute the ranking L15 for I = (15) and I0 = {0, 1, 2}
2: truncate L15 to its first ⇤15 terms
3: for each k̄15 in L15 do
4: run recursive attack on input k̄15
5: end for
6: stop: attack failed
recursive attack with input (k̄15, k̄3, . . . , k̄i�1):
7: If input is only k̄15, set i = 3.
8: if i ⇥ imax then
9: compute the ranking Li for I = (i) and I0 = {0, . . . , i� 1, 15}

10: truncate Li to its first ⇤i terms
11: for each k̄i in Li do
12: run recursive attack on input (k̄15, k̄3, . . . , k̄i�1, k̄i)
13: end for
14: else
15: for each k̄imax+1, . . . , k̄14 do
16: test key (k̄3, . . . , k̄14, k̄15) and stop if correct
17: end for
18: end if

The expected value and the variance of this random variable can be computed as follows:

ri = E(Ri) = (Nx � 1)⌅(��i)

and

E(R2
i) = E(Ri) + (Nx � 1)(Nx � 2) · E(Ui1.Ui2)

(8.1)

where

E(Ui1.Ui2) =
1

2⇥V (Yxi good)

⌥ ⇥

�⇥
e
�

✓
Y �E(Y

xi good
)

◆2

2V (Y
xi good

)

⇤

⇧1� ⌅

�
Y � E(Yxi bad)�

V (Yxi bad)

⇥2
⌅

⌃ dY

This finally yields

V (Ri) = (Nx � 1)⌅(��i) + (Nx � 1)(Nx � 2) . E(Ui1.Ui2)� (Nx � 1)2⌅(��i)
2 (8.2)

In [SVV11], Ui1 and Ui2 were incorrectly assumed to be independent, leading to

V (Ri) ⇤ (Nx � 1)⌅(��i)(1� ⌅(�i)) ⇤ ri

which did not match our experiment. Now, the fundamental question is what would be the
distribution of Ri. This is discussed in the next section.

8.2.1 Analysis Based on Pólya Distribution

In [SVV11], it was assumed that the distribution of Ri is normal. Running a few experiments,
we noticed that in fact it is following a distribution very close to the Poisson distribution. An

94

Yx: counter for x

R(x): rank of x

The parameters are all optimized

Reminder on RC4

RC4 RC4/WEP

Tornado Attack on WEP

Challenges

Tornado Attack on WEP

18

Reminder on RC4

RC4 RC4/WEP

Tornado Attack on WEP

ChallengesChallenges

18

In our EUROCRYPT’11 Paper:

19

Chapter 2
RC4 in WEP and WPA Protocols

2.1 Introduction

We made a heuristic assumption that V (Ygood) ⇥ V (Ybad).

In practice: V (Ygood) ⇤= V (Ybad)

We made a heuristic approximation that (Ygood � Yi)’s are independent for all bad i’s.

In practice: (Ygood � Yi)’s are not independent.

Assume the rank R of the correct counter to be normally distributed.

In practice: R is not normally distributed.

Assume R is following Poisson distribution.

In practice E(R) ⇤= V (R).

In this chapter, we are going to describe the RC4 stream cipher and its applications in IEEE
802.11 standard for wireless communication, i.e., WEP and WPA. Furthermore, we recall the
previous cryptanalysis results against RC4 in both applications.

RC4 was designed by Rivest in 1987. It used to be a trade secret until it was anonymously
posted on Cypherpunks mailing list in September 1994. Nowadays, due to its simplicity RC4 is
widely used in SSL/TLS, Microsoft Lotus, Oracle Secure SQL and Wi-Fi 802.11 wireless commu-
nications. The 802.11 [IEE03] used to be protected by WEP (Wired Equivalent Privacy) which is
now being replaced by WPA (Wi-Fi Protected Access) due to security weaknesses.

WEP uses RC4 with a pre-shared key. Each packet is encrypted by an XOR to a keystream
generated by RC4. The RC4 key is a pre-shared key prepended with a 3-byte nonce initialization

7

Pouyan Sepehrdad

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 10 20 30 40 50

P
ro

b
a
b
ili

ty

R3 Realization

Polya distribution with p = 0.9839 and r = 0.356
Experimental R3 distribution for 5000 packets

Figure 8.2: R3 distribution using 5 000 packets following Pólya distribution

Minimize c in terms of �i’s, with the constraint that u =
15�

i=3

(1� Ipi(�i, ri)) =
1

2

To solve this optimization problem, we deploy three distinct approaches:

– To obtain the probability 50%, we let the probabilities ui’s to be equal for all i ⇥ {3, . . . , 15}.
Hence, we set

(1� Ipi(�i, ri)) = 2

�
�1

imax�1

⇥

= 0.9481

and we find the corresponding �i’s. This approach does not yield the optimal solution, but
at least it gives a benchmark on what we should expect.

– Another approach is to use Lagrange multipliers to find the optimal solution. We used
the fmincon function in Matlab with the Sequential Quadratic Programming [NW06] (SQP)
algorithm as the default algorithm to compute the local minimum. This algorithm was very
fast and stable compared to the Genetic algorithm being explained next. Since this algorithm
needs a starting point x0 for its computations, we used the GlobalSearch class which iterates
the fmincon function multiple times using random vectors for x0. Simultaneously, it checks
how the results merge towards the global minimum. The drawback of any Lagrange multiplier
approach is that the algorithm should be fed with a continuous objective function. This is
because it has to compute some derivatives. Since, we need integer values for �i’s in practice,
we had to relax the outputs by the ceil function to round up the �i’s found by this approach.
Therefore, it does not guarantee that the optimal solution is found at the end, but it finds a
complexity very close to the optimal. As our experiment revealed, this algorithm most often
sets �14 = N . So, using this approach, imax = 13 and we do not often need to vote for K̄[14].

96

20

George Pólya
(1887-1985)

Pr[< = \] =
�(\ + V)
\!�(V)

(�� T)VT\

551. 578 .7 : 551. 577 .36 : 551. 501 .45

(Adv i so ry C o m m i t t e e on W e a t h e r Control , W a s h i n g t o n D. C.)

The Frequency oI Hail Occurrence
B y

H. C. S. Thorn

Summary. Hail occurrence, being a comparatively rare event, is fit well by
the Poisson distribution providing the hail storms are independent. When
this condition is not met, hail occurrence follows the negative binomial distri-
bution. A test is given which determines whether the Poisson distribution may
be used, or whether the negative binomial is necessary, The parameter of the
Poisson distribution is always estimated efficiently by the method of moments.
The parameters of the negative binomial distribution, however, are 0nly
efficiently estimated by the method of moments under certain conditions;
when the method of moments fails, the method of maximum likelihood must
be employed. A criterion to determine when this method must be used is
given together with the method of obtaining the estimates. The methods
presented are illustrated by application to several hail records.

Zusammeufassung. Unter der Voraussetzung, da[3 die Hagelfiille von-
einander unabhiingig sind, kann das Auftreten dieses verh~Itnism~l~ig sel-
tenen Ereignisses gut dutch eine Foissonsche Verteilung dargestellt werden;
ist dies nicht der Fall, dann folgt es einer negativ binomischen Verteilung.
Es wird clue Testmethode mitgeteilt, naeh welcher man entscheiden kann,
ob die Poissonsehe oder die ncgativ binomische Verteilung zu verwenden ist.
Die [Parameter der Poissonschen Verteilung kSnnen mit der Methode der
Momente immer zuverl~ssig bestimmt werden. Die Parameter der negativ
bingmischen Verteilung j edoeh kSnnen mit dieser Methode nut unter bestimm-
ten Umst~nden ermittelt werden. Falls die Methode der Momente versagt,
ist die IViethode der grSl]tcn Wahrscheinlichkeit anzuwenden. Ein Kriterium
zur Entscheidung, warm diese Methode angewendet werden muG, sowie eine
Methode zur Ermittlung geniiherter Werte werden mitgeteilt. Die beschrie-
benen statistischen Methoden werden durch Anwendung auf einige Hagel-
beobaehtungsreihen erl~iutert.

R6sum6. En adrnettant que les chutes de gr@le sont ind~pendantes les
unes des autres, on peut eonvenablement repr6senter leur apparition par une
distribution de frdquenees de Poisson. Si ee n'est pas le eas, ces chutes ob@issent

une distribution bino.miale n@gative. L'auteur propose un test permettant

Arch. ~et. Geoph. Biokl.]3. Bd. 8, H. 2. 13

Rank of the correct counter follows the Pólya
distribution.

Pr[R = 0] = Pr[Ygood > Ybad(1), ... , Ygood > Ybad(255)]

George Pólya
(1887-1985)

Pr[< = \] =
�(\ + V)
\!�(V)

(�� T)VT\

730 MONTHLY WEATHER REVIEW OCTOBER-DECEMBER 1963

TORNADO PROBABILITIES
H. C. S. THOM

Office of Climatology, US. Weather Bureau, Washington D.C.
Manuscript received July 2, 1963; revised August 7, 19631

ABSTRACT
The frequency distributions of tornado path width and length are developed using data series from Iowa and

Kansas. Direction of path and annual frequency are discussed.
It is found that all but about 1 percent of Iowa tornadoes had path directions toward the northeast and southeast
quadrants. The annual frequency for a group of Iowa couiities is found to have a negative binomial distribution
indicating that the climatological series is formed from a Polya stochastic process. This resembles the situation
for other types of storms where the events tend to cluster. A new map of annual frequency for the United States
is presented for the period 1953-62, during which i t is believed tornado observation was fairly stable. The expected
value of tornado area is derived from the area distribution. From this and the annual frequency, the probability

From these, the distribution of path area is derived.

of a tornado striking a point is found.

1. INTRODUCTION
There have been a large number of studies of tornado

climatology, most of which have been simply counts of
tornadoes for various areas and time periods. Asp [I]
lists 78 references, a few of which are not climatological
in nature; not all references have been listed. Many of
these studies have recognized the possible incompleteness
of the frequency series and the dif!iculties of observation,
but little could be done to correct this deficiency. So far
as is known, none of these studies made a direct attack
on the problem of tornado probability, which is the object
of the present, study.

In 1945, William F. Kuffel, then of the Dubuque Fire
Marine Insurance Company, asked the writer to develop
a system of limiting the loss from a single tornado in a
given region for the purpose of preventing liabilities from
exceeding reserve funds. This resulted in a limited study
for several Iowa counties [a] in ivhich the direction fre-
quency and path length and width distributions were
discussed. From this, a directed standard path was
devised within whose bounds the insured liability could
be totaled. If this exceeded a certain limit related to
the reserves of the company, the excess could be reinsured
with other companies. It should be noted that the
occurrence of more than one tornado in the region is still
to be taken care of by the ordinary risk of the business
which is not well defined in this type of insurance coverage.

By 1957, these ideas had developed further [3], and
after mathematical distributions were fitted to the path
length and width it was possible to determine the prob-
ability of a tornado striking a point. There still remained
a bothersome correlation between path length and
width which was not easily taken into account in the area

distribution. This prevented obtaining a complete solu-
tion to the distribution problem. In 1958, Battan [4]
presented a simple frequency diagram of path length,
but his objective was to study the duration of a tornado,
not its probability of occurrence.

In the present study, we introduce distribution theory
which provides a better fit to the basic data and makes
possible a more satisfactory solution to the area distribu-
tion problem. The distribution of annual frequency
is also discussed and several comparisons of data are
made, together with a number of statistical tests for
homogeneity.

2. PATH LENGTH AND WIDTH DISTRIBUTIONS
Since path width and length cannot be negative, zero

must be the lower bound of any distribution assumed,
although this need not be a greatest lower bound. As
with a number of other physical variables, where the true
bound is certainly near zero, but cannot be established
to be different from zero, it has proven convenient to
assume that the distribution has a zero lower bound.
Also, in this instance, it would appear that both variables
should have a probability density of zero at the origin,
for as the path length and width approach their greatest
lower bounds, the probability density should approach
zero.

In previous studies [3], a gamma distribution was as-
sumed. While it has a zero bound, it need not have a
zero probability density at the origin. When fitted to
length and width data, both variables gave shape param-
eter estimates which indicated non-zero densities at the
origin. Furthermore, with this function the distribution
of area becomes intractable, and above all, the distribution
did not fit the data series particularly well.

Rank of the correct counter follows the Pólya
distribution.

Pr[R = 0] = Pr[Ygood > Ybad(1), ... , Ygood > Ybad(255)]

George Pólya
(1887-1985)

Pr[< = \] =
�(\ + V)
\!�(V)

(�� T)VT\

“The annual frequency for a group
of Iowa counties is found to have
a negative binomial distribution
indicating that the climatological
series is formed from a Pólya
stochastic process.”

Rank of the correct counter follows the Pólya
distribution.

Pr[R = 0] = Pr[Ygood > Ybad(1), ... , Ygood > Ybad(255)]

IEEE 802.11 Data Frames: Active vs. Passive Attacks

22

30. E. Tews. Attacks on the WEP Protocol. In Cryptology ePrint Archive, 2007.
http://eprint.iacr.org/2007/471.pdf.

31. E. Tews, R. Weinmann, and A. Pyshkin. Breaking 104 Bit WEP in Less Than 60 Seconds. In WISA, volume
4867, pages 188–202. Springer, 2007.

32. H.C.S. Thom. The Frequency of Hail Occurrence. Theoretical and Applied Climatology, 8:185–194, 1957.
33. H.C.S. Thom. Tornado Probabilities. American Meteorological Society, pages 730–736, 1963.
34. S. Vaudenay and M. Vuagnoux. Passive-only Key Recovery Attacks on RC4. In SAC, volume 4876, pages

344–359. Springer, 2007.
35. L. Whitaker. On the Poisson law of small numbers. Biometrika, 10:36–71, 1914.

A IEEE 802.11 Data Frames Encapsulating ARP and TCP/IPv4 Protocols

ARP Packet

0xAA DSAP
0xAA SSAP
0x03 CTRL
0x00

0x00 ORG Code
0x00

0x08 ARP
0x06

0x00 Ethernet
0x01

0x08 IP
0x00

0x06 Hardware size
0x04 Protocol
0x00 Opcode Request/Reply
0x??

0x?? MAC addr src
0x??

0x??

0x??

0x??

0x??

0x?? IP src
0x??

0x??

0x??

0x?? MAC addr dst
0x??

0x??

0x??

0x??

0x??

TCP/IPv4 Packet

0xAA DSAP
0xAA SSAP
0x03 CTRL
0x00

0x00 ORG Code
0x00

0x08 IP
0x00

0x45 IP Version + Header length
0x00 Type of Service
0x?? Packet length
0x??

0x?? IP ID RFC815
0x??

0x40 Fragment type and o↵set
0x??

0x?? TTL
0x06 TCP type
0x?? Header checksum
0x??

0x?? IP src
0x??

0x??

0x??

0x?? IP dst
0x??

0x??

0x??

0x?? Port src
0x??

0x?? Port dst
0x??

Fig. 6. The plaintext bytes of the 802.11 data frames encapsulating ARP and TCP/IPv4 protocols [31,34]. The
values in white are almost fixed or can be computed dynamically. The values in light Grey can be guessed. The
values in dark Grey are not predictable.

17

Comparison with Aircrack-ng

23

8 Comparison with Aircrack-ng

Fig. 5 represents a comparison between Aircrack-ng and our new attack. The reader can see
that our passive attack outperforms Aircrack-ng running in active mode. This gives significant
advantage to the attacker, since for some network cards, the driver has to be patched so that the
network card can inject packets, and in some cases such patch is not available at all. Moreover,
the active attacks are detectable by intrusion detection systems. Similarly, passive attacks can
be performed from much large distance. Moreover, the TCP/IPv4 packets can be captured with
much higher rate than ARP packets. As a rule of thumb, in a high tra�c network, (for instance
the user is downloading a movie), if we consider TCP/IPv4 packets with maximum size around
1500 bytes, in a 20 Mbit/sec wireless network, it takes almost 10 seconds to capture 22 500
packets. This amount is already enough to find a key with our improved Aircrack-ng in less
than 5 seconds.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10000 15000 20000 25000 30000 35000 40000 45000 50000

S
u

cc
e

ss
 P

ro
b

a
b

ili
ty

Number of Packets

Aircrack-ng-Patched Active
Aircrack-ng-Original Active

Aircrack-ng-Patched Passive

Fig. 5. Our attacks success probability (both active and passive attacks) with respect to the number of packets
compared to Aircrack-ng in active attack mode.

9 Conclusion

In this paper, we gave a precise theoretical background to improve the state of the art attacks on
WEP. As an empirical proof, we updated Aircrack-ng and showed that our attack significantly
outperforms the previous versions in all scenarios. We modified the algorithm according to
the theoretical results, removed the ad-hoc constants which were initially found empirically in
previous papers and implementations. We gave a theoretical background for all constants which
a↵ect the performance of the new Aircrack-ng. This result shows the significance of theoretical
analysis in practical scenarios, and allows the attacker to break WEP even on constrained
devices. As a result, the best attack to date requires 22 500 packets for the success probability
of 50% to break WEP.

15

24

Conclusion

24

Conclusion

Providing the fastest attack on WEP to the date

Good understanding of the behaviour of all biases in WEP

All the theory behind WEP attack with a proof

A better understanding of WPA security

Necessity of practical evaluation to ensure the correctness of theory

Questions?

