Towards Secure Distance Bounding

Ioana Boureanu, Katerina Mitrokotsa, Serge Vaudenay

http://lasec.epfl.ch/

LASEC

distance bounding

- **2** Towards a Secure Protocol
- 3 The SKI Protocol

- **2** Towards a Secure Protocol
- 3 The SKI Protocol

Playing against two Chess Grandmasters

Relay Attacks

A Nice Playground for Relay Attacks

Wireless Car Locks

A Nice Playground for Relay Attacks

Corporate RFID Card for Access Control

A Nice Playground for Relay Attacks

Contactless Credit Card Payment

wireless credit card payment

The Brands-Chaum Protocol

Distance-Bounding Protocols [Brands-Chaum EUROCRYPT 1993]

The Speed of Light

time error of $1\mu s$ = distance error of 300m

Distance Bounding

• interactive proof for proximity

a verifier (honest)

a prover (may be malicious)

a secret to characterize the prover (may be symmetric) concurrency: many provers and verifiers around, plus malicious participants

• completeness:

if the honest prover is close to the verifier, the verifier accepts

soundness:

if the verifier accept, then a close participant must hold the secret

secure:

when honestly run, the secret must not leak

Distance Fraud

a malicious prover P^* tries to prove that he is close to a verifier V

Mafia Fraud

Major Security Problems with the "Unforgeable" (Feige)-Fiat-Shamir Proofs of Identity and How to Overcome Them [Desmedt SECURICOM 1988]

$$\underbrace{P \longleftrightarrow \mathcal{A} \longleftrightarrow V}_{\text{far away}}$$

an adversary \mathcal{A} tries to prove that a prover P is close to a verifier V

Terrorist Fraud

Major Security Problems with the "Unforgeable" (Feige)-Fiat-Shamir Proofs of Identity and How to Overcome Them [Desmedt SECURICOM 1988]

$$\underbrace{P^* \longleftrightarrow \mathcal{A} \longleftrightarrow V}_{\text{far away}}$$

a malicious prover P^* helps an adversary \mathcal{A} to prove that P^* is close to a verifier V without giving \mathcal{A} another advantage

Impersonation Fraud

An Efficient Distance Bounding RFID Authentication Protocol [Avoine-Tchamkerten ISC 2009]

$\mathcal{A} \longleftrightarrow V$

an adversary \mathcal{A} tries to prove that a prover P is close to a verifier V

Distance Hijacking

Distance Hijacking Attacks on Distance Bounding Protocols [Cremers-Rasmussen-Schmidt-Čapkun IEEE S&P 2012]

$$\underbrace{P^* \longleftrightarrow P' \longleftrightarrow V}_{\text{far away}}$$

a malicious prover P^* tries to prove that he is close to a verifier V by taking advantage of other provers P'

A General Threat Model

distance fraud:

- P(x) far from all V(x)'s want to make one V(x) accept (interaction with other P(x') and V(x') possible anywhere)
- ullet ightarrow also captures distance hijacking

man-in-the-middle:

- learning phase: \mathcal{A} interacts with many P's and V's
- attack phase: P(x)'s far away from V(x)'s, A interacts with them and possible P(x')'s and V(x')'s A wants to make one V(x) accept
- ullet \to also captures impersonation

collusion fraud:

P(x) far from all V(x)'s interacts with A and makes one V(x) accept, but View(A) does not give any advantage to mount a man-in-the-middle attack

Known Protocols and Security Results

success probability of best known "regular" attacks (TF with no tolerance to noise + no malicious PRF)

Protocol	Success Probability		
	Distance-Fraud	MiM	Collusion-Fraud
Brands & Chaum	(1/2) ⁿ	(1/2) ⁿ	1
Bussard & Bagga	1	$(1/2)^n$	1
Čapkun <i>et al.</i>	(1/2) ⁿ	(1/2) ⁿ	1
Hancke & Kuhn	(3/4) ⁿ	(3/4) ⁿ	1
Reid et al.	(3/4) ⁿ	1	(3/4) ^v
Singelée & Preneel	(1/2) ⁿ	(1/2) ⁿ	1
Tu & Piramuthu	(3/4) ⁿ	1	(3/4) ^v
Munilla & Peinado	(3/4) ⁿ	$(3/5)^n$	1
Swiss-Knife	(3/4) ⁿ	(1/2) ⁿ	(3/4) ^v
Kim & Avoine	$(7/8)^n$	$(1/2)^n$	1
Nikov & Vauclair	1/ <i>k</i>	(1/2) ⁿ	1
Avoine et al.	(3/4) ⁿ	$(2/3)^n$	(2/3) ^v

3 The SKI Protocol

The Hancke-Kuhn Protocol

An RFID Distance-Bounding Protocol [Hancke-Kuhn SECURECOMM 2005]

A Terrorist Fraud against The Hancke-Kuhn Protocol

The Reid et al. Protocol (DBENC)

Detecting Relay Attacks with Timing-based Protocols [Reid-Nieto-Tang-Senadji ASIACCS 2007]

resist to terrorist fraud: if a_1 and a_2 leak, then x as well!

A Man-in-the-Middle against DBENC

The Swiss-Knife RFID Distance Bounding Protocol [Kim-Avoine-Koeune-Standaert-Pereira ICISC 2008]

consequence: the adversary deduces a_j and $a_j \oplus x_j$, so x_j as well

SV 2013

distance bounding

A Man-in-the-Middle against Other DBENC

The Bussard-Bagga and Other Distance-Bounding Protocols under Attacks [Bay-Boureanu-Mitrokotsa-Spulber-Vaudenay Inscrypt 2012]

set $a_2 = \operatorname{Enc}_{a_1}(x)$

- one-time pad: $Enc_{a_1}(x) = x \oplus a_1$
- addition modulo q: $Enc_{a_1}(x) = x a_1 \mod q$
- modular addition with random factor:

$$\operatorname{Enc}_{a_1}(x; u) = (u, ux - a_1 \mod q)$$

for a random invertible u

all instances broken

The TDB Protocol

How Secret-Sharing can Defeat Terrorist Fraud [Avoine-Lauradoux-Martin ACM WiSec 2011]

resist to man-in-the-middle: two answers to c_i don't leak x_i !

SV 2013

distance bounding

Security Proofs Based on PRF

- if the adversary can break the scheme with a PRF, then he can break an idealized scheme with the PRF replaced by a truly random function
- this argument is valid when both these conditions are met:
 - the adversary does not have access to the PRF key
 - the PRF key is only used by the PRF
- as far as distance fraud is concerned, condition 1 is not met!
- for most of terrorist fraud protections, condition 2 is not met!

Programming a PRF

On the Pseudorandom Function Assumption in (Secure) Distance-Bounding Protocols [Boureanu-Mitrokotsa-Vaudenay Latincrypt 2012]

given a PRF g, let

$$f_x(N_P,N_V) = \left\{ egin{array}{cc} x \| x & ext{if } N_P = x \ g_x(N_P,N_V) & ext{otherwise} \end{array}
ight.$$

f is a PRF!

Distance Fraud with a Programmed PRF against the TDB Protocol

On the Pseudorandom Function Assumption in (Secure) Distance-Bounding Protocols [Boureanu-Mitrokotsa-Vaudenay Latincrypt 2012]

Using PRF Masking

a is now chosen by the verifier

Man-in-the-Middle Attack with a Programmed PRF

On the Pseudorandom Function Assumption in (Secure) Distance-Bounding Protocols [Boureanu-Mitrokotsa-Vaudenay Latincrypt 2012]

- take a PRF g
- define a predicate trapdoor_x($\bar{\alpha} \| t$) $\iff t = g_x(\bar{\alpha}) \oplus \text{right}_half(x)$,

$$f_x(N_P, N_V) = \begin{cases} a_1 ||a_2 = \alpha ||\beta||\gamma||\beta \oplus g_x(\alpha) & \text{if } \neg \text{trapdoor}_x(N_V) \\ & \text{where } (\alpha, \beta, \gamma) = g_x(N_P, N_V) \\ a_1 = a_2 = x & \text{otherwise} \end{cases}$$

f is a PRF!

- attack:
 - 1: play with *P* and send c = (1, ..., 1, 3, ..., 3) to obtain from the responses $\bar{\alpha} || t$ satisfying trapdoor_x
 - 2: play with *P* again with $N_V = \bar{\alpha} || t$ and get *x*!

Other Results based on Programmed PRFs

On the Pseudorandom Function Assumption in (Secure) Distance-Bounding Protocols [Boureanu-Mitrokotsa-Vaudenay Latincrypt 2012]

protocol	distance fraud	man-in-the-middle attack
TDB Avoine-Lauradoux-Martin	\checkmark	\checkmark
[ACM WiSec 2011]		
Dürholz-Fischlin-Kasper-Onete [ISC 2011]	\checkmark	-
Hancke-Kuhn [Securecomm 2005]	\checkmark	-
Avoine-Tchamkerten [ISC 2009]	\checkmark	-
Reid-Nieto-Tang-Senadji [ASIACCS 2007]	\checkmark	\checkmark
Swiss-Knife Kim-Avoine-Koeune-Standaert-	-	\checkmark
Pereira [ICISC 2008]		

Using Circular-Keying Security

f is a PRF with circular-keying security

Circular Keying Security

• if ${\mathcal A}$ makes queries

$$y_i, a_i, b_i \mapsto (a_i \cdot x') + (b_i \cdot f_x(y_i))$$

 \mathcal{A} cannot distinguish if x = x' or x and x' are independent

caveat: queries must be such that

$$orall i_1,\ldots,i_q,c_1,\ldots,c_q = egin{array}{c} y_{i_1}=\cdots=y_{i_q} \ \sum_{j=1}^q c_j b_{i_j}=0 \end{array}
ight\} \Longrightarrow \sum_{j=1}^q c_j a_{i_j}=0$$

• sanity check: easily constructed in the random oracle model

Problem with Noise

Verifier Prover secret: x secret: x initialization phase NP pick a, N_V pick N_P M, N_V $M = a \oplus f_x(N_P, N_V)$ $a = M \oplus f_x(N_P, N_V)$ distance bounding phase for i = 1 to npick $c_i \in \{1, 2, 3\}$ start clock $r_{i} = \begin{cases} a_{1,i} & \text{if } c_{i} = 1 \\ a_{2,i} & \text{if } c_{i} = 2 \\ x_{i} \oplus a_{1,i} \oplus a_{2,i} & \text{if } c_{i} = 3 \end{cases}$ ri stop clock check at least τ correct responses Out_V check timers

Terrorist Fraud based on Tolerance to Noise

Distance Bounding for RFID: Effectiveness of Terrorist Fraud [Hancke IEEE RFID-TA 2012]

- 2 Towards a Secure Protocol
- **3** The SKI Protocol

Why SKI?

- Symmetric Key Infrastructure?
- Sheffield Kidney Institute?
- Serial Killers Incorporated?

Serge Katerina

loana

The SKI Protocol

Verifier

secret: x

Prover secret: x

distance bounding phase

for i = 1 to n

check $\geq \tau$ responses check timers

Out_V

f is a circular-keying secure PRF, $L_{\mu}(x) = (\mu \cdot x, \dots, \mu \cdot x)$

SV 2013

distance bounding

Completeness of SKI

$$B(n,\tau,q) = \sum_{i=\tau}^{n} {n \choose i} q^{i} (1-q)^{n-i}$$

- assume honest execution of the protocol
- let p_{noise} be the probability that one round is incorrect
- probability to pass is $B(n, \tau, 1 p_{noise})$
- (Chernoff) for $\frac{\tau}{n} < 1 p_{\text{noise}} \varepsilon$, this is more than $1 e^{-2\varepsilon^2 n}$

Best Distance Fraud against SKI

Malicious Prover

Verifier secret: *x*

secret: x

pick r_i with largest preimage by F_i

$$M = a \oplus f_x(N_P, N_V, L_\mu)$$

$$x' = L_\mu(x)$$
initialization phase

$$\xrightarrow{N_P}$$
pick N_P

$$\xrightarrow{M, L_\mu, N_V}$$

$$a = M \oplus f_x(N_P, N_V, L_\mu)$$

$$x' = L_\mu(x)$$

distance bounding phase

for i = 1 to n

pick $c_i \in \{1, 2, 3\}$ start clock

 $\label{eq:stop clock} stop \ clock \\ check \geq \tau \ responses$

check timers

$$\xrightarrow{\operatorname{Out}_V}$$

~

$$\Pr[\text{round } i \text{ correct}] = \frac{3}{4}$$

FSE 2013 40 / 48

Best Distance Fraud against SKI

$$Pr[round i correct] = Pr[F_i constant] + \frac{2}{3}(1 - Pr[F_i constant])$$
$$= \frac{1}{4} + \frac{2}{3} \times \left(1 - \frac{1}{4}\right)$$
$$= \frac{3}{4}$$

- *F_i* is a 3-to-2 mapping
 so, the largest preimage has 3 (if *F_i* is constant) or 2 elements
- it is constant iff $a_{1,i} = a_{2,i} = x_i$, i.e. with probability $\frac{1}{4}$
- probability to pass is $B(n, \tau, \frac{3}{4})$
- (Chernoff) for $\frac{\tau}{n} > \frac{3}{4} + \epsilon$, this is less than $e^{-2\epsilon^2 n}$

Best Mafia Fraud against SKI

Best Mafia Fraud against SKI

$$Pr[round i correct] = Pr[c_i = c_i^*] + \frac{1}{2}(1 - Pr[c_i = c_i^*])$$
$$= \frac{1}{3} + \frac{1}{2} \times \left(1 - \frac{1}{3}\right)$$
$$= \frac{2}{3}$$

- probability to pass is $B(n, \tau, \frac{2}{3})$
- (Chernoff) for $\frac{\tau}{n} > \frac{2}{3} + \varepsilon$, this is less than $e^{-2\varepsilon^2 n}$

Best Terrorist Fraud against SKI

SV 2013

distance bounding

Best Terrorist Fraud against SKI

$$Pr[round i correct] = Pr[c_i \neq c_i^*] + \frac{1}{2}(1 - Pr[c_i \neq c_i^*])$$
$$= \frac{2}{3} + \frac{1}{2} \times \left(1 - \frac{2}{3}\right)$$
$$= \frac{5}{6}$$

- probability to pass is $B(n, \tau, \frac{5}{6})$
- (Chernoff) for $\frac{\tau}{n} > \frac{5}{6} + \varepsilon$, this is less than $e^{-2\varepsilon^2 n}$

Summary

for

$$p_{
m noise} < rac{1}{6} - 2\epsilon$$

we can adjust τ and have completeness up to $e^{-2\varepsilon^2 n},$ and security up to $e^{-2\varepsilon^2 n}$

- completeness
- resistance to distance fraud
- resistance to mafia fraud
- resistance to terrorist fraud

SKI Security

Theorem

If f is a circular-keying secure PRF and V requires at least τ correct rounds,

- there is no DF with $\Pr[\text{success}] \ge B(n, \tau, \frac{3}{4})$
- there is no MiM with $Pr[success] \ge B(n, \tau, \frac{2}{3})$
- for all CF such that $\Pr[CF \text{ succeeds}] \ge B(\frac{n}{2}, \tau \frac{n}{2}, \frac{2}{3})^{1-c}$ there is an assosiated MiM with P^* such that $\Pr[MiM \text{ succeeds}] \ge (1 B(\frac{n}{2}, \tau \frac{n}{2}, \frac{2}{3})^c)^n$

$$B(n,\tau,\rho) = \sum_{i=\tau}^{n} {n \choose i} \rho^{i} (1-\rho)^{n-i}$$

Conclusion

- several proposed protocols from the literature are insecure
- several security proofs from the literature are incorrect
- SKI offers provable security