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» Partial spreads class.

» Bent function construction in a recursive framework by
using Z-bent functions. (Dobbertin and Leander [DCC 49
(2008) 3 - 22)).

» Partial spreads type Z-bent functions leading to a new
primary construction of bent functons.
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Boolean functions

» [, is the prime field of characteristic 2.
» [F7 is the n dimensional vector space over 5.
» [Fon is the n degree extension field of Fa.

» Any function from 7 to [ is said to be a Boolean function
on n variables.

» Equivalently any function from Fan to [F» is said to be a
Boolean function on n variables.

» The set of all Boolean functions on n variables is denoted
by B,.



The distance between two Boolean functions (1/2)

» The distance between two Boolean functions F and G is

du(F, G) = #(F # G)
1

= S(#(F = G) + #(F # G))

wF=0-#Fra) O

_on-1_ % S (—1)F0+600

xeFj



The distance between two Boolean functions (2/2)

» We note that any affine function in 5, can be written as
lac(Xx) = (a x) + ewhere ac 1], e € Fp and (a, x) is any
inner product of x and a.



The distance between two Boolean functions (2/2)

» We note that any affine function in 5, can be written as
lac(Xx) = (a x) + ewhere ac 1], e € Fp and (a, x) is any
inner product of x and a.

OH(F fa) =271 — 2 37 (~1)F a0

x€F]

1
—1 F(x)+(ax)+e
g 2 LT @)

X€F]

_ 1
—on 1 (_1) é Z(_1)F(X)+(a,x)

X€F]



Walsh—Hadamard transform

» The Walsh—Hadamard transform of F at a € FJ is

We(a) = 3 (~1)7 0@,
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Walsh—Hadamard transform

» The Walsh—Hadamard transform of F at a € FJ is

We(a) = > (—1)FHax, (3)

X€F]

'
_ —1 € F )
du(F, lac) =271 = (1) D (=1)70IHiaxn

1 xeFg (4)
=27 — (1) 5 We(a).

> Mincer, (Au(f, lae)) = 27" — 3| Wr(a)l.



Nonlinearity

» The nonlinearity of F is defined as:

min min(dy(F,la.)) = 2" 1 - %max |WE(a)|.

aclFj eck acl}



Nonlinearity

» The nonlinearity of F is defined as:

min min(dy(F,la.)) = 2" 1 - %max |WE(a)|.

aclFj eck acl}

> Itis known that 3 ez Wr(a)? = 22", (Parseval’'s equation).



Nonlinearity

» The nonlinearity of F is defined as:

1
inmin(dy(F,¢2.)) = 2" — — max|We(a)|.
mi (b fa) = 2" ma ()

> Itis known that 3 ez Wr(a)? = 22", (Parseval’'s equation).

> Therefore maxcpy |Wr(a)| > 22 implying that



Nonlinearity

v

The nonlinearity of F is defined as:

min min(dy(F,la.)) = 2" 1 - %max |WE(a)|.

acky] el acky

v

Itis known that 3= ez We(a)? = 22", (Parseval’s equation).

v

Therefore maxepy |Wr(a)| > 22 implying that

nonlinearity of F is bounded above by 271 — 221,

v
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Bent functions
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Suppose n is an even positive integer.

Maximum possible nonlinearity of a Boolean function in B,
is 2n—1 221,

In other wordns these are the functions for which

We(a) = +22 for all a € 7.

These functions are said to be bent functions.

v

v

v



Bent functions

» Suppose nis an even positive integer.

» Maximum possible nonlinearity of a Boolean function in B,
is 2n—1 221,

» In other wordns these are the functions for which
We(a) = +22 for all a € 7.

» These functions are said to be bent functions.

» Bent functions are Boolean functions which provide
maximum resistance to affine approximation.



Maiorana—McFarland bent functions (MMF): Rothaus
1966

» Let n =2k and let F : Fox x Fox — [ be defined as

F(y,x) = (m(y), x) + g(¥)- (5)

where 7 : Fox — Fox be a permutation and G € By.



Maiorana—McFarland bent functions (MMF): Rothaus
1966

» Let n =2k and let F : Fox x Fox — [ be defined as

F(y,x) = (m(y), x) + g(¥)- (5)

where 7 : Fox — Fox be a permutation and G € By.

» Rothaus proved that F is a bent function. These are said to
be Maiorana—McFarland type bent functions.



Maiorana—McFarland bent functions (MMF): Rothaus
1966

» Let n =2k and let F : Fox x Fox — [ be defined as

F(y,x) = (m(y), x) + g(¥)- (5)

where 7 : Fox — Fox be a permutation and G € By.

» Rothaus proved that F is a bent function. These are said to
be Maiorana—McFarland type bent functions.

» O. Rothaus, On bent functions, Journal of Combinatorial
Theory, Series A 20 (1976) 300-305.



Maiorana—McFarland bent functions (MMF): Rothaus
1966

v

Let n= 2k and let F : Fox x Fox — [Fp be defined as

F(y,x) = (m(y), x) + g(¥)- (5)

where 7 : Fox — Fox be a permutation and G € By.

Rothaus proved that F is a bent function. These are said to
be Maiorana—McFarland type bent functions.

O. Rothaus, On bent functions, Journal of Combinatorial
Theory, Series A 20 (1976) 300-305.

O. Rothaus On bent functions, IDA CRD W.P. No. 169.
1966
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Partial spreads bent functions: Dillon 1975 (1/2)

» Let E C IF1.
oe0={ 0 itrge
is the indicator function of E.
» Suppose {E;:i=1,2,---,s} is a set of “mutually disjoint”
k-dimensional subspaces of IF7.
» Here mutually disjoint means E; N E; = {0} whenever i # j.



Partial spreads bent functions: Dillon 1975 (2/2)

» A function F € B, belonging to the class PS can be
expressed as

F(x) = Z o (x) — 25 g0y (x) for all x € F3,

where s =2~ 1if Fc PS~and s =2 " 4 1if F ¢ PS*
and the sum is taken over the integers.



Partial spreads bent functions: Dillon 1975 (2/2)

» A function F € B, belonging to the class PS can be
expressed as

F(x) = Z o (x) — 25 g0y (x) for all x € F3,

where s = 2k=1if F € PS~ and s = 2k +-1if F ¢ PST
and the sum is taken over the integers.

» J. F. Dillon, Elementary Hadamard difference sets,
Proceedings of Sixth S. E. Conference of Combinatorics,
Graph Theory, and Computing, Utility Mathematics,
Winnipeg, (1975), 237—249.
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Consider functions from Fan to Fs.

Let Vo = Fu, the subfield of order 2% of Fon.

Let V; = ('Fox forall i = 1,...,2%, where C is a primitive
element of Fon.

ThesetS = {V;:i=0,...,2%} consists of mutually
disjoint k-dimensional subspaces of Fan.
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Consider functions from Fan to Fs.

Let Vo = Fu, the subfield of order 2% of Fon.

Let V; = ('Fox forall i = 1,...,2%, where C is a primitive
element of Fon.

ThesetS = {V;:i=0,...,2%} consists of mutually
disjoint k-dimensional subspaces of Fan.

A subclass of PS type bent functions, called PSyp, is
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PSzp:

an “efficient” construction

Consider functions from Fan to Fs.

Let Vy = Fo, the subfield of order 2% of Fan.

Let V; = ('Fox forall i = 1,...,2%, where C is a primitive
element of Fon.

ThesetS = {V;:i=0,...,2%} consists of mutually
disjoint k-dimensional subspaces of Fan.

A subclass of PS type bent functions, called PSyp, is
obtained by constructing functions whose supports are the
unions of any 2K~ subspaces belonging to S excluding 0.

This subclass of PS was originally constructed by Dillon.
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(Eurocrypt 93, LNCS, Vol. 765, (1994), pp. 77-101).

» Bent functions via Kasami exponents.
(Dobbertin and Leander, A survey of some recent results
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» H. Dobbertin, G. Leander, A. Canteaut, C. Carlet, P. Felke
and P. Gaborit, Construction of bent functions via Niho
power functions, Journal of Combinatorial Theory, Series
A, 113 (2006), 779-798.

» Carlet and Mesnager, On Dillon’s class H of bent functions,
Niho bent functions and o-polynomials, Journal of
Combinatorial Theory, Series A, 118 (2011) 2392—-2410.
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» “A main obstacle in the study of bent functions is the lack of
recurrence laws. There are only few constructions deriving
bent functions from smaller ones. But it seems that most
bent functions appear without any roots to bent functions in
lower dimensions, which could explain their existence.”

» Dobbertin and Leander (2008 DCC) did exactly that but
they had to go out of the class of bent functions to Z-bent
functions.

» In fact, they went out of the class of Boolean functions.

» H. Dobbertin, G. Leander, Bent functions embedded into

the recursive framework of Z-bent functions, Des. Codes
Cryptogr. 49 (2008), 3—22.
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Z-bent functions (1/2)

» Given a Boolean function F we consider the function

f:F) — {—1,1} C Z defined by
fx) = (=1)F™ forall x e FJ.

v

The Fourier transform defined by

f(a) = % > fx)(—1)@x,

x€Fg

v

The Walsh-transform given by ?(a) = 217 We(a).
f is bent if and only if both f and f are {—1,1}-valued.
f is said to be Z-bent of level 0.

v

v
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Z-bent functions (2/2)

WO = {_171}7
W, = {wez|-2""T<w<2 "} forr>0.

» Afunction f : F; — W, is said to be a Z-bent function of
size k (equivalently, on n variables) and level r if and only if
f is also a function into W;. The set of all Z-bent functions
of size k and level r is denoted by BFE.

» Any function belonging to U,ZOBF," is said to be a Z-bent
function.
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From bent to Z-bent functions and back (1/3)

» Suppose f € BFX, and
h€162(y) = f(61762ay)7 for all (617627.y) € IE‘2 X ]FZ X ]ngz-

Define functions £, ., as follows:
» Forr=0:

(foo f1o):1<1 1)<hoo h1o> ()
for  fiq 2\ 1 -1 hor hi1 )

» Forr>1:

< foo o >
for 1
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From bent to Z-bent functions and back (2/3)

» Dobbertin and Leander proved that if f is a Z-bent function
of size k level r then ., ., are Z-bent functions of size k — 1
and level r + 1.

» Thus all Z-bent functions of size k and level r are obtained
by “gluing” Z-bent functions of size k — 1 and level r + 1.

» The “gluing” process is described in the next slide.
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From bent to Z-bent functions and back (3/3)

» The gluing process.
» Forr=0:

hoo  hyo ) > < foo  fio )
. 8
<h01 h11 for  fi1 ®
» Forr>1:

(hoo /710> _ 1<1 1 ><foo f10>. 9)
hot b1 2\ 1 -1 for  fi1

Il
N
— —
(N
—



A construction of Z-bent functions of arbitrary level
(1/2)

» Letmy,mo,--- mseZand E4,E,--- , Es be
k-dimensional subspaces of ], then the function

f(x)=>_ mipg(x)
i=1

is a Z-bent function and its dual is given by Y5, mi¢g. (X).



A construction of Z-bent functions of arbitrary level
(2/2)

» Suppose {E;:i=1,2,---,s} is a set of k-dimensional
subspaces of 5 with the property that E; N E; = {0}
whenever i # j. The function

f(x) = > migg(x), forall x € F3, (10)

where m; € W,, foralli=1,2,...,s,is a Z-bent function of
level r, for any r > 1, ifand only if Y>7_, m; € W,.



Proof Outline

>

@) = ¢ X 01

x€Fy

= o 2 meg (-1

xeFy i=1

- XM

X€E;

= 27 Z mi2k¢El.l (a)
i=1

= Z m,-qﬁEiL (a)
i=1



A new primary construction of bent functions (1/5)
» Let four Z-bent functions fyg, fo1, 10, f11 Of level 1 and size k

be given such that

foo(x) = fou(x)+ 1 mod 2,
f10(x) = f11(x)+ 1 mod 2,

fo(x) = fo(x)+1mod2,
fi(x) = fy(x)+1mod 2.

Then the function

h:Fo xFo x F§ — {—1,1} defined by
h(y,z,x) = hy(x)forall x € F3,

<hoo h1o>:<1 1 )(foo f1o>
hot i 1 -1 for  fiq

is a bent function (of level 0).

where



A new primary construction of bent functions (2/5)

» We start by letting S = {S;} be a spread, i.e. a collection of
2k 1+ 1 subspaces of dimension k with the condition that

SinS;j={0}fori#j, and U; S; = F3.



A new primary construction of bent functions (2/5)

» We start by letting S = {S;} be a spread, i.e. a collection of
2k 1+ 1 subspaces of dimension k with the condition that

SinS;j={0}fori#j, and U; S; = F3.

» Next, we partition this spread S into two parts, .4 and B,
i.e. ANB =0 and AU B = S and select coefficients,
ma,my, ng,ng € {—1,1}forallAc Aand B € B,

(Ma)aca suchthat  mye {-1,0,1},

(Ma)aca suchthat ) e {-1,0,1},

(nB)pes suchthat > nge {-1,0,1},

(Mp)pes suchthat > npe{-1,0,1}.



A new primary construction of bent functions (3/5)

» Construct

fo(x) = > mada(x),

AcA

fio(x) = Y npos(x),
BeB

fr(x) = > ngos(x),

BeB

fi(x) = > mhoa(x).

AcA



A new primary construction of bent functions (4/5)
» If x € FJ, then

foo(X) + 1(X) = D maga(x)+ > npodp(x)

AcA BeB
= Z oa(x) + Z ¢g(x) (mod 2)
AcA BeB

— Z ¢s,(x) (mod 2).

SieS



A new primary construction of bent functions (4/5)
» If x € FJ, then

foo(X) + 1(X) = D maga(x)+ > npodp(x)

AcA BeB

= Y 0a(x) + 3 ¢s(x) (mod 2)

AcA BeB

— Z ¢s,(x) (mod 2).

SieS
» If x # 0 then, as S is a spread, there exists exactly one
subspace Sk such that x € Sx and
foo(X) + for (X) = D ¢5(x) = ¢5,(x) =1 (mod 2).
Ses
On the other hand, if x = 0 then

foo(0) + fo1(0) = Y _1=2F+1=1 (mod 2).
SieS



A new primary construction of bent functions (5/5)

» We compute

hoo = foo + fo1,
hot = foo — fo1,
hio = fo1 + fi1,

hi1 = fo1 — fi1.



A new primary construction of bent functions (5/5)

» We compute

hoo = foo + fo1,
hor = foo — fo1,
hio = fo1 + fi1,
hii = for — f1.

» The gives a bent function.



Construction of an 8-variable bent function (1/2)

» Let ¢ be a root of the primitive polynomial x® + x + 1 on Fs.
We consider the finite field
Fos ={¢'":i=0,1,...,62} U {0}.
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Construction of an 8-variable bent function (1/2)

» Let ¢ be a root of the primitive polynomial x8 + x 4+ 1 on Fy.
We consider the finite field
Foe = {¢':i=0,1,...,62} U{0}.

» The subfield Vo = Fps = {¢¥ :i=0,1,...,6} U {0}, along
with the spread

S={Vi:Vi=("V,i=0,1,...,8}.

» The subsets A = { Wy, V4, Vo, V3, V4 } and
B ={Vs, Vg, V7, Vg} form a partition of S.



Construction of an 8-variable bent function (2/2)

» Consider the following four Z-bent function of level 1.

foo(x) = ¢VO(X) P, (X) + D (X) — Py (X) + by, (%),
fio(X) = u(X) — due(x) — ¢>v7(X)+¢v8(X),
fo1(X) = ow(X) = dys(X) + dv,(X) — Py (X),
f11(x) Dvo(X) + Oy, (X) = dv(X) — Drg(X) — by, (X).



Construction of an 8-variable bent function (2/2)

» Consider the following four Z-bent function of level 1.

foo(x) = ¢VO(X) P, (X) + D (X) — Py (X) + by, (%),
fio(x) = ow(x)— S(X)*¢v7(x)+¢v8(x),
fo1(X) = ow(X) = dys(X) + dv,(X) — Py (X),
fl(x) = oy(X) + oy (X) — dry(X) — dys(X) — Py, (X).

» We construct hog = foo + fo1, ho1 = foo — fo1, h1o = fio + fi1
and hyy = fig — f11. The 8-variable function

fly.z,x) = (1+y)(+ 2)hoo(x) + (1 + y)zho1(x)
+y(1 + 2)h1o(x) + yzhy1(x),
forall (y,z,x) € Fo x Fp x Fos,

is bent.



Checking (affine) inequivalence

» Two Boolean functions F and G are equivalent if and only if
there exists A € GL(n,F») and b, u € FJ and e € [, such
that

G(x) = F(Ax 4+ b) + (u, x) + e.
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that
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» The second-derivative of F at a subspace V generated by
a,b e}, a+ bis defined as

DyF(x) = F(x) + F(x + a) + F(x + b) + F(x + a+ b).



Checking (affine) inequivalence

» Two Boolean functions F and G are equivalent if and only if
there exists A € GL(n,F») and b, u € FJ and e € [, such
that

G(x) = F(Ax 4+ b) + (u, x) + e.

» The second-derivative of F at a subspace V generated by
a,b e F], a+# bis defined as

DyF(x)=F(x)+ F(x+a)+ F(x+b)+ F(x+a+b).
» The frequency distribution of the weights of the

second-derivatives of F with respect to all the distinct
two-dimensional subspaces of Fys is

Weights 64 | 96 | 112 | 128 | 144 | 160 | 256

# of subspaces | 56 | 224 | 2240 | 5810 | 1344 | 1120 1




Classes of inequivalent PS,, bents on 8-variables

0| 64| 96| 112 | 128 | 144 | 160 | 192 # of
functions
0 0 | 940 | 2360 | 3885 | 2360 | 1220 | 30 8160
0| 751|605 | 1760 | 5640 | 1600 | 1055 | 60 4080
0 0 | 750 | 2800 | 3360 | 2800 | 1080 5 2040
0 0 | 590 | 2280 | 4635 | 2440 | 850 0 8160
0 0 | 510 | 2440 | 4635 | 2280 | 930 0 1360
35 | 240 | 640 0 | 8760 0| 640 | 480 510




MMF functions on 8 variables

» It is known that any F € MMF on n = 2k variables is
concatenation of affine functions on k variables. This
implies that there exists at least % many two
dimensional subspaces such that with respect of each of
them the second derivative of F is identically zero.
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» For k = 4 this number is 35.
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» It is known that any F € MMF on n = 2k variables is
concatenation of affine functions on k variables. This
implies that there exists at least % many two
dimensional subspaces such that with respect of each of
them the second derivative of F is identically zero.

» For k = 4 this number is 35.

» The second-derivative spectrum of the constructed bent
function does not contain the value 35.



MMF functions on 8 variables

v

It is known that any F € MMF on n = 2k variables is
concatenation of affine functions on k variables. This
implies that there exists at least % many two
dimensional subspaces such that with respect of each of
them the second derivative of F is identically zero.

For k = 4 this number is 35.

The second-derivative spectrum of the constructed bent
function does not contain the value 35.

Thus F cannot be equivalent to a function in MMF.



» Thus the bent function constructed above is neither
equivalent to PSz, nor to MMF.



» Thus the bent function constructed above is neither
equivalent to PSz, nor to MMF.

» S. Gangopadhyay, A. Joshi, G. Leander and R. K. Sharma,
A new construction of bent functions based on Z-bent
functions. In: the proceedings of The Seventh International
Workshop on Coding and Cryptography 2011. April 11-15,
2011, Paris, France, pp. 153-162.



Thank you
Questions Please!



