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A Quick History

• Pre-1800s – fires, drums, mirrors, pigeons

• 1800s – telephone and telegraph cables

• 1900s – wireless communication

• Future – multimedia over wireless

2



Outline

• Introduction

– Wireless connection

– Wireless networks

• Networks with Random Connections

– Outline, Model, Result

• Wireless Erasure Networks

– Outline, Model, Result

• Further directions
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The Wireless Connection

Shared medium, Broadcast, Interference, Randomness due to fading
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Advantages of the Wireless Connection

• Randomness leads to diversity

• Less investment in infrastructure

• Mobile systems can be connected temporarily

• Can operate very different systems on the same platform
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Wireless Networks

• Types and functions

– Ad hoc, sensor, cellular, Local Area (LAN), Wide Area

(WAN), hybrid

• Models

– Geometric models, fading models, combinations

• Performance measures

– Capacity, Throughput, Rate-Distortion, Delay, Robustness

• Constraints

– Decentralized operation, real-time operation

General multi-terminal network problem is very much open.
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Simplifications and Techniques

• Simplifications

– Simple models – wireline, interference-free

– Asymptotic regimes of parameters – low power, large

networks

– Scaling laws rather than exact analysis

• Techniques

– Routing, treat information like “flow”

– Co-operation, relaying

– Combine and code different data streams – network coding

– Game theoretic, random graphs
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In this talk : Two network problems

• Network with Random Connections

– Ad hoc network with fading connections

– Throughput scaling laws

– Relaying information

– Random graphs

• Wireless Erasure Network

– Erasure links

– Capacity region

– Network coding
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Outline

• Introduction

– Wireless connection

– Wireless networks

• Networks with Random Connections

– Outline, Model, Result

• Wireless Erasure Networks

– Outline, Model, Result

• Further directions
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Achievable Throughputs for Random Networks

1. R. Gowaikar, B. Hochwald, B. Hassibi, “Communication over a Wireless

Network with Random Connections,” IEEE Transactions on Information

Theory, July 2006.

2. R. Gowaikar, B. Hochwald, B. Hassibi, “An Achievability Result for Random

Networks,” Proc. IEEE ISIT 2005.

3. R. Gowaikar, B. Hassibi, “Achievable Throughput in Two-Scale Wireless

Networks,” IEEE Journal on Selected Areas in Communications, September

2009.

4. R. Gowaikar, B. Hassibi, “On the Achievable Throughput in Two-Scale

Wireless Networks,” Proc. IEEE ISIT 2006.
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Outline for this section

• Problem Statement

– Successful Communication, Multihop Protocol

• Existing Models and Results

– Kumar-Gupta Model – Scaling Law of O(
√

n)

• New network model – Random connections

– Random Model – Scaling Law of upto O(n/ logc n)

• Operation and analysis

– Scheduling, Ensuring Error-Free Communication

• Main result

• Examples and Simulations

• More general models

• Remarks and Summary
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Problem Statement

s1

d1

d2

d4

s3

s2

d3

s4

• n nodes, channel hi,j between nodes i and j, k

source-destination pairs

• Nodes can relay messages

• Communication using (multiple) hops
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Successful Communication

h1,5

h2,5

h3,5

h4,5

2

3

4

5

1

A node can decode only if the signal-to-interference-plus-noise-ratio

(SINR) exceeds some threshold ρ0. Node 5 can decode only if

P |h1,5|2
σ2 + P (|h2,5|2| + |h3,5|2 + |h4,5|2)

=
Pγ1,5

σ2 + P (γ2,5 + γ3,5 + γ4,5)
≥ ρ0.
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Scheduling Multiple Hops

d1r1,h−1

s2 r2,1 r2,2 r2,h−1

r1,1 r1,2s1

rk,2rk,1sk rk,h−1 dk

d2

• Relay nodes decode and retransmit message

• Nodes cannot transmit and receive simultaneously

– Therefore non-colliding schedule required

• h hops are used for each communication
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Error Free Decoding

d1r1,h−1

s2 r2,1 r2,2 r2,h−1

r1,1 r1,2

d2

rk,2rk,1sk rk,h−1 dk

s1

• SINR condition must be fulfilled at every relay node.

• Want to maximize throughput

T = (1 − ǫ)
Number of source-destination pairs

Number of hops
log(1 + ρ0)

T = (1 − ǫ)
k

h
log(1 + ρ0).
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Existing Results – Distance Based Model

s1

d1

d2

d4

s3

s2

d3

s4

Kumar and Gupta (2000) used a decay law.

γi,j ∝ 1

(distancei,j)m
, m > 2 gave Throughput ∝

√
n.

• Simultaneous transmission can take place between O(n) nodes

and their nearest neighbors

• Two arbitrary nodes are O(
√

n) hops apart
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Other Results

Discouraging since per-user throughput goes down as 1√
n

• Several other results reinforce this e.g. Léveque and Telatar,

Dousse and Thiran, Franceschetti et al.

• Grossglauser and Tse get a constant per-user throughput, but

with mobile nodes

• Randomness provides a ray of hope

• Recent work by Miorandi and Altman, Balister et al.,

Franceschetti et al, Hekmat and van Mieghem shows that

randomness introduces properties that are missing in a purely

geometric model

Therefore we propose an entirely random model.

17



New Model – Random Links

• Strength of connection does not depend on distance

• All connection strengths are identically and independently

distributed according to fn(γ)

s1

d1

d2

d4

s3

s2

d3

s4

• Model is justified over small area with many obstructions

• Line-of-sight is absent, multipath dominates

18



Concept of “Good” Edges

• Introduce a parameter βn. Let P(γ ≥ βn) = Qn(βn) = pn.

• Edges with γ ≥ βn are “good.”

• Obtain G(n, p) by keeping only these and eliminating the rest.

– G(n, p) is a well-studied random graph model.

– e.g. diameter is known to be log n
log np .

s1

d1

d2

d4

s3

s2

d3

s4

Now find schedule of non-colliding paths in this graph.
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Scheduling

Theorem 1 (Broder et al. 1996) Suppose that G = G(n, p) and

p ≥ log n+ωn

n , where ωn → ∞. Then, provided k is not greater than

αn log np
log n , there are vertex-disjoint paths connecting si to di for any

set of k randomly chosen source-destination pairs.

• This is guaranteed with probability going to 1 for a positive

constant α.

• We can thus establish upto k = αn log np
log n non-colliding (in

fact, vertex-disjoint) paths. Theorem is tight upto constant.

• Can show that every message makes around h = log n
α log np hops.

• Now need to ensure that the probability of error can be made

to go to zero.
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Probability of Error

P(Message i fails) = P(
h
⋃

j=1

SINR at hop j ≤ ρ0)

≤ # hops × P(SINR at hop 1 ≤ ρ0)

ǫn = P(Message i fails) ≤ log n

α log np

σ2
γ/(k − 1)

(Pβn−ρ0σ2

(k−1)Pρ0
− µγ)2

.

Can use Chebyshev bound if ρ0 ≤ Pβn

σ2 + P (k − 1)µγ
.

Put Scheduling and Probability of Error results together to get

Main Result.
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Main Result

Theorem 2 Let Qn(x) = P(γ ≥ x). Choose any βn such that

Qn(βn) = log n+ωn

n , where ωn → ∞. Let µγ = Eγ, σ2
γ = E(γ−µγ)2.

Then there exists a positive constant α such that a throughput of

T = (1−ǫn) kn(βn)α
log(nQn(βn))

log n
log

(

1 +
anβn

σ2

P + (kn(βn) − 1)µγ

)

is achievable for any positive an such that an ≤ 1 and any kn(βn)

that satisfy the conditions:

1.

kn(βn) ≤ αn
log(nQn(βn))

log n

2.

ǫn ≤ a2
n

α(1 − an)2
(kn(βn) − 1)σ2

γ

(σ2

P + (kn(βn) − 1)µγ)2
log n

log(nQn(βn))
→ 0
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Heavy Dependence on fn(γ)

Distribution fn(γ) Throughput

Shadow (1 − pn)δ(γ) + pnδ(γ − 1) 1
wn

log2(log n)
log3 n

n

Exponential e−γ log n

Decay 4π∆
nm

1

γ1+ 2
m

, m > 2 1
wn

log2(log n)
(log n)2+m/2 n

Heavy Tail c
1+γ4

log log n
log4/3 n

n1/3
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Shadow Fading Distribution

• fn(γ) = (1 − pn)δ(γ) + pnδ(γ − 1). Natural choice of βn = 1.

• Gives T in terms of pn. For fixed n, can find optimum

pn = log n+ωn

n .
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1, 000 nodes. Simulations p∗ ≈ 0.008. Theory log(1000)
1000 ≈ 0.0069.
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Shadow Fading Distribution – Scaling Law

• For pn = log n+ωn

n , h = log n
log(log n+ωn) , T = 1

wn

log2(log n)
log3 n

n
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p = 2 log n
n , 100 − 1200 nodes.
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Density obtained from Decay Law

Consider a single node transmitting in a network with a

distance-based decay law, say 1
(distance)m . The marginal distribution

of received powers can be shown to be

fn(γ) =
4π∆

nm

1

γ1+ 2
m

, γ ∈
[

(

2π∆

n + 2π∆d2

)m/2

,
1

dm

]

, m > 0.

Achievable throughputs scale like

T =















log(log n+ωn)
log n(log n+ωn)m/2 nm/2 m < 2

log(log n+ωn)
log2 n(log n+ωn)

n m = 2

1
wn

log2(log n+ωn)
log2 n(log n+ωn)m/2 n m > 2.

Significantly better than O(
√

n) predicted by Kumar-Gupta (2000)

for m > 2.
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Density obtained from Decay Law

• fn(γ) = 4π∆
nm

1

γ1+ 2
m

. Optimum choice of βn is 2π∆
(log n+ωn)m/2

• pn = log n+ωn

n , h = log n
log(log n+ωn) , T = 1

wn

log2(log n+ωn)
log2 n(log n+ωn)3/2 n

200 400 600 800 1000 1200
2

4

6

8

10

12

Number of nodes (n)

A
gg

re
ga

te
 th

ro
ug

hp
ut

 (
bi

ts
/c

ha
nn

el
 u

se
)

m = 3, d = 1, ∆ = 1. Throughput increases almost linearly.
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More general models

The random model does not incorporate distance effects.

• Globally: channel strength decays with distance

• Locally: channel strengths are drawn i.i.d. from a distribution

px(γ) =







f(γ) if x ≤ r
µγrm

xm exp(−γ xm

µγrm ) if x > r
.
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Throughput for the Two-Scale Model

s1

d1

s2

d2

s3

d3

Example:

Decay law: 1
distm Distribution: 1

(1+γ)t , t > 2

Throughput: 1
log2 n

n
1

t−1
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Multiscale and mixture models

• Three-scale model – can use ideas similar to the two-scale

model

px(γ) =















f(γ) if x ≤ r1

r2−x
r2−r1

f(γ) + x−r1

r2−r1

µγrm
2

xm exp(−γ xm

µγrm
2

) if r1 < x ≤ r2

µγrm
2

xm exp(−γ xm

µγrm
2

) if x > r2

.

• Mixture model – need to develop new approach

px(γ) =
R − x

R
f(γ) +

x

R

1

xm
exp(−γxm)
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Remarks and future work

• Developed decentralized implementation schemes

• Upperbounds on the achievable throughput using multihop

protocol

– Information-theoretic upperbounds?

• How do adhoc networks compare with other (e.g. cellular)

networks?

– Spectral efficiency, power efficiency, operation

Summary

Incorporating randomness gives significantly more encouraging

scaling laws than distance-based model.
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Outline

• Introduction

– Wireless connection

– Wireless networks

• Networks with Random Connections

– Outline, Model, Result

• Wireless Erasure Networks

– Outline, Model, Result

• Further directions
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Capacity of Wireless Erasure Networks

1. A. F. Dana, R. Gowaikar, R. Palanki, B. Hassibi, M. Effros, “Capacity of

wireless erasure networks,” IEEE Transactions on Information Theory,

March 2006.

2. R. Gowaikar, A. F. Dana, R. Palanki, B. Hassibi, M. Effros, “On the capacity

of wireless erasure relay networks,” Proc. IEEE ISIT 2004.

3. A. F. Dana, R. Gowaikar, B. Hassibi, M. Effros, M. Médard, “Should we break

a wireless network into sub-networks?” Proc. 41st Annual Allerton Conf. on

Communication, Control, and Computing, 2003.
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Outline for this section

• The Multicast Problem and known results

• New network model and operation

• Cuts and Cut Capacities

• Main Result – Capacity Result for Erasure Wireless Networks

• Sketch of the proof

– Achievability and Converse

• Remarks and practical implementation

• Future work and Summary
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The Multicast Problem

• Multiple sources with information

• Multiple destinations requesting subsets of information

• Each link is a channel

• Can all requests be satisfied? What is the capacity region?

• What strategies get you to capacity? What delays are

expected?
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Review of Existing Results

• General multi-terminal networks are unsolved though min-cut

outer bounds are well known.

• For a wireline network, having a single sender and a single

receiver, a max-flow min-cut capacity result exists.

• In addition, we now know how to achieve these min-cut bounds

in some special cases of the multicast problem. (Ahlswede, Cai,

Li, Yeung ’00; Koetter, Médard ’03)
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Missing features

The wireline model does not incorporate broadcast at transmitting

nodes and interference at nodes with multiple access – both of

these are part of many practical systems.

Need to come up with a model that incorporates these features but

is still tractable.
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A simple yet realistic model

• Assume that all the links are erasure channels

– Valid in systems with ARQ-like mechanisms

• Broadcast – same message on all outgoing links

• Interference – erasures patterns may be correlated

– Errors on one link cause errors on another
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Examples – Some simple networks

1.
ǫ1

ǫ2

C = 1 − ǫ1 + 1 − ǫ2

C = 1 − ǫ1ǫ2
s d

2.

C = min{1 − ǫ1,2 + 1 − ǫ1,3, 1 − ǫ2,3 + 1 − ǫ1,3}

C = ?

ǫ1,2

v2

ǫ1,2

v2

ǫ2,3 ǫ2,3

ǫ1,3 ǫ1,3
s d s d
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Model for Erasure Wireless Network

• G = (V, E) directed, acyclic graph

• Edges are memoryless, erasure channels with instantaneous

transmission

• Broadcast at transmission

s d

v3

Y2 = (Y1,2, Y4,2)

v2
Y1,2

Y4,2

v4
ǫ4,5

X5

v5

source s = v1, destination d = v|V |
transmitted signals Xi, received signals Yi
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Capacity of the network : Preliminaries

• Communication in blocks of n packets

• Node vi uses encoding function fi on what it receives to

determine what it transmits

• Capacity – maximum rate for which average probability of

error goes to zero
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s − d cut and Cutset

• An s − d cut : a partition of V into subsets Vs ∋ s and Vd ∋ d

• Cutset E(Vs) : the set of edges going across the cut

E(Vs) = {(vi, vj)|(vi, vj) ∈ E, vi ∈ Vs, vj ∈ Vd}

s d

v3v2

v4 v5

ǫ4,3

ǫ4,5

ǫ2,3

s − d cut given by Vs = {s, v2, v4}
E(Vs) = {(v2, v3), (v4, v3), (v4, v5)}
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Cut Capacity

Cut capacity W (Vs) : the ‘value’ of a cut

W (Vs) =
∑

i:(vi,vj)∈E(Vs)



1 −
∏

j:(vi,vj)∈E(Vs)

ǫi,j





s d

v3v2

v4 v5

ǫ4,3

ǫ4,5

ǫ2,3

W (Vs) = 1 − ǫ2,3 + 1 − ǫ4,3ǫ4,5
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Main Result

Assume that the decoders know erasure locations from across the

network

Theorem 3 The capacity of the erasure wireless network with a

single source and a single destination is given by the value of the

cut with the minimum value.

C = min
Vs

W (Vs)

Theorem 4 The capacity of the erasure wireless network with a

single source and multiple destinations (say d1, d2, · · · dr) is the

smallest of the capacities to the individual destinations.

C = min
di

min
Vs,i: an s−di cut

W (Vs,i)
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Back to the original examples

1.
ǫ1

ǫ2

C = 1 − ǫ1 + 1 − ǫ2

C = 1 − ǫ1ǫ2
s d

2.
v2

ǫ1,3

ǫ1,2
ǫ2,3

v2

ǫ1,3

ǫ1,2
ǫ2,3

C = min{1 − ǫ1,2 + 1 − ǫ1,3, 1 − ǫ2,3 + 1 − ǫ1,3}

C = min{1 − ǫ1,2ǫ1,3, 1 − ǫ2,3 + 1 − ǫ1,3}

s ds d
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Sketch of Proof

• Encoding functions fi are chosen randomly and are known to

destinations

• Destinations know erasure locations, can simulate the network

for every codeword

• The message for which simulated output matches what the

destination actually observed is the decoder output

s d

v3

X2 = f2(Y1,2, Y4,2)

v2

v4

X5 = f5(Y4,5)

v5

The network appears deterministic to the destinations.
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Achievability and Converse

Invoke ideas of typical sets, randomness of encoding functions etc.

s d

v3v2

v4 v5

ǫ4,3

ǫ4,5

ǫ2,3

Probability of error across this cut = 2n(R−(1−ǫ2,3+1−ǫ4,3ǫ4,5))

Therefore define cut capacity as W (Vs) = 1 − ǫ2,3 + 1 − ǫ4,3ǫ4,5

Now, if R < W (Vs), the probability of error goes to zero.

Converse : Similar to standard outer-bound results

Tools used : Fano’s Inequality, Data Processing Inequality
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Some Remarks

• Some more multicast results go through.

– Multiple sources, multiple destinations, all destinations

want all sources

– Single source with multiple processes, multiple destinations

needing disjoint subsets of processes from source

• Note that we do not have to perform channel and network

coding separately to reach capacity. In fact, making each link

or sub-network error-free is demonstrably sub-optimal.

• Perhaps the correct approach is to ask “What sort of

side-information should the destinations have?”
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Linear encoding and practical implementation

• Choosing all encoding functions to be linear also takes us to

capacity

• Now the decoder only has to solve a linear systems of equations

• This takes only polynomial time (for a full-rank system)

• Practical implementations involving rateless codes have been

proposed (Lun et al.)
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Future work

• General multicast problems e.g. k-pairs problem

• Multiple, possibly correlated information sources

• Capacity when the decoder does not know erasure locations

• Networks with other channels – DMCs, AWGN etc.

Summary

Obtained capacity for a class of wireless erasure networks for

several multicast settings
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Other contributions

• Practical operating schemes for erasure and Gaussian networks

– Nodes are permitted to only forward or decode

– Proposed a (decentralized) greedy algorithm that

determines the optimal operation for each node
R. Gowaikar, A. F. Dana, B. Hassibi, M. Effros, “Practical Schemes for Wireless

Network Operation,” IEEE Trans. Comm., March 2007

• Decoding in multiple antenna systems

– Proposed the Increasing Radii Algorithm that allows a

trade-off between computational complexity of decoding and

error performance

– Speeds up the decoder by a factor of 50 in some cases, with

negligible loss of performance

R. Gowaikar, B. Hassibi, “Statistical Pruning for near-maximum likelihood

decoding,” IEEE Trans. Sig. Pro., June 2007.
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Future Directions

• Real-time communications esp. for control applications

– Noisy measurements have to be transmitted over noisy

channels

– Highly accurate information has to be received in a very

short amount of time

• Computations in a network

– Nodes have partial information about some underlying

process

– Computing and communicating functions of noisy and

distributed data

• World without wires

– Local and global repercussions
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