# Impossible plaintext cryptanalysis and probable-plaintext collision attacks of 64-bit block cipher modes 

David McGrew<br>mcgrew@cisco.com

Fast Software Encryption Workshop 2013 March 11-13, 2013

## Outline

(1) Background

2 Collision attack on CBC and CFB

- How it works
- Recovering plaintext
- Efficacy
- Rekeying

3 Impossible plaintext cryptanalysis of CTR

- Algorithms

4 Conclusions

## Block ciphers

## w-bit block cipher with a $\kappa$-bit key

$$
\begin{aligned}
& E:\{0,1\}^{w} \times\{0,1\}^{\kappa} \rightarrow\{0,1\}^{w}, \\
& E^{-1}:\{0,1\}^{w} \times\{0,1\}^{\kappa} \rightarrow\{0,1\}^{w} \text { such that } \\
& E\left(E^{-1}(x)\right)=E^{-1}(E(x))=x \text { for all } x \in\{0,1\} .
\end{aligned}
$$

## Block ciphers

## w-bit block cipher with a $\kappa$-bit key

$$
\begin{aligned}
& E:\{0,1\}^{w} \times\{0,1\}^{\kappa} \rightarrow\{0,1\}^{w}, \\
& E^{-1}:\{0,1\}^{w} \times\{0,1\}^{\kappa} \rightarrow\{0,1\}^{w} \text { such that } \\
& E\left(E^{-1}(x)\right)=E^{-1}(E(x))=x \text { for all } x \in\{0,1\} .
\end{aligned}
$$

## Examples

$$
\begin{array}{r|ll}
\text { MISTY } & w=64 & \kappa=128 \\
\text { KASUMI } & w=64 & \kappa=128 \\
\text { Triple-DES } & w=64 & \kappa=168 \\
\text { GOST 28147-89 } & w=64 & \kappa=256 \\
\text { AES } & w=128 & \kappa=128,192,256
\end{array}
$$

## Modes of operation



## Modes of operation



## Modes

$$
P_{i}= \begin{cases}E^{-1}\left(C_{i}\right) \oplus C_{i-1} & \text { in CBC mode } \\ E\left(C_{i-1}\right) \oplus C_{i} & \text { in CFB mode } \\ E(i) \oplus C_{i} & \text { in CTR mode }\end{cases}
$$

## How it works

## Plaintext model



## How it works

## Indicator



$$
I_{i}= \begin{cases}C_{i} & \text { in CBC mode } \\ C_{i-1} & \text { in CFB mode }\end{cases}
$$

## Indicator collisions reveal information



When $l_{i}=I_{j}$ for some $i \neq j$ then $P_{i} \oplus P_{j}=\Delta_{i j}$, where

$$
\Delta_{i j}= \begin{cases}C_{j-1} \oplus C_{i-1} & \text { in CBC mode } \\ C_{j} \oplus C_{i} & \text { in CFB mode }\end{cases}
$$

## Exploiting collisions in theory

Attacker's knowledge about $P_{j} \rightarrow$ knowledge about $P_{i}$

## Exploiting collisions in theory

Attacker's knowledge about $P_{j} \rightarrow$ knowledge about $P_{i}$

$$
\mathbf{P}\left[P_{i}=x \mid P_{i} \oplus P_{j}=\Delta\right]=\frac{\mathbf{P}\left[P_{j}=x \oplus \Delta\right] \mathbf{P}\left[P_{i}=x\right]}{\sum_{y} \mathbf{P}\left[P_{j}=y \oplus \Delta\right] \mathbf{P}\left[P_{i}=y\right]}
$$

## Exploiting collisions in practice

|  | 0000101000000000 | 10.0. .... $^{*} P_{i}$ |
| :--- | :--- | :--- |
|  | 1010110000010000 | $172.16 .{ }^{*}$ |
|  | 1100000010101000 | $192.168 .{ }^{*}{ }^{*}$ |

## Exploiting collisions in practice

|  | 0000101000000000 | 10.0.*.* |
| :--- | :--- | :--- |
| $P_{i}$ | 1010110000010000 | $172.16 .{ }^{*} .{ }^{*}$ |
|  | 1100000010101000 | $192.168 .{ }^{*}{ }^{*}$ |
| $P_{j}$ | $1 * * * * * * * 1 * * * * * *$ | ASCII |

## Exploiting collisions in practice

| $P_{i}$ | 0000101000000000 | 10.0.*.* |
| :---: | :---: | :---: |
|  | 1010110000010000 | 172.16.*.* |
|  | 1100000010101000 | 192.168.*.* |
| $P_{j}$ | $1 * * * * * * * 1 * * * * * * * ~$ | ASCII |
| $\Delta_{i j}$ | $1 * * * * * * * 1 * * * * * * * ~$ | $P_{i}=10.0{ }^{*}$.* |
|  | $0 * * * * * * * 1 * * * * * * * ~$ | $P_{i}=172.16 .{ }^{*}$. |
|  | $0 * * * * * * * 0 * * * * * * * ~$ | $P_{i}=192.168 . * *$ |

## Efficacy

## Birthday bound for indicator collisions


$\mathcal{O}(n)$ work and storage

## Lemma

## Lemma

The expected number of bits of unknown plaintext that are revealed in a collision attack with $k$ blocks of known plaintext and $u$ blocks of unknown plaintext is

$$
\frac{w k u}{2^{w}} \leq n^{2} \frac{w}{2^{w+2}}
$$

where $n=k+u$.

## expected number of bits leaked due to collisions



## expected number of bits leaked due to collisions



## Efficacy

## Network traffic with one-day rekeying

## Bits leaked per day

| $w$ | $1 \mathrm{Mbit} / \mathrm{s}$ | $1 \mathrm{Gbit} / \mathrm{s}$ | $1 \mathrm{Tbit} / \mathrm{s}$ |
| :---: | :---: | :---: | :---: |
| 64 | 6.3 bits | $6.3 \times 10^{6} \mathrm{bits}$ | $6.3 \times 10^{12} \mathrm{bits}$ |
| 128 | $1.7 \times 10^{-19}$ bits | $1.7 \times 10^{-13} \mathrm{bits}$ | $1.7 \times 10^{-7} \mathrm{bits}$ |

## Rekying to limit leakage

- Idea: limit number of blocks encrypted under each distinct key


## Corollary

The expected number of bits of unknown plaintext that are leaked when a total $t$ blocks are encrypted, changing keys every c blocks, is less than or equal to

$$
t c w 2^{-w-2}
$$

## Rekying to limit leakage

- Idea: limit number of blocks encrypted under each distinct key


## Corollary

The expected number of bits of unknown plaintext that are leaked when a total $t$ blocks are encrypted, changing keys every c blocks, is less than or equal to

$$
t c w 2^{-w-2}
$$

Example: $n=2^{20}, t \leq 2^{w-18-\lg (w)}=2^{40}$

## Plaintext inferences

Given

$$
P_{i}=E(i) \oplus C_{i}
$$

## Plaintext inferences

Given

$$
\begin{aligned}
& P_{i}=E(i) \oplus C_{i} \\
& P_{j}=E(j) \oplus C_{j}
\end{aligned}
$$

## Plaintext inferences

Given

$$
\begin{aligned}
& P_{i}=E(i) \oplus C_{i} \\
& P_{j}=E(j) \oplus C_{j} \\
& E(i) \neq E(j) \text { for } i \neq j
\end{aligned}
$$

## Plaintext inferences

Given

$$
\begin{aligned}
& P_{i}=E(i) \oplus C_{i} \\
& P_{j}=E(j) \oplus C_{j} \\
& E(i) \neq E(j) \text { for } i \neq j
\end{aligned}
$$

We know

$$
P_{i} \neq P_{j} \oplus C_{i} \oplus C_{j}
$$

## Extending across multiple known plaintexts



## Extending across multiple known plaintexts



## Lemma part 1

For any ciphertext block $C_{i}: i \notin \mathcal{K}$ the corresponding plaintext block $P_{i} \notin\left(\mathcal{E} \oplus C_{i}\right)$, where $\mathcal{E}=\{E(j): j \in \mathcal{K}\}=\left\{P_{j} \oplus C_{j}: j \in \mathcal{K}\right\}$.

## Plaintext model

```
To: bob@example.com
From: alice@example.com
Hello Bob, I need you to move the meeting to
9AM. Our visitors will be early. Thanks, Alice.
To: bob@example.com
From: alice@example.com
Hello Bob, make that 8AM. Alice
To: bob@example.com
From: mailmaster@example.com
Your new password is 1h8PSwds.
To: bob@example.com
From: alice@example.com
Hello Bob, our new minumum bid is $3.2M.
```


## Plaintext model

```
To: bob@example.com
From: alice@example.com
Hello Bob, I need you to move the meeting to
9AM. Our visitors will be early. Thanks, Alice.
To: bob@example.com
From: alice@example.com
Hello Bob, make that 8AM. Alice
To: bob@example.com
From: mailmaster@example.com
Your new password is 1h8PSwds
To: bob@example.com
From: alice@example.com
Hello Bob, our new minumum bid is $3.2M-
    Target values
```



## Plaintext model



## Plaintext model



## Extending across repeated target values



## Lemma part 2

An unknown repeated target value $p$ corresponding to the set $\mathcal{R}$ satisfies $\phi \notin \mathcal{E} \oplus \mathcal{G}$, where $\mathcal{G}=\left\{C_{j}: j \in \mathcal{R}\right\}$.

## Efficacy

## Estimate

An impossible plaintext attack against an unknown repeated value with repetition $r$, a possible plaintext set of size $\# \Phi=s$, and $k=\# \mathcal{E}$ known plaintext blocks succeeds when

$$
k r \geq(\ln (s)+1) 2^{w} \geq(w+1) 2^{w}
$$

## Efficacy

## Estimate

An impossible plaintext attack against an unknown repeated value with repetition $r$, a possible plaintext set of size $\# \Phi=s$, and $k=\# \mathcal{E}$ known plaintext blocks succeeds when

$$
k r \geq(\ln (s)+1) 2^{w} \geq(w+1) 2^{w}
$$

## Heuristic

$$
\#(\mathcal{E} \oplus \mathcal{G})=k r
$$

## Efficacy

## Estimate

An impossible plaintext attack against an unknown repeated value with repetition $r$, a possible plaintext set of size $\# \Phi=s$, and $k=\# \mathcal{E}$ known plaintext blocks succeeds when

$$
k r \geq(\ln (s)+1) 2^{w} \geq(w+1) 2^{w}
$$

## Heuristic

- $\#(\mathcal{E} \oplus \mathcal{G})=k r$
- Collecting $s$ coupons


## Algorithms for finding $p$

## Sieving

for $\epsilon \in \mathcal{E}$ do
for $i \in \mathcal{R}$ do remove $C_{i} \oplus \epsilon$ from $\Phi$ end for end for return $\Phi$

## Algorithms for finding $p$

## Sieving

for $\epsilon \in \mathcal{E}$ do for $i \in \mathcal{R}$ do remove $C_{i} \oplus \epsilon$ from $\Phi$ end for end for return $\Phi$

$\mathcal{O}(k r)$ operations, $\mathcal{O}(s)$ storage

## Algorithms for finding $p$

## Searching

for $\phi \in \Phi$ do
for $i \in \mathcal{R}$ do
if $C_{i} \oplus \phi \in \mathcal{E}$ then
remove $\phi$ from $\Phi$ end if
end for
end for
return $\Phi$

## Algorithms for finding $p$

## Searching

for $\phi \in \Phi$ do
for $i \in \mathcal{R}$ do
if $C_{i} \oplus \phi \in \mathcal{E}$ then remove $\phi$ from $\Phi$ end if
end for
end for
return $\Phi$
$\mathcal{O}(r s)$ operations, $\mathcal{O}(r+k)$ storage

## Hybrid algorithm

## Observations

- sieving algorithm takes less work when $k<s$
- searching algorithm takes less work when $k>s$
- The first few passes of the sieving algorithm greatly reduce the size of the possible plaintext set.


## Hybrid algorithm

## Observations

- sieving algorithm takes less work when $k<s$
- searching algorithm takes less work when $k>s$
- The first few passes of the sieving algorithm greatly reduce the size of the possible plaintext set.


## Hybrid algorithm for $k<s$

(1) Divide $\mathcal{E}$ into two distinct sets $\mathcal{E}=\mathcal{E}^{1} \cup \mathcal{E}^{2}$, and
(2) Run the sieving algorithm with $\mathcal{E}^{1}$ until \# $\Phi$ has been reduced in size enough so that $\# \Phi<k$
(3) Switch to sorting algorithm using $\mathcal{E}^{2}$

## Conclusions

- CBC, CFB, CTR leak information about plaintext at birthday bound
- Can be exploited by practical attacks for $w=64$
- Security risk at high data rates
- CTR leaks information more slowly in known-plaintext model

> CBC, CFB: $P_{i} \oplus P_{j}=\delta$ CTR: $P_{i} \oplus P_{j} \neq \delta$

## Thank You

mcgrew@cisco.com

