Truncated differentia

Key recovery

Hash collisions

Conclusion

Cryptanalysis of WIDEA

Gaëtan Leurent

UCL Crypto Group

FSE 2013

Truncated differentia

Key recovery 000000 Hash collisions

Conclusion

Wide block ciphers

- Most block ciphers have a blocksize of 128 bits
 - 64 bits for lightweight
- Sometimes a larger blocksize is useful
 - More than 2⁶⁴ data with a single key
 - Large key, very high security
 - Hash function design

Wide block ciphers

- Rijndael: 192/256
- Threefish: 256/512/1024
- WIDEA: 256/512

[FSE '09]

WIDEA

- Wide block cipher based on IDEA
- Designed by Junod and Macchetti
- Motivation: build a hash function •

00000

Truncated differential

Key recovery

Hash collisions

Conclusion 00

IDEA

- Lai & Massey 1991
- 16-bit words
- ▶ 64-bit block, 128-bit key
- 8.5 rounds
- Based on incompatible operations:
 - ► : modular addition
 - ► ⊕: bitwise xor
 - O: mult. mod 2¹⁶ + 1
- Unbroken after 20⁺ years
 - Weak-keys problems

Cryptanalysis of WIDEA

FSE 2013 G. Leurent

Truncated differentia

Key recovery

Hash collisions

Conclusion

Junod & Macchetti 2009

- ► WIDEA-w: w parallel IDEA
- MDS matrix for diffusion across the slices
 - WIDEA-4: 256-bit block, 512-bit key
 - WIDEA-8: 512-bit block, 1024-bit key
- Efficient SIMD implem.
 - w 16-bit words

Key recovery

Hash collisions

WIDEA

- Wide block cipher based on IDEA
- Designed by Junod and Macchetti
- Motivation: build a hash function
- Expected to inherit the security of IDEA
 - Full diffusion after one round
 - Mix incompatible operations: ⊞, ⊕, ⊙, ⊗
 - Same number of rounds: 8.5

Previous results

Introduction

- Weak keys [Nakahara, CANS '12], [Mendel & al., CT-RSA '13]
- Free-start collision (practical)

[Mendel & al., CT-RSA '13]

Cryptanalysis of WIDEA

[FSE '09]

Truncated differential

Key recovery

Hash collisions

Conclusion

Introduction

Truncated differential

Key recovery

Hash collisions

Conclusion

Introduction	
00000	

Truncated differential

Key recovery

Hash collisions

Conclusion

Main idea

- Consider differential attack.
- Can we keep a single slice active?

Inside the MAD box:

Cryptanalysis of WIDEA

FSE 2013 G. Leurent

Truncated differential

Key recovery

Hash collisions

Conclusion

Truncated differential trail

One input slice active

$$\begin{aligned} X_{i,0} \neq X'_{i,0} \\ X_{i,j} = X_{i,j} \end{aligned}$$

- Zero difference at the input of the MDS with probability 2⁻¹⁶
- No effect on other slices
 - $Y_{i,0} \neq Y'_{i,0}$ $Y_{i,0} = Y_{i,0}$

UCL Crypto Group

Cryptanalysis of WIDEA

FSE 2013 G. Leurent

Truncated differential

Key recovery

Hash collisions

Conclusion

Truncated differential trail

One input slice active

$$\begin{aligned} X_{i,0} \neq X'_{i,0} \\ X_{i,j} = X_{i,j} \end{aligned}$$

- Zero difference at the input of the MDS with probability 2⁻¹⁶
- No effect on other slices

$$Y_{i,0} \neq Y'_{i,0}$$
$$Y_{i,j} = Y_{i,j}$$

UCL Crypto Group

Introduction	
00000	

Truncated differential

Key recovery

Hash collisions

Conclusion 00

Main idea

- Consider differential attack.
- Can we keep a single slice active?

Inside the MAD box:

Introduction	
00000	

Truncated differential

Key recovery

Hash collisions

Conclusion

Main idea

- Consider differential attack.
- Can we keep a single slice active?

Inside the MAD box:

Truncated differential

Key recovery

Hash collisions

Finding good pairs

Truncated trail for full 8.5 rounds:

- Use a structure of 2⁶⁴ plaintexts
 - 2⁶⁴ values for one slice
 - Fixed value for the other slices

▶ 2^{127} candidate pairs with one active slice ((w, x, y, z), (w', x', y', z'))

- One good pair with two structures
- Look for collisions in inactive slices
- Distinguisher with complexity 2⁶⁵ (succes rate 63%)
 - Strong filtering: no wrong pairs, can break more than 8 rounds

W	Х	y	Ζ

Truncated differentia

Key recovery 000000

Hash collisions

Conclusion

Introduction

Truncated differential

Key recovery

Hash collisions

Conclusion

Truncated differentia

Key recovery

Hash collisions

Conclusion

Using right pairs: first round

Extract key information form right pairs:

- Denote the MDS input as D
- A right pair gives D = D'

$$D = \left(\left((X_0 \odot Z_0) \oplus (X_2 \boxplus Z_2) \right) \odot Z_4 \right) \boxplus \left((X_1 \boxplus Z_1) \oplus (X_3 \odot Z_3) \right)$$
$$D' = \left(\left((X'_0 \odot Z_0) \oplus (X'_2 \boxplus Z_2) \right) \odot Z_4 \right) \boxplus \left((X'_1 \boxplus Z_1) \oplus (X'_3 \odot Z_3) \right)$$

- ▶ Filtering *Z*₀, *Z*₁, *Z*₂, *Z*₃, *Z*₄
- 5 pairs should be enough
- Experimental results: need 8 pair
- ▶ One bit cannot be recovered (linear): MSB of Z₁

Truncated differentia

Key recovery

Hash collisions

Conclusion 00

Filtering

Filtering:
$$D = D'$$

$$\begin{pmatrix} \left((X_0 \odot Z_0) \oplus (X_2 \boxplus Z_2) \right) \odot Z_4 \end{pmatrix} \boxplus \left((X_1 \boxplus Z_1) \oplus (X_3 \odot Z_3) \right) \\ = \left(\left((X'_0 \odot Z_0) \oplus (X'_2 \boxplus Z_2) \right) \odot Z_4 \right) \boxplus \left((X'_1 \boxplus Z_1) \oplus (X'_3 \odot Z_3) \right)$$

Meet-in-the-middle:

- ▶ Compute *F*(*X*, *X*′, *Z*₀, *Z*₂, *Z*₄) for all *Z*₀, *Z*₂, *Z*₄
- ▶ Compute G(X, X', Z₁, Z₃) for all Z₁, Z₃
- Find matches
- ▶ Complexity: ·2⁴⁸

Truncated differentia

Key recovery

Hash collisions

Conclusion

Filtering

Filtering:
$$D = D'$$

$$\begin{pmatrix} \left((X_0 \odot Z_0) \oplus (X_2 \boxplus Z_2) \right) \odot Z_4 \end{pmatrix} \boxminus \left(\left((X'_0 \odot Z_0) \oplus (X'_2 \boxplus Z_2) \right) \odot Z_4 \end{pmatrix} \\ = \left((X'_1 \boxplus Z_1) \oplus (X'_3 \odot Z_3) \right) \boxminus \left((X_1 \boxplus Z_1) \oplus (X_3 \odot Z_3) \right)$$

Meet-in-the-middle:

- ▶ Compute *F*(*X*, *X*′, *Z*₀, *Z*₂, *Z*₄) for all *Z*₀, *Z*₂, *Z*₄
- ▶ Compute G(X, X', Z₁, Z₃) for all Z₁, Z₃
- Find matches
- ▶ Complexity: ·2⁴⁸

Truncated differentia

Key recovery

Hash collisions

Conclusion 00

Filtering

Filtering: D = D'

 $F(X, X', Z_0, Z_2, Z_4) = G(X, X', Z_1, Z_3)$

Meet-in-the-middle:

- ▶ Compute *F*(*X*, *X*′, *Z*₀, *Z*₂, *Z*₄) for all *Z*₀, *Z*₂, *Z*₄
- ▶ Compute *G*(*X*, *X*′, *Z*₁, *Z*₃) for all *Z*₁, *Z*₃
- Find matches
- Complexity: ·2⁴⁸

Truncated differentia

Key recovery

Hash collisions

Conclusion

Recovering the full first round key

Use a trail for each slice:

- Attack each slice independantly.
- Recover $Z_{0,i}, Z_{1,i}, Z_{2,i}, Z_{3,i}, Z_{4,i}$.
 - Complexity: w · 2⁴⁸

Truncated differentia

Key recovery

Hash collisions

Conclusion

Second round

- ► Guess w missing key bits (MSB of Z₁)
- MDS input known (all slices)
 - Compute output
- Guess Z₅ in one slice
 - Compute input of 2nd round
 - Recover 2^{nd} round key: $Z_6, Z_7, Z_8, Z_9, Z_{10}$

▶ Complexity: *w* · 2^{64+*w*}

UCL Crypto Group

Cryptanalysis of WIDEA

FSE 2013 **16/24** G. Leurent

Truncated differentia

Key recovery

Hash collisions

Conclusion

Second round

- ► Guess w missing key bits (MSB of Z₁)
- MDS input known (all slices)
 - Compute output
- Guess Z₅ in one slice
 - Compute input of 2nd round
 - Recover 2nd round key: Z₆, Z₇, Z₈, Z₉, Z₁₀
- ► Complexity: *w* · 2^{64+w}

Truncated differentia

Key recovery 000000

Hash collisions

Conclusion

Full key recovery

First step: recover $K_{0...4}$ for $0 \le i < w$ do $T \leftarrow \emptyset$ for all k_1, k_3 do $G \leftarrow ||_{j=0}^k G_i(X^{(ij)}, X'^{(ij)}, k_1, k_3)$ $T\{G\} \leftarrow (k_1, k_3)$ for all k_0, k_2, k_4 do $F \leftarrow ||_{j=0}^k F_i(X^{(ij)}, X'^{(ij)}, k_0, k_2, k_4)$ if $F \in T$ then $k_1, k_3 \leftarrow T\{F\}$ $K_{0...4,i} \leftarrow k_0, k_1, k_2, k_3, k_4$

Truncated differentia

Key recovery 000000

Hash collisions

Conclusion

Full key recovery

```
Second step: recover K_{5,10}
   for all K<sub>1,i</sub>[15] do
         for 0 < i < w do
                for all k_5 do
                       K_{5i} \leftarrow k_5
                       for all i.k do
                               Y^{i,k} \leftarrow \text{Round}(X^{(i,k)}, K)
                              Y'^{i,k} \leftarrow \text{Round}(X'^{(i,k)}, K)
                       T \leftarrow \emptyset
                       for all k_1, k_3 do
                              G \leftarrow \prod_{i=0}^{k} G_{i}(Y^{(i,j)}, Y'^{(i,j)}, k_{1}, k_{3})
                              T{G} \leftarrow (k_1, k_3)
                       for all k<sub>0</sub>, k<sub>2</sub>, k<sub>4</sub> do
                              F \leftarrow \prod_{i=0}^{k} F_{i}(Y^{(i,j)}, Y'^{(i,j)}, k_{0}, k_{2}, k_{4})
                              if F \in T then
                                     k_1, k_3 \leftarrow T\{F\}
                                     K_{6...10,i} \leftarrow k_0, k_1, k_2, k_3, k_4
goto next<sup>7</sup> goto next<sup>7</sup>
UCL Crypto Group
```

FSE 2013 **17/24** G. Leurent

Truncated differentia

Key recovery

Hash collisions

Complexity analysis

- ▶ Reduce the complexity from $w \cdot 2^{64+w}$ to 2^{68} using a few tricks
- Bottleneck is finding good pairs
 - 8 · w pairs needed
 - Data complexity: w · 2⁶⁸
- 1 Using a hash table:
 - Time $w \cdot 2^{68}$, Mem 2^{64}
- 2 Store and sort:
 - ► Time w · 2⁷⁴ , Mem 2⁶⁴
- 3 Time-memory tradeoff:
 - Time $5w \cdot 2^{68+t/2}$, Mem 2^{64-t}
- , Adaptive CP

Truncated differentia

Key recovery

Hash collisions

Conclusion 00

Outline

Introduction

Truncated differential

Key recovery

Hash collisions

Conclusion

Truncated differentia

Key recovery

Hash collisions ●○

Conclusion 00

Hash collisions

HIDEA-512 is WIDEA-8 with Davies-Meyer

Use our truncated differential trail

- 1 Find a 448-bit collision H_{i-1} , H'_{i-1}
- Hash random message blocks
 - With probability 2⁻¹²⁸, the trail is followed
 - With probability 2⁻⁶⁴, collision in the feed-forward

Truncated differentia

Key recovery

Hash collisions ●○

Conclusion

Hash collisions

- HIDEA-512 is WIDEA-8 with Davies-Meyer
- Use our truncated differential trail
 - **1** Find a 448-bit collision H_{i-1} , H'_{i-1}
 - 2 Hash random message blocks
 - With probability 2⁻¹²⁸, the trail is followed
 - ▶ With probability 2⁻⁶⁴, collision in the feed-forward

Truncated differentia

Key recovery

Hash collisions ●○

Conclusion

Hash collisions

- HIDEA-512 is WIDEA-8 with Davies-Meyer
- Use our truncated differential trail
 - **1** Find a 448-bit collision H_{i-1} , H'_{i-1}
 - 2 Hash random message blocks
 - ▶ With probability 2⁻¹²⁸, the trail is followed
 - ▶ With probability 2⁻⁶⁴, collision in the feed-forward

Find *P*, *P'* with $T_{448}(H(P)) = T_{448}(H(P'))$ repeat

 $M \leftarrow Rand()$ until H(P||M) = H(P'||M)

▷ Complexity 2¹⁹²

▷ Complexity 2²²⁴

- Full hash function collisions with complexity 2²²⁴
 - Very simple attack!
 - Independant of the message expansion.
 - Chosen prefix, meaningful messages, ...

Truncated differentia

Key recovery

Hash collisions

Conclusion 00

Introduction

Truncated differential

Key recovery

Hash collisions

Conclusion

Truncated differentia

Key recovery

Hash collisions

Truncated differential trail

- MDS input too small
 - Difference stays in a single IDEA instance with probability 2⁻¹²⁸
 - Strong property, can break more than 8 rounds!

1 Key recovery

- Using structures of 2⁶⁴ plaintext
- Complexity 2⁷⁰ for WIDEA-4 (256-bit block, 512-bit key)
- Complexity 2⁷¹ for WIDEA-8 (512-bit block, 1024-bit key)

2 Hash collisions

▶ Complexity 2²²⁴ for HIDEA-512

Truncated differentia

Key recovery

Hash collisions

isions

Thanks

Questions?

With the support of ERC project CRASH

European Research Council

Established by the European Commission

Supporting top researchers from anywhere in the world

Conclusion

