Impossible plaintext cryptanalysis and probable-plaintext collision attacks of 64-bit block cipher modes

> David McGrew mcgrew@cisco.com

Fast Software Encryption Workshop 2013 March 11-13, 2013

Backg	ro	un	ıd

Impossible plaintext cryptanalysis of CTR

Conclusions

Outline

- 2 Collision attack on CBC and CFB
 - How it works
 - Recovering plaintext
 - Efficacy
 - Rekeying
- Impossible plaintext cryptanalysis of CTR
 - Algorithms

4 Conclusions

Backo	round
•0	

Impossible plaintext cryptanalysis of CTR

Conclusions

Block ciphers

w-bit block cipher with a κ -bit key

$$\begin{split} & E: \{0,1\}^w \times \{0,1\}^\kappa \to \{0,1\}^w, \\ & E^{-1}: \{0,1\}^w \times \{0,1\}^\kappa \to \{0,1\}^w \text{ such that } \\ & E(E^{-1}(x)) = E^{-1}(E(x)) = x \text{ for all } x \in \{0,1\}. \end{split}$$

Backg	round
•0	

Impossible plaintext cryptanalysis of CTR

Conclusions

Block ciphers

w-bit block cipher with a κ -bit key

$$\begin{split} & E: \{0,1\}^w \times \{0,1\}^\kappa \to \{0,1\}^w, \\ & E^{-1}: \{0,1\}^w \times \{0,1\}^\kappa \to \{0,1\}^w \text{ such that } \\ & E(E^{-1}(x)) = E^{-1}(E(x)) = x \text{ for all } x \in \{0,1\}. \end{split}$$

Examples

6
5

Background ○●	Collision attack on CBC and CFB	Impossible plaintext cryptanalysis of CTR	Conclusi

Modes of operation

Background	
00	

Impossible plaintext cryptanalysis of CTR

Conclusions

Modes of operation

Modes

$$P_i = \begin{cases} E^{-1}(C_i) \oplus C_{i-1} & \text{in CBC mode} \\ E(C_{i-1}) \oplus C_i & \text{in CFB mode} \\ E(i) \oplus C_i & \text{in CTR mode.} \end{cases}$$

Background	Collision attack on CBC and CFB ●○○○○○○○○	Impossible plaintext cryptanalysis of CTR	Conclusions
How it works			
Plaintext m	odel		

Background 00	Collision attack on CBC and CFB	Impossible plaintext cryptanalysis of CTR	Conclusions 00
How it works			
Indicator			

$$I_i = egin{cases} C_i & ext{ in CBC mode} \ C_{i-1} & ext{ in CFB mode}. \end{cases}$$

Backg	ro	u	nc	b

Impossible plaintext cryptanalysis of CTR

Conclusions

How it works

Indicator collisions reveal information

When $I_i = I_j$ for some $i \neq j$ then $P_i \oplus P_j = \Delta_{ij}$, where

$$\Delta_{ij} = \begin{cases} C_{j-1} \oplus C_{i-1} & ext{ in CBC mode} \\ C_j \oplus C_i & ext{ in CFB mode}. \end{cases}$$

Backg	round

Impossible plaintext cryptanalysis of CTR

Conclusions

Recovering plaintext

Exploiting collisions in theory

Attacker's knowledge about $P_i \rightarrow$ knowledge about P_i

Collision attack on CBC and CFB

Impossible plaintext cryptanalysis of CTR

Conclusions

Recovering plaintext

Exploiting collisions in theory

Attacker's knowledge about $P_i \rightarrow$ knowledge about P_i

$$\mathbf{P}[P_i = x | P_i \oplus P_j = \Delta] = \frac{\mathbf{P}[P_j = x \oplus \Delta] \mathbf{P}[P_i = x]}{\sum_{y} \mathbf{P}[P_j = y \oplus \Delta] \mathbf{P}[P_i = y]}$$

Impossible plaintext cryptanalysis of CTR

Conclusions

Recovering plaintext

Exploiting collisions in practice

	0000101000000000	10.0.*.*
P_i	1010110000010000	172.16.*.*
	1100000010101000	192.168.*.*

Impossible plaintext cryptanalysis of CTR

Conclusions

Recovering plaintext

Exploiting collisions in practice

	0000101000000000	10.0.*.*
P_i	1010110000010000	172.16.*.*
	1100000010101000	192.168.*.*
P_j	1******1*****	ASCII

Impossible plaintext cryptanalysis of CTR

Conclusions

Recovering plaintext

Exploiting collisions in practice

	0000101000000000	10.0.*.*
P_i	1010110000010000	172.16.*.*
	1100000010101000	192.168.*.*
P_j	1*****1*****	ASCII
	1******1*****	$P_i = 10.0.^*.^*$
Δ_{ii}	0******1*****	$P_i = 172.16.^*.^*$
	0*****	$P_i = 192.168.*.*$

Collision attack on CBC and CFB

Impossible plaintext cryptanalysis of CTR

Conclusions

Efficacy

Birthday bound for indicator collisions

Background	Collision attack on CBC and CFB	Impossible plaintext cryptanalysis of CTR	Conclusions
Efficacy			
Lemma			

Lemma

The expected number of bits of unknown plaintext that are revealed in a collision attack with k blocks of known plaintext and u blocks of unknown plaintext is

$$\frac{wku}{2^w} \le n^2 \frac{w}{2^{w+2}},$$

where n = k + u.

Background	Collision attack on CBC and CFB	Impossible plai
	00000000000	

mpossible plaintext cryptanalysis of CTR

Conclusions

Efficacy

expected number of bits leaked due to collisions

Background	Collision attack on CBC and CFB	Impossible plai
	00000000000	0000000000

Impossible plaintext cryptanalysis of CTR

Conclusions

Efficacy

expected number of bits leaked due to collisions

Backg	round

Collision attack on CBC and CFB $\circ\circ\circ\circ\circ\circ\circ\circ\circ\circ$

Impossible plaintext cryptanalysis of CTR

Conclusions

Efficacy

Network traffic with one-day rekeying

Bits leaked per day			
W	1 Mbit/s	1 Gbit/s	1 Tbit/s
64	6.3 bits	$6.3 imes 10^6$ bits	$6.3 imes 10^{12}$ bits
128	1.7×10^{-19} bits	1.7×10^{-13} bits	$1.7 imes 10^{-7}$ bits

Background	Collision attack on CBC and CFB	Impossible plaintext cryptanalysis of CTR	Conclusions
Rekeying			
Rekying to	limit leakage		

Idea: limit number of blocks encrypted under each distinct key

Corollary

The expected number of bits of unknown plaintext that are leaked when a total t blocks are encrypted, changing keys every c blocks, is less than or equal to

 $tcw2^{-w-2}$

Background	Collision attack on CBC and CFB	Impossible plaintext cryptanalysis of CTR	Conclusions
Rekeying			
Rekying to	limit leakage		

Idea: limit number of blocks encrypted under each distinct key

Corollary

The expected number of bits of unknown plaintext that are leaked when a total t blocks are encrypted, changing keys every c blocks, is less than or equal to

Example:
$$n = 2^{20}$$
, $t \le 2^{w-18-\lg(w)} = 2^{40}$

Impossible plaintext cryptanalysis of CTR

Conclusions

Plaintext inferences

Given

 $P_i = E(i) \oplus C_i$

Impossible plaintext cryptanalysis of CTR ••••••••

Plaintext inferences

Given

 $P_i = E(i) \oplus C_i$ $P_j = E(j) \oplus C_j$

Impossible plaintext cryptanalysis of CTR ••••••••

Plaintext inferences

Given

 $P_i = E(i) \oplus C_i$ $P_j = E(j) \oplus C_j$ $E(i) \neq E(j) \text{ for } i \neq j$

Plaintext inferences

Given

$$P_i = E(i) \oplus C_i$$

$$P_j = E(j) \oplus C_j$$

$$E(i) \neq E(j) \text{ for } i \neq j$$

We know

$$P_i \neq P_j \oplus C_i \oplus C_j$$

Backg	round

Impossible plaintext cryptanalysis of CTR 0000000000

Conclusions

Extending across multiple known plaintexts

Backg	round
00	

Impossible plaintext cryptanalysis of CTR

Conclusions

Extending across multiple known plaintexts

Lemma part 1

For any ciphertext block $C_i : i \notin \mathcal{K}$ the corresponding plaintext block $P_i \notin (\mathcal{E} \oplus C_i)$, where $\mathcal{E} = \{E(j) : j \in \mathcal{K}\} = \{P_j \oplus C_j : j \in \mathcal{K}\}.$

Collision attack on CBC and CFB

Impossible plaintext cryptanalysis of CTR

Conclusions

Plaintext model

To: bob@example.com From: alice@example.com Hello Bob, I need you to move the meeting to 9AM. Our visitors will be early. Thanks, Alice. To: bob@example.com From: alice@example.com Hello Bob, make that 8AM. Alice To: bob@example.com From: mailmaster@example.com Your new password is 1h8PSwds. To: bob@example.com From: alice@example.com Hello Bob, our new minumum bid is \$3.2M.

Collision attack on CBC and CFB

Impossible plaintext cryptanalysis of CTR

Conclusions

Plaintext model

To: bob@example.com
From: alice@example.com
Hello Bob, I need you to move the meeting to
9AM. Our visitors will be early. Thanks, Alice.
••••••
To: bob@example.com
From: alice@example.com
Hello Bob, make that 8AM. Alice
To: bob@example.com
From: mailmaster@example.com
Your new password is 1h8PSwds
To: bob@example.com
From: alice@example.com
Hello Bob, our new minumum bid is \$3.2M-

Backg	round

Impossible plaintext cryptanalysis of CTR

Conclusions

Plaintext model

Impossible plaintext cryptanalysis of CTR

Conclusions

Plaintext model

Backg	round
00	

Impossible plaintext cryptanalysis of CTR

Conclusions

Extending across repeated target values

Lemma part 2

An unknown repeated target value *p* corresponding to the set \mathcal{R} satisfies $\phi \notin \mathcal{E} \oplus \mathcal{G}$, where $\mathcal{G} = \{C_j : j \in \mathcal{R}\}$.

Backg	round

Efficacy

Estimate

An impossible plaintext attack against an unknown repeated value with repetition *r*, a possible plaintext set of size $\#\Phi = s$, and $k = \#\mathcal{E}$ known plaintext blocks succeeds when

$$kr \geq (\ln(s)+1)2^w \geq (w+1)2^w$$

Backg	round

Impossible plaintext cryptanalysis of CTR

Conclusions

Efficacy

Estimate

An impossible plaintext attack against an unknown repeated value with repetition *r*, a possible plaintext set of size $\#\Phi = s$, and $k = \#\mathcal{E}$ known plaintext blocks succeeds when

$$\textit{kr} \geq (\ln(\textit{s}) + 1)2^w \geq (w+1)2^w$$

Heuristic

•
$$\#(\mathcal{E}\oplus\mathcal{G})=kr$$

Backg	round

Impossible plaintext cryptanalysis of CTR

Conclusions

Efficacy

Estimate

An impossible plaintext attack against an unknown repeated value with repetition *r*, a possible plaintext set of size $\#\Phi = s$, and $k = \#\mathcal{E}$ known plaintext blocks succeeds when

$$kr \geq (\ln(s) + 1)2^w \geq (w+1)2^w$$

Heuristic

•
$$\#(\mathcal{E}\oplus\mathcal{G})=kr$$

Collecting s coupons

Background	Collision attack on CBC and CFB	Impossible plaintext cryptanalysis of
Algorithms		

Conclusions

CTR

Algorithms for finding *p*

Sieving

```
for \epsilon \in \mathcal{E} do
for i \in \mathcal{R} do
remove C_i \oplus \epsilon from \Phi
end for
return \Phi
```

Background	Collision attack on CBC and CFB	Impossible plaintext cryptanalysis of CTR
Algorithms		
Algorithms for finding p		

Sieving

for $\epsilon \in \mathcal{E}$ do for $i \in \mathcal{R}$ do remove $C_i \oplus \epsilon$ from Φ end for return Φ

 $\mathcal{O}(kr)$ operations, $\mathcal{O}(s)$ storage

Backg	round
00	

Impossible plaintext cryptanalysis of CTR

Conclusions

Algorithms

Algorithms for finding p

Searching

for $\phi \in \Phi$ do for $i \in \mathcal{R}$ do if $C_i \oplus \phi \in \mathcal{E}$ then remove ϕ from Φ end if end for return Φ

Backg	round
00	

Impossible plaintext cryptanalysis of CTR

Conclusions

Algorithms

Algorithms for finding p

Searching

for $\phi \in \Phi$ do for $i \in \mathcal{R}$ do if $C_i \oplus \phi \in \mathcal{E}$ then remove ϕ from Φ end if end for return Φ $\mathcal{O}(rs)$ operations, $\mathcal{O}(r+k)$ storage

Backg	round

Impossible plaintext cryptanalysis of CTR

Conclusions

Algorithms

Hybrid algorithm

Observations

- sieving algorithm takes less work when k < s
- searching algorithm takes less work when k > s
- The first few passes of the sieving algorithm greatly reduce the size of the possible plaintext set.

Backg	round

Impossible plaintext cryptanalysis of CTR

Conclusions

Algorithms

Hybrid algorithm

Observations

- sieving algorithm takes less work when k < s
- searching algorithm takes less work when k > s
- The first few passes of the sieving algorithm greatly reduce the size of the possible plaintext set.

Hybrid algorithm for k < s

- **①** Divide \mathcal{E} into two distinct sets $\mathcal{E} = \mathcal{E}^1 \cup \mathcal{E}^2$, and
- 2 Run the sieving algorithm with *C*¹ until #Φ has been reduced in size enough so that #Φ < k</p>
- **③** Switch to sorting algorithm using \mathcal{E}^2

Conclusions

- CBC, CFB, CTR leak information about plaintext at birthday bound
- Can be exploited by practical attacks for w = 64
 - Security risk at high data rates
- CTR leaks information more slowly in known-plaintext model

CBC, CFB: $P_i \oplus P_j = \delta$ CTR: $P_i \oplus P_j \neq \delta$

Thank You

mcgrew@cisco.com