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How to Share a Secret

How to share a secret in such a way that t ≤ n players can
reconstruct it but t − 1 players get no information?

A simple and brilliant idea by Shamir, 1979

Let K be a finite field with |K| ≥ n + 1

To share a secret value k ∈ K, take a random polynomial

f (x) = k + a1x + · · ·+ at−1x t−1 ∈ K[x ]

and distribute the shares

f (x1), f (x2), . . . , f (xn)

where xi ∈ K− {0} is a public value associated to player pi

Independently, Blakley proposed in 1979
a geometric secret sharing scheme
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Properties of Shamir’s Secret Sharing Scheme

1 It is a threshold scheme
2 It is perfect
3 It is ideal
4 It is linear
5 It is multiplicative

To which extent these properties can be generalized to
secret sharing schemes with other access structures?

The access structure Γ is the family of qualified subsets
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Properties of Shamir’s Secret Sharing Scheme

1 It is a threshold scheme
2 It is perfect
3 It is ideal

Every share has the same length as the secret:
all are elements in a finite field
This is the best possible situation
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Properties of Shamir’s Secret Sharing Scheme

1 It is a threshold scheme
2 It is perfect
3 It is ideal
4 It is linear

Shares are a linear function of the secret and random values.
The secret can be recovered by a linear function of the shares.
Shares for a linear combination of two secrets
can be obtained from the linear combination of the shares

λ1k1 +λ2k2 = (λ1f1 +λ2f2)(0) λ1s1i +λ2s2i = (λ1f1 +λ2f2)(xi )

5 It is multiplicative
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Properties of Shamir’s Secret Sharing Scheme

1 It is a threshold scheme
2 It is perfect
3 It is ideal
4 It is linear
5 It is multiplicative

If n ≥ 2t − 1, shares for the product of two secrets
can be obtained from the products of the shares
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Existential Questions & Optimization Problems

Does there exist a perfect SSS for every access structure?

YES

From now on, we deal only with perfect schemes

Does there exist a linear SSS for every access structure? YES

Does there exist an ideal SSS for every access structure? NO

Problem
What access structures admit an ideal secret sharing scheme?

Problem
To find the most efficient (linear) secret sharing scheme
for every access structure
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Some Interesting Access Structures

Shamir (1979) introduced the weighted threshold access structures
Every participant has a weight
A subset is qualified if and only if
the weight sum attains certain threshold

These access structures are hierarchical
The scheme proposed by Shamir is not ideal

Simmons (1988) introduced the
multilevel and compartmented access structures

Brickell (1989) presented ideal secret sharing schemes for them

P. and Sáez (1998) studied those problems
for the bipartite access structures

Subsequently, many other works appeared on
multipartite secret sharing schemes
specially on the construction of ideal schemes and
the characterization of ideal access structures
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General Secret Sharing

A secret sharing scheme on the set P = {p1, . . . ,pn} of participants
is a mapping

Π: E → E0 × E1 × · · · × En
x 7→ (π0(x)|π1(x), . . . , πn(x))

together with a probability distribution on E

A secret sharing scheme is a collection of random variables

π0(x) ∈ E0 is the secret value
πi (x) ∈ Ei is the share for the player pi

such that
If A ⊆ P is qualified, H(E0|EA) = H(E0|(Ei )pi∈A) = 0
Otherwise, H(E0|EA) = H(E0)

The qualified subsets form the access structure Γ of the scheme

If pi is a non-redundant player, then H(Ei ) ≥ H(E0)

There exists a secret sharing scheme for every access structure,
but in general the shares are much larger than the secret

Farràs, Metcalf-Burton, Padró, Vázquez MAS-SPMS-NTU, Singapore, January 2010



General Secret Sharing

A secret sharing scheme on the set P = {p1, . . . ,pn} of participants
is a mapping

Π: E → E0 × E1 × · · · × En
x 7→ (π0(x)|π1(x), . . . , πn(x))

together with a probability distribution on E

A secret sharing scheme is a collection of random variables
such that

If A ⊆ P is qualified, H(E0|EA) = H(E0|(Ei )pi∈A) = 0
Otherwise, H(E0|EA) = H(E0)

The qualified subsets form the access structure Γ of the scheme

If pi is a non-redundant player, then H(Ei ) ≥ H(E0)

There exists a secret sharing scheme for every access structure,
but in general the shares are much larger than the secret

Farràs, Metcalf-Burton, Padró, Vázquez MAS-SPMS-NTU, Singapore, January 2010



General Secret Sharing

A secret sharing scheme on the set P = {p1, . . . ,pn} of participants
is a mapping

Π: E → E0 × E1 × · · · × En
x 7→ (π0(x)|π1(x), . . . , πn(x))

together with a probability distribution on E

A secret sharing scheme is a collection of random variables
such that

If A ⊆ P is qualified, H(E0|EA) = H(E0|(Ei )pi∈A) = 0
Otherwise, H(E0|EA) = H(E0)

The qualified subsets form the access structure Γ of the scheme

If pi is a non-redundant player, then H(Ei ) ≥ H(E0)

There exists a secret sharing scheme for every access structure,
but in general the shares are much larger than the secret

Farràs, Metcalf-Burton, Padró, Vázquez MAS-SPMS-NTU, Singapore, January 2010



General Secret Sharing

A secret sharing scheme on the set P = {p1, . . . ,pn} of participants
is a mapping

Π: E → E0 × E1 × · · · × En
x 7→ (π0(x)|π1(x), . . . , πn(x))

together with a probability distribution on E

A secret sharing scheme is a collection of random variables
such that

If A ⊆ P is qualified, H(E0|EA) = H(E0|(Ei )pi∈A) = 0
Otherwise, H(E0|EA) = H(E0)

The qualified subsets form the access structure Γ of the scheme

If pi is a non-redundant player, then H(Ei ) ≥ H(E0)

There exists a secret sharing scheme for every access structure,
but in general the shares are much larger than the secret

Farràs, Metcalf-Burton, Padró, Vázquez MAS-SPMS-NTU, Singapore, January 2010



Complexity of Secret Sharing Schemes

Problem
To find the most efficient secret sharing scheme
for every access structure

max H(Ei ),
∑

H(Ei ), and H(E), compared to H(E0),
are used to measure the complexity of a secret sharing scheme

Definition (complexity of a secret sharing scheme)

The complexity σ(Σ) of a secret sharing scheme Σ is defined as

σ(Σ) = max
pi∈P

H(Ei )

H(E0)
≥ 1
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The Big Problem

Problem
To find the most efficient secret sharing scheme
for every access structure

Definition (optimal complexity of an access structure)

The optimal complexity σ(Γ) of an access structure Γ is the infimum of
the complexities of all secret sharing schemes for Γ

Problem

To determine σ(Γ) for every Γ
At least, to determine the asymptotic behavior of this parameter

Very little is known about this problem

It has been studied for several
particular families of access structures
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Bipartite Access Structures

In this paper, we consider this problem for
bipartite access structures

An access structure is bipartite if

P = P1 ∪ P2

and participants in the same part play an equivalent role.

Ideal bipartite access structures
were characterized by Padró and Sáez, 1998
Some bounds on σ(Γ) were given in that work

More general results about ideal multipartite access structures
by Farràs, Martí-Farré and P. 2007
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Geometric Representation
Let Γ be a bipartite access structure on P = P1 ∪ P2.
For every set A ⊆ P, consider

Π(A) = (|A ∩ P1|, |A ∩ P2|) ∈ Z2
+

The set of points Π(Γ) = {Π(A) : A ∈ Γ} ⊆ Z2
+ determine Γ

Actually, the minimal points in Π(min Γ) determine Γ
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Upper Bounds from Constructions

Of course, every construction of a secret sharing scheme Σ for Γ
provides an upper bound: σ(Γ) ≤ σ(Σ)

Most of the good construction methods used until now provide
linear secret sharing schemes

That is, the mapping x 7→ (π0(x)|π1(x), . . . , πn(x)) is linear
and x ∈ E is chosen with uniform probability

Definition

For an access structure Γ, we define λ(Γ) as the infimum of the
complexities of all linear secret sharing schemes for Γ

Obviously, σ(Γ) ≤ λ(Γ)

If Γ is bipartite,
σ(Γ) ≤ λ(Γ) ≤ number of minimal points ≤ min{|P1|, |P2|}
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How Good Are Linear Secret Sharing Schemes?

For some access structures, the optimal schemes must be non-linear

Beimel and Weinreb (2005) proved a strong separation result:
There exist a family of access structures such that
σ(Γn) grows linearly while
λ(Γn) grows superpolynomially

Problem

Is σ(Γ) = λ(Γ) for every bipartite access structure?
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Combinatorial Lower Bounds, Polymatroids

Consider P = {p1, . . . ,pn} and Q = P ∪ {p0}

For an arbitrary secret sharing scheme consider,
for every A ⊆ Q

h(A) =
H(EA)

H(E0)

Then
1 h(∅) = 0
2 X ⊆ Y ⊆ Q ⇒ h(X ) ≤ h(Y )

3 h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X ) + h(Y )

4 h(A ∪ {p0}) ∈ {h(A),h(A) + 1}

S = (Q,h) is a polymatroid
p0 is an atomic point of S
Γ = Γp0 (S) = {A ⊆ P : h(A ∪ {p0}) = h(A)}

Fujishige 1978, Csirmaz 1997
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Lower Bounds from Polymatroids
For a polymatroid S = (Q,h), we define σ(S) = maxp∈Q h({p})

Every polymatroid S = (Q,h) with an atomic point p0 ∈ Q
defines an access structure on P = Q − p0

Γ = Γp0 (S) = {A ⊆ P : h(A ∪ {p0}) = h(A)}

In this situation, we say that S is a Γ-polymatroid

κ(Γ) = inf{σ(S) : Γ = Γp0 (S)}

A secret sharing scheme Σ for Γ defines a polymatroid S = S(Σ)
such that Γ = Γp0 (S) and σ(Σ) = σ(S)

Therefore κ(Γ) ≤ σ(S) = σ(Σ)

Theorem
For every access structure Γ

κ(Γ) ≤ σ(Γ) ≤ λ(Γ)
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How Good Are Combinatorial Lower Bounds?

Theorem (Csirmaz 1997)

There exist a family of access structures with

σ(Γn) ≥ κ(Γn) ≥ n
log n

This is the best known general lower bound on σ

But, on the other hand

Theorem (Csirmaz 1997)

For every access structure Γ on n participants, κ(Γ) ≤ n

This seems to imply that κ(Γ)
must be in general much smaller than σ(Γ)

Nevertheless no strong separation result
between these parameters is known
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How Good Are Combinatorial Lower Bounds?

No strong separation result between κ and σ is known

The first examples of access structures with κ(Γ) < σ(Γ) have been
found recently by using non-Shannon information inequalities
(Beimel, Livne, and P. 2008)

Nevertheless, non-Shannon information inequalities cannot give
strong separation results (Beimel and Orlov 2008)

Problem

Is σ(Γ) = κ(Γ) for every bipartite access structure?
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Multipartite Polymatroids

Let Γ be a bipartite access structure on P = P1 ∪ P2.

κ(Γ) = inf{σ(S) : Γ = Γp0 (S)}

We prove that we can restrict to ({p0},P1,P2)-partite polymatroids
S = (Q,h) such that h(A) depends only on
|A ∩ {p0}|, |A ∩ P1|, |A ∩ P2|

In addition, κ(Γ) is independent from |Pi |
It depends only on the minimal points

We do not know if the same applies to λ or σ
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Finding Lower Bounds by Linear Programming

Such a polymatroid S = (Q,h) is determined by the values
h(x0, x1, x2) with 0 ≤ x0 ≤ 1 and 0 ≤ xi ≤ |Pi |.

To compute κ(Γ) we have to minimize max{h(0,1,0),h(0,0,1)}
among all vectors h ∈ R2N1N2 satisfying

1 h(∅) = 0
2 X ⊆ Y ⊆ Q ⇒ h(X ) ≤ h(Y )

3 h(X ∪ Y ) + h(X ∩ Y ) ≤ h(X ) + h(Y )

4 h(A ∪ {p0}) = h(A) if A ∈ Γ, h(A ∪ {p0}) = h(A) + 1 otherwise

This can be formulated as a linear programming problem
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Some Bounds

By applying these techniques, we obtain

Theorem

If min Γ = {(x1, y1), (x2,0)} with x1, x2, y1 > 0, then

κ(Γ) = σ(Γ) = λ(Γ) =
2(x2 − x1)− 1

x2 − x1
.

In addition, by using linear programming, we determined the value of
κ(Γ) for several access structures with three minimal points

For future work,

Determine the values of these parameters for every bipartite access
structure

Are there gaps between κ, σ, and λ
in the family of the bipartite access structures?
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Duality and Minors

Dual access structure: Γ∗ = {A ⊆ P : P − A /∈ Γ}

The minors of access structures are defined by the operations

Γ \ Z = {A ⊆ P − Z : A ∈ Γ} Γ/Z = {A ⊆ P − Z : A ∪ Z ∈ Γ}

Bipartite access structures are closed by duality and minors

Theorem

If Γ′ is a minor of Γ, then

κ(Γ′) ≤ κ(Γ) σ(Γ′) ≤ σ(Γ) λ(Γ′) ≤ λ(Γ)

Theorem (Jackson and Martin 1994,Martí-Farré and P. 2007)

For every access structure Γ,

λ(Γ∗) = λ(Γ) κ(Γ∗) = κ(Γ)

The relationship between σ(Γ∗) and σ(Γ) is unknown
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