Cryptanalysis of Round-Reduced LED

Ivica Nikolić, Lei Wang and Shuang Wu

FSE 2013 Singapore March 11, 2013

Outline

- Backgrounds
 - Specification
 - Previous Analysis
- Slidex Attack Application
- Multicollision Application
- Distinguishers
 - Differential Property
 - > Random-difference Distinguisher
- Conclusion

Outline

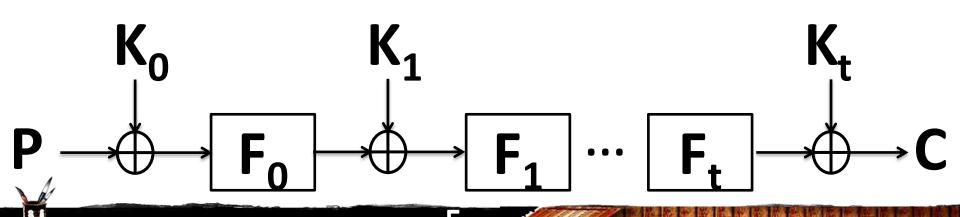
- Backgrounds
 - Specification
 - > Previous Analysis
- Slidex Attack Application
- Multicollision Application
- Distinguishers
 - Differential Property
 - > Random-difference Distinguisher
- Conclusion

LED

- Designed by Guo et al. at CHES 2011
- Light Encryption Device
 - ➤ 64-bit block
 - > 64- or 128-bit key (primarily)
- Conservative security, e.g. concerning
 - > Related-key attack
 - Distinguishers in hash function setting

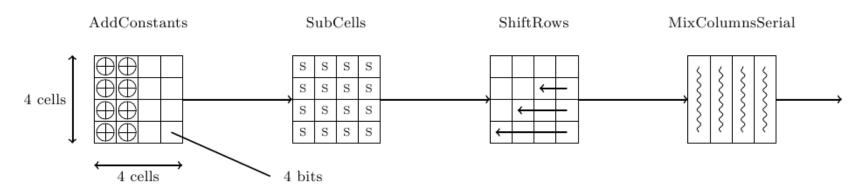
Specification (1/2)

- Extremely simple key schedule
 - Denote the secret key as K
 - > LED-64: K as each round key
 - ightharpoonup LED-128: K=K₀||K₁, then K₀ and K₁ as round keys alternatively



Specification (2/2)

- LED-64: 8 steps; LED-128: 12 steps
- Step functions
 - > AES like
 - > 4 rounds and each round as below



> Differ in round constants.

Timeline of Previous Analysis

Guo et al. at CHES 2011

- ➤ Distinguishers on 3.75/6.75-step LED-64/-128
- Super-Sbox cryptanalysis

Isobe and Shibutani at ACISP 2012

- > Key recovery on 2/4-step LED-64/-128
- ➤ Meet-in-the-middle cryptanalysis

Mendel et al. at ASIACRYPT 2012

- ➤ Key recovery on 4-step LED-128
- > Related-key key recovery on 4/6-step LED-64/-128
- ➤ Guess-then-recover, local collision, characteristics and differentials of step functions

Security State of LED

The number of attacked steps

	Key Recovery		Dictinguishor	
	Single-key	Related-key	Distinguisher	
LED-64 (8 steps)	2	4	3.75	
LED-128 (12 steps)	4	6	6.75	

Outline

- Backgrounds
 - Specification
 - Previous Analysis
- Slidex Attack Application
- Multicollision Application
- Distinguishers
 - Differential Property
 - > Random-difference Distinguisher
- Conclusion

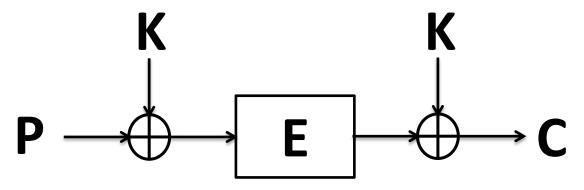
Security State of LED

The number of attacked steps

	Key Recovery		Dictinguishor	
	Single-key	Related-key	Distinguisher	
LED-64 (8 steps)	2	4	3.75	
LED-128 (12 steps)	4	6	6.75	

Slidex Attack

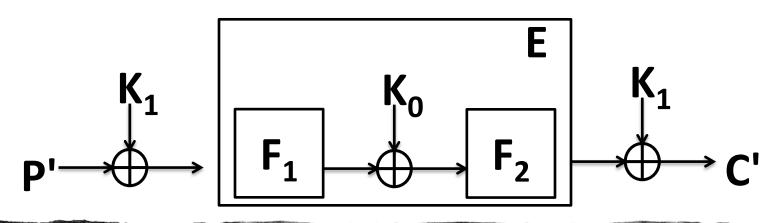
- Dunkelman et al. at EUROCRYPT 2012
- Known-plaintext attack
- Wok for any public permutation E
- Time*Data=2ⁿ
 - > K is n bits long



Application to 4-Step LED-128

Guess K₀

Recover K₁



Comparison

- Model
 - > Ours: *known*-plaintext
 - > Previous: *chosen*-plaintext
- Complexity

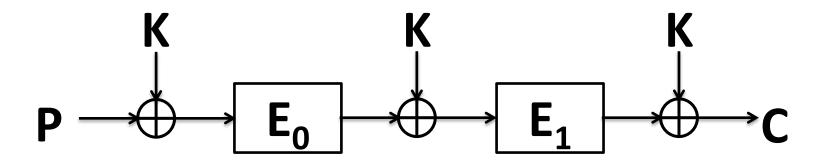
	Data	Time
IS12	2 ¹⁶	2 ¹¹²
MRT+12	2 ⁶⁴	2 ⁹⁶
Ours	2 ³²	2 ⁹⁶

Outline

- Backgrounds
 - Specification
 - Previous Analysis
- Slidex Attack Application
- Multicollision Application
- Distinguishers
 - Differential Property
 - > Random-difference Distinguisher
- Conclusion

A 2-Step Even-Mansour

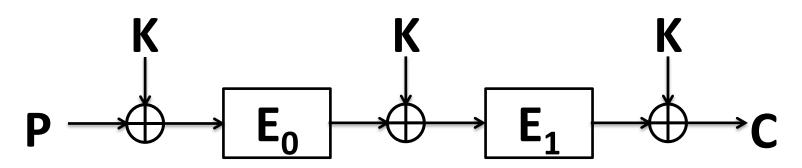
- K is n bits long
- E₀ and E₁ are public permutations



A 2-Step Even-Mansour

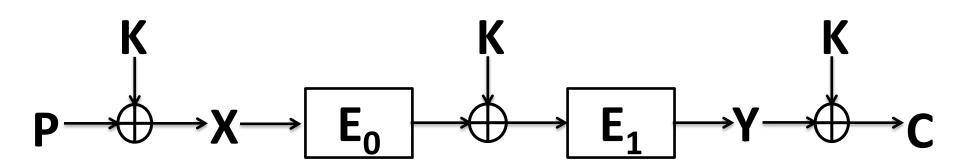
- K is n bits long
- E₀ and E₁ are public permutations

Can we recover K with a complexity less than 2^n ?



An Observation (1/7)

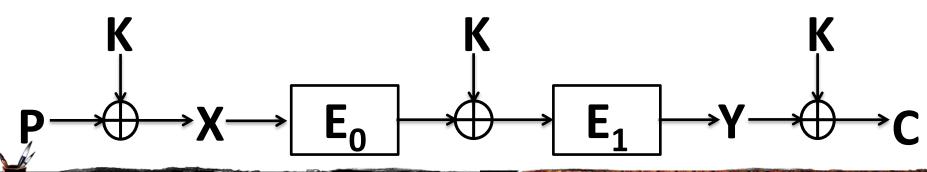
- $K = P \oplus X$
- $K = E_0(X) \oplus E_1^{-1}(Y)$
- K = Y ⊕ C



An Observation (2/7)

- $K = P \oplus X$
- $K = E_0(X) \oplus E_1^{-1}(Y)$
- K = Y ⊕ C

We recover X for some P, which gives us K immediately.



An Observation (3/7)

- $K = P \oplus X$
- $K = E_0(X) \oplus E_1^{-1}(Y)$
- $K = Y \oplus C$

$$P = X \oplus E_0(X) \oplus E_1^{-1}(P \oplus C \oplus X)$$

An Observation (4/7)

- $K = P \oplus X$
- $K = E_0(X) \oplus E_1^{-1}(Y)$
- $K = Y \oplus C$

$$P = X \oplus E_0(X) \oplus E_1^{-1} P \oplus C \oplus X)$$

An Observation (5/7)

For a t-multicollision on P⊕ C, namely

$$P_1 \oplus C_1 = \dots = P_t \oplus C_t = const$$

we get

$$P_i = X_i \oplus E_0(X_i) \oplus E_1^{-1}(const \oplus X_i)$$

An Observation (6/7)

For a t-multicollision on P⊕ C, namely

$$P_1 \oplus C_1 = \dots = P_t \oplus C_t = const$$

we get

$$P_i = X_i \oplus E_0(X_i) \oplus E_1^{-1}(const \oplus X_i)$$

denoted as

$$P_i = G(X_i)$$

An Observation (7/7)

For a t-multicollision on P⊕ C, namely

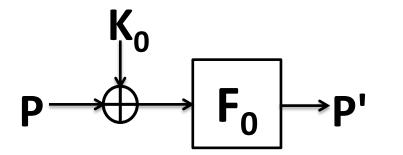
$$P_1 \oplus C_1 = \dots = P_t \oplus C_t = const$$

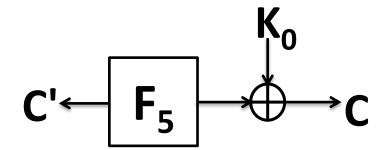
we recover a X_i with a complexity 2ⁿ/t

> try $2^n/t$ random values as X, and match G(X) to $\{P_1, P_2, ..., P_t\}$.

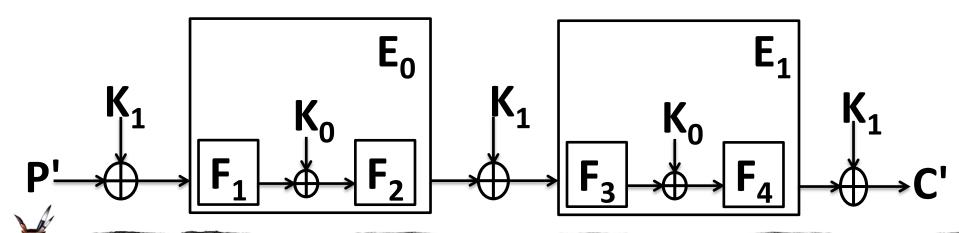
Application to 6-Step LED-128

Guess K₀





Recover K₁



Outline

- Backgrounds
 - Specification
 - Previous Analysis
- Slidex Attack Application
- Multicollision Application
- Distinguishers
 - Differential Property
 - > Random-difference Distinguisher
- Conclusion

Differential vs Characteristic

Differential

$$\Delta_{in} \longrightarrow ? \longrightarrow ? \longrightarrow \Delta_{out}$$

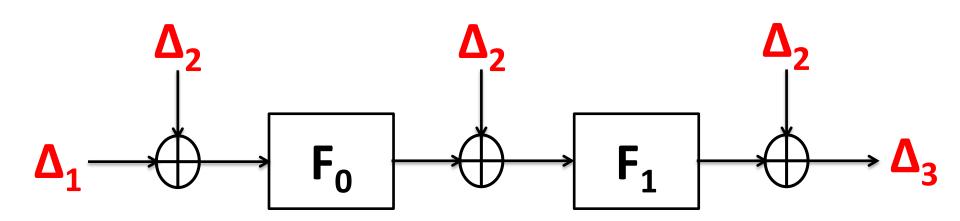
Characteristic

$$\Delta_{\text{in}} \longrightarrow \Delta_{1} \longrightarrow \Delta_{2} \longrightarrow \Delta_{3} \longrightarrow \Delta_{4} \longrightarrow \Delta_{\text{out}}$$

The characteristic probability on an active step function is upper bounded by 2⁻⁵⁰.

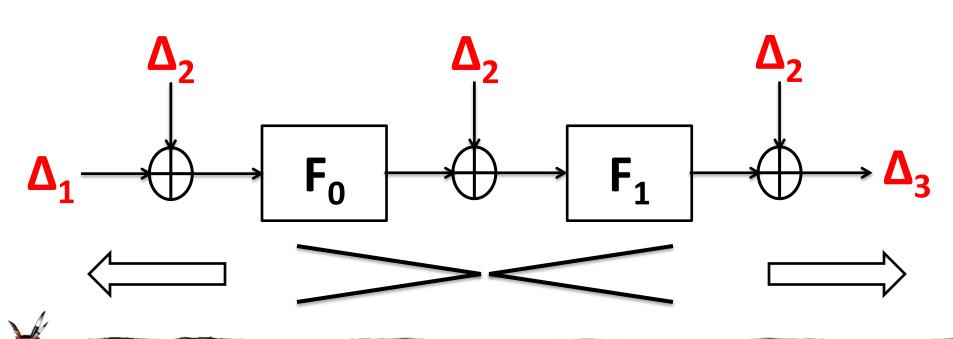
Differential on 2-step LED-64

- For a differential $(\Delta_1, \Delta_2) \rightarrow \Delta_3$
 - what is the complexity of finding a solution (P, K)?



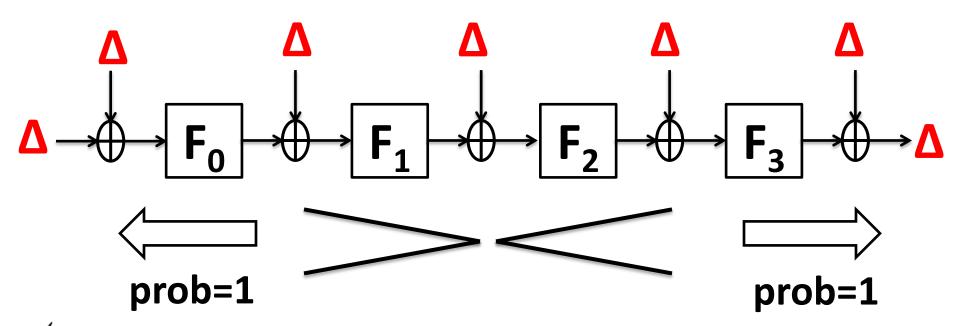
Differential on 2-step LED-64

- Meet-in-the-middle approach
 - > One solution with a birthday complexity
- Differential multicollision distinguisher



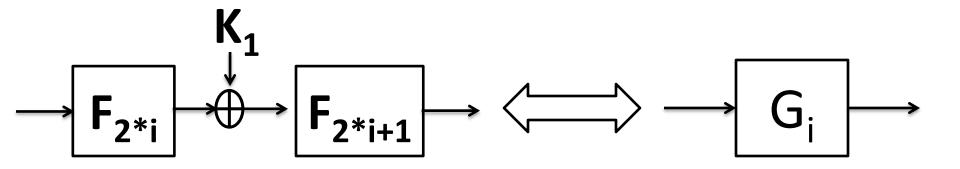
Extend to 4-Step LED-64

- **Chosen** differentials $(\Delta, \Delta) \rightarrow \Delta$
 - > Complexity of **birthday bound** to find a solution (P, K).

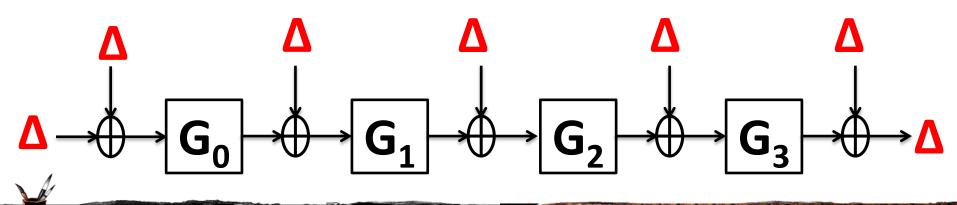


Application to 8-Step LED-128

• Set a random value to K_1 and $\Delta K_1=0$



• Set $\Delta P = \Delta K_0 = \Delta$, and find a solution (P, K_0)

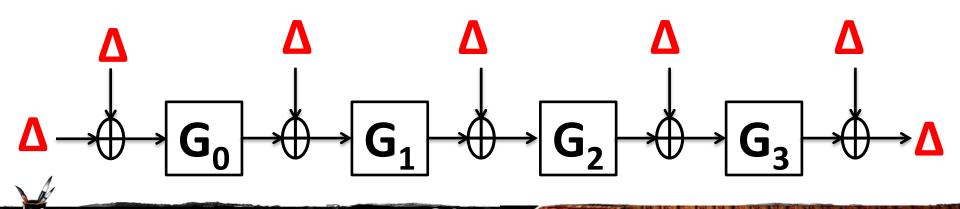


Application to 8-Step LED-128

• Set a random value to K_1 and $\Delta K_1 = 0$

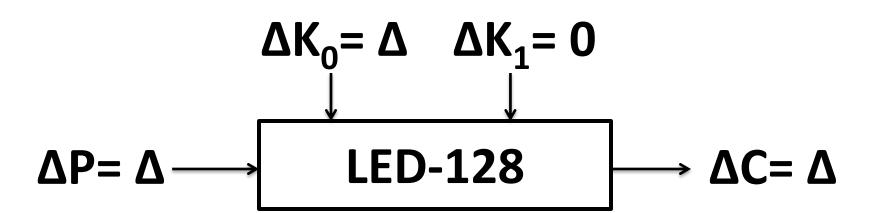
Exploit the freedom of both K₀ and K₁

• Set $\Delta P = \Delta K_0 = \Delta$, and find a solution (P, K_0)



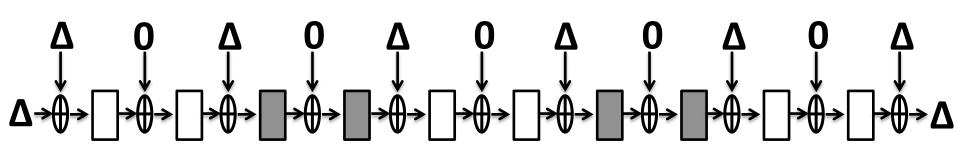
Random-Difference Distinguisher

- On a random difference Δ
 - ightharpoonup Set $\Delta K_0 = \Delta$, $\Delta K_1 = 0$, $\Delta P = \Delta$ and $\Delta C = \Delta$
 - > The complexity of finding a solution?
 - \triangleright Ideal case: 2^n (n=64)



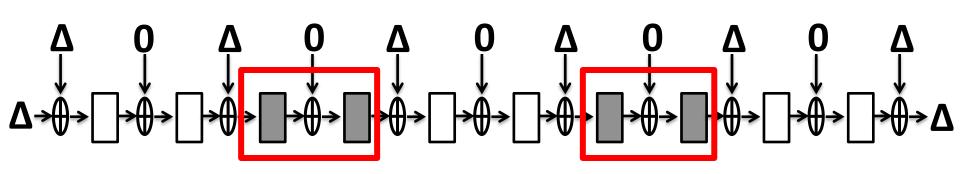
Distinguisher on 10 Steps

- Difference propagation
 - Passive step function
 - Active step function



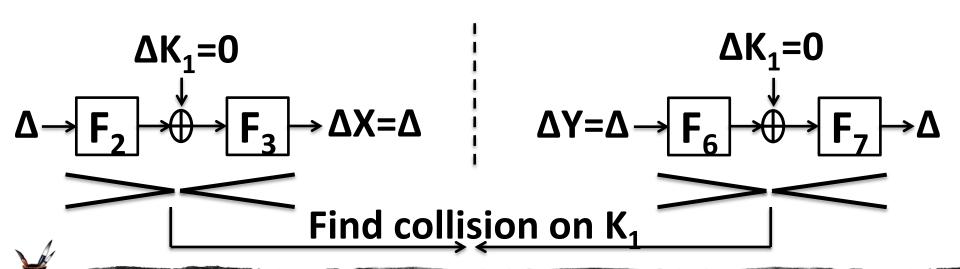
Attack Procedure (1/3)

- **Phase 1**: find solutions for differentials on F_2 and F_3 , and on F_6 and F_7 .
 - Exploit the freedom of K₁
 - \triangleright At Phase 1, the value of K_1 is chosen.



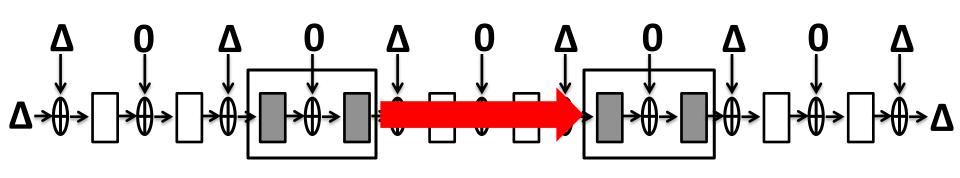
Phase 1

- Find a set of (K₁, X_i, Y_i)s such that
 - all K₁s are equal
 - \triangleright (K₁, X_i)s follows differential on F₂ and F₃
 - \triangleright (K₁, Y_i)s follows differential on F₆ and F₇



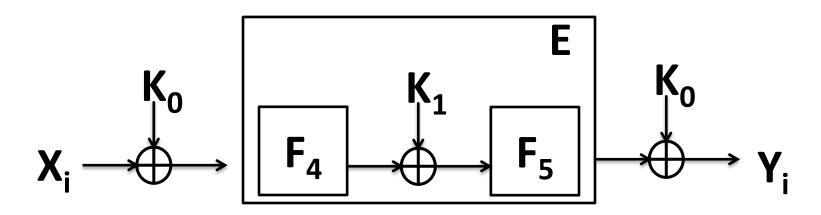
Attack Procedure (2/3)

- Phase 2: match a solution on F₂ and F₃
 to a solution on F₆ and F₇
 - > Exploit the freedom of K₀
 - \triangleright At Phase 2, the value of K_0 is chosen.



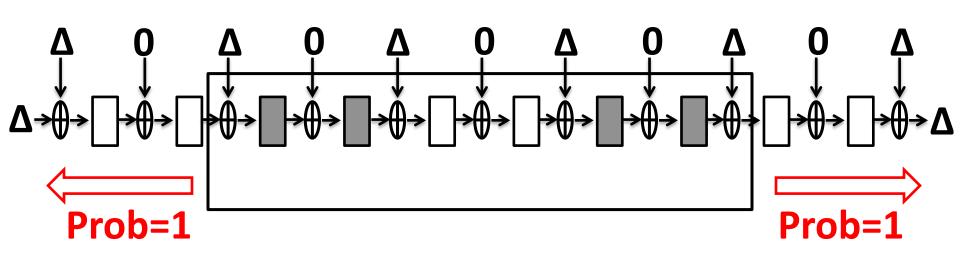
Phase 2

- Similar with the key-recovery attack on single-key 1-step Even-Mansour
 - \triangleright Utilize the set {(K₁, X_i, Y_i)} from Phase 1.



Attack Procedure (3/3)

Phase 3: compute P to obtain a solution (P, K₀, K₁).



Distinguisher

- The complexity of our attack is 2^{60.3}, which is smaller than 2⁶⁴
 - > 10-step LED-128 is "non-ideal"
- Irrespective to the specification of step function.

Outline

- Backgrounds
 - Specification
 - Previous Analysis
- Slidex Attack Application
- Multicollision Application
- Distinguishers
 - Differential Property
 - Random-difference Distinguisher
- Conclusion

Updated State of LED

The number of attacked steps

	Key Recovery		Distinguishor
	Single-key	Related-key	Distinguisher
LED-64 (8 steps)	2	4	3.75 → 5
LED-128 (12 steps)	4 -> 6	6	6.75 → 10

Thank you for your attention!

