# Construction of Full State from Half State of HC-128 

## Goutam Paul

Department of Computer Science \& Engineering Jadavpur University, Kolkata, India<br>http://www.jadavpur.edu/admin1/Faculty/GKP.htm

## March 10, 2010

Seminar at
Coding \& Cryptography Research Group (CCRG)
Division of Mathematical Sciences
School of Physical \& Mathematical Sciences Nanyang Technological University (NTU), Singapore

# Joint Work with 

Subhamoy Maitra and Shashwat Raizada
Indian Statistical Institute, Kolkata, India
(9) Introduction

- Background
- Description of HC-128
- Contribution
(2) Reconstructing One Array from Another
- First Phase: Complete $P_{N}$ from $P$
- Second Phase: Part of $Q$ from $P_{N}$
- Third Phase: Tail of $Q$ from its Parts
- Fourth Phase: Complete $Q_{N}$ from Tail of $Q$
- Fifth Phase (Verification) and Total Complexity
(3) Proposal for Design Modification
(9) Introduction
- Background
- Description of HC-128
- Contribution
(2) Reconstructing One Array from Another
- First Phase: Complete $P_{N}$ from $P$
- Second Phase: Part of $Q$ from $P_{N}$
- Third Phase: Tail of $Q$ from its Parts
- Fourth Phase: Complete $Q_{N}$ from Tail of $Q$
- Fifth Phase (Verification) and Total Complexity
(3) Proposal for Design Modification


## Basics of Stream Cipher

- Symmetric Key Cryptosystem, both sender and the receiver has the same key.
- Encryption: $C_{i}=M_{i} \oplus K_{i}$, Decryption: $M_{i}=C_{i} \oplus K_{i}$.
- The best possible scenario: the sender and receiver have a long common stream of bits that they have generated sitting in the same table and tossing an unbiased coin.
- Pros: never used repeatedly (One Time Pad).
- Cons: practically not possible.
- Solution: a Pseudorandom generator based on a seed (secret key).


## Basics of Stream Cipher

- Symmetric Key Cryptosystem, both sender and the receiver has the same key.
- Encryption: $C_{i}=M_{i} \oplus K_{i}$, Decryption: $M_{i}=C_{i} \oplus K_{i}$.

The best possible scenario: the sender and receiver have a long common stream of bits that they have generated sitting in the same table and tossing an unbiased coin.

- Pros: never used repeatedly (One Time Pad).
- Cons: practically not possible.
- Solution: a Pseudorandom generator based on a seed (secret key).


## Basics of Stream Cipher

- Symmetric Key Cryptosystem, both sender and the receiver has the same key.
- Encryption: $C_{i}=M_{i} \oplus K_{i}$, Decryption: $M_{i}=C_{i} \oplus K_{i}$.
- The best possible scenario: the sender and receiver have a long common stream of bits that they have generated sitting in the same table and tossing an unbiased coin.
- Solution: a Pseudorandom generator based on a seed (secret key).


## Basics of Stream Cipher

- Symmetric Key Cryptosystem, both sender and the receiver has the same key.
- Encryption: $C_{i}=M_{i} \oplus K_{i}$, Decryption: $M_{i}=C_{i} \oplus K_{i}$.
- The best possible scenario: the sender and receiver have a long common stream of bits that they have generated sitting in the same table and tossing an unbiased coin.
- Pros: never used repeatedly (One Time Pad).
- Cons: practically not possible.
- Solution: a Pseudorandom generator based on a seed (secret key).


## Basics of Stream Cipher

- Symmetric Key Cryptosystem, both sender and the receiver has the same key.
- Encryption: $C_{i}=M_{i} \oplus K_{i}$, Decryption: $M_{i}=C_{i} \oplus K_{i}$.
- The best possible scenario: the sender and receiver have a long common stream of bits that they have generated sitting in the same table and tossing an unbiased coin.
- Pros: never used repeatedly (One Time Pad).
- Cons: practically not possible.
- Solution: a Pseudorandom generator based on a seed (secret key).


## Basics of Stream Cipher

- Symmetric Key Cryptosystem, both sender and the receiver has the same key.
- Encryption: $C_{i}=M_{i} \oplus K_{i}$, Decryption: $M_{i}=C_{i} \oplus K_{i}$.
- The best possible scenario: the sender and receiver have a long common stream of bits that they have generated sitting in the same table and tossing an unbiased coin.
- Pros: never used repeatedly (One Time Pad).
- Cons: practically not possible.
- Solution: a Pseudorandom generator based on a seed (secret key).


## The eSTREAM Project

- A project of ECRYPT, a Network of Excellence within the Information Societies Technology (IST) Programme of the European Commission.
- An effort to get some secure stream ciphers satisfying the current requirements.
- This multi-year effort running from 2004 to 2008 has identified a portfolio of promising new stream ciphers.


## The eSTREAM Project

- A project of ECRYPT, a Network of Excellence within the Information Societies Technology (IST) Programme of the European Commission.
- An effort to get some secure stream ciphers satisfying the current requirements.
- This multi-year effort running from 2004 to 2008 has identified a portfolio of promising new stream ciphers.


## The eSTREAM Project

- A project of ECRYPT, a Network of Excellence within the Information Societies Technology (IST) Programme of the European Commission.
- An effort to get some secure stream ciphers satisfying the current requirements.
- This multi-year effort running from 2004 to 2008 has identified a portfolio of promising new stream ciphers.
- http://www.ecrypt.eu.org/stream


## The eSTREAM Project

- A project of ECRYPT, a Network of Excellence within the Information Societies Technology (IST) Programme of the European Commission.
- An effort to get some secure stream ciphers satisfying the current requirements.
- This multi-year effort running from 2004 to 2008 has identified a portfolio of promising new stream ciphers.
- http://www.ecrypt.eu.org/stream


## The eSTREAM Portfolio (Revision 1, September 2008)

| Profile 1 (SW) | Profile 2 (HW) |
| :---: | :---: |
| HC-128 | Grain v1 |
| Rabbit | MICKEY v2 |
| Salsa20/12 | Trivium |
| SOSEMANUK |  |

(9) Introduction

- Background
- Description of HC-128
- Contribution
(2) Reconstructing One Array from Another
- First Phase: Complete $P_{N}$ from $P$
- Second Phase: Part of $Q$ from $P_{N}$
- Third Phase: Tail of $Q$ from its Parts
- Fourth Phase: Complete $Q_{N}$ from Tail of $Q$
- Fifth Phase (Verification) and Total Complexity
(3) Proposal for Design Modification


## HC-128

- Designed by Hongjun Wu.
- A scaled down version of HC-256 that has been presented in FSE 2004.
- A synchronous software stream cipher with 32-bit word output in each step.
- Intellectual Property: free for any use.
- Available at

```
http://www.ecrypt.eu.org/stream/hcp3.html.
```

- 128-bit secret key.


## Notations

- $+: x+y$ means $x+y \bmod 2^{32}$, where $0 \leq x<2^{32}$ and $0 \leq y<2^{32}$.
- $\boxminus: x \boxminus y$ means $x-y$ mod 512 .
- $\oplus$ : bit-wise exclusive OR.
- || : concatenation.
- > : right shift operator. $x \gg n$ means $x$ being right shifted $n$ bits.
- $<$ : left shift operator. $x \ll n$ means $x$ being left shifted $n$ bits.
- $\gg$ : right rotation operator. $x>n$ means $\left((x \gg n) \oplus(x \ll(32-n))\right.$, where $0 \leq n<32,0 \leq x<2^{32}$.
- $\ll$ : left rotation operator. $x \lll n$ means $\left((x \ll n) \oplus(x \gg(32-n))\right.$, where $0 \leq n<32,0 \leq x<2^{32}$.


## Data Structures

- Two tables $P$ and $Q$, each with 512 many 32-bit elements are used as internal states of HC-128.
- A 128-bit key array $K[0, \ldots, 3]$ and a 128-bit initialization vector $I V[0, \ldots, 3]$ are used, where each entry of the array is a 32-bit element.
$s_{t}$ denotes the keystream word generated at the $t$-th step, $t=0,1,2$,


## Data Structures

- Two tables $P$ and $Q$, each with 512 many 32-bit elements are used as internal states of HC-128.
- A 128-bit key array $K[0, \ldots, 3]$ and a 128-bit initialization vector $I V[0, \ldots, 3]$ are used, where each entry of the array is a 32-bit element.
- $s_{t}$ denotes the keystream word generated at the $t$-th step,



## Data Structures

- Two tables $P$ and $Q$, each with 512 many 32-bit elements are used as internal states of HC-128.
- A 128-bit key array $K[0, \ldots, 3]$ and a 128-bit initialization vector IV $[0, \ldots, 3]$ are used, where each entry of the array is a 32-bit element.
- $s_{t}$ denotes the keystream word generated at the $t$-th step, $t=0,1,2, \ldots$.


## Background

Description of HC-128
Contribution

## Functions

- $f_{1}(x)=(x \ggg 7) \oplus(x \gg 18) \oplus(x \gg 3)$.
- $f_{2}(x)=(x \gg 17) \oplus(x \gg 19) \oplus(x \gg 10)$.
- $g_{1}(x, y, z)=((x \gg 10) \oplus(z \gg 23))+(y \gg 8)$.
- $g_{2}(x, y, z)=((x \lll 10) \oplus(z \lll 23))+(y \lll 8)$.
- $h_{1}(x)=Q\left[x^{(0)}\right]+Q\left[256+x^{(2)}\right]$.
- $h_{2}(x)=P\left[x^{(0)}\right]+P\left[256+x^{(2)}\right]$

Here $x=x^{(3)}\left\|x^{(2)}\right\| x^{(1)} \| x^{(0)}, x$ is a 32-bit word and $x^{(0)}$ (least significant byte), $x^{(1)}, x^{(2)}$ and $x^{(3)}$
(most significant byte) are four bytes.

## Background

Description of HC-128
Contribution

## Functions

- $f_{1}(x)=(x \ggg 7) \oplus(x \gg 18) \oplus(x \gg 3)$.
- $f_{2}(x)=(x \gg 17) \oplus(x \gg 19) \oplus(x \gg 10)$.
- $g_{1}(x, y, z)=((x \gg 10) \oplus(z \ggg 23))+(y \gg 8)$.
- $g_{2}(x, y, z)=((x \lll 10) \oplus(z \lll 23))+(y \lll 8)$.
- $h_{1}(x)=Q\left[x^{(0)}\right]+Q\left[256+x^{(2)}\right]$
- $h_{2}(x)=P\left[x^{(0)}\right]+P\left[256+x^{(2)}\right]$

Here $x=x^{(3)}\left\|x^{(2)}\right\| x^{(1)} \| x^{(0)}, x$ is a 32-bit word and
$x^{(0)}$ (least significant byte), $x^{(1)}, x^{(2)}$ and $x^{(3)}$
(most significant byte) are four bytes.

## Functions

- $f_{1}(x)=(x \ggg 7) \oplus(x \gg 18) \oplus(x \gg 3)$.
- $f_{2}(x)=(x \gg 17) \oplus(x \gg 19) \oplus(x \gg 10)$.
- $g_{1}(x, y, z)=((x \ggg 10) \oplus(z \ggg 23))+(y \ggg 8)$.
- $g_{2}(x, y, z)=((x \lll 10) \oplus(z \lll 23))+(y \lll 8)$.
- $h_{1}(x)=Q\left[x^{(0)}\right]+Q\left[256+x^{(2)}\right]$.
- $h_{2}(x)=P\left[x^{(0)}\right]+P\left[256+x^{(2)}\right]$

Here $x=x^{(3)}\left\|x^{(2)}\right\| x^{(1)} \| x^{(0)}, x$ is a 32-bit word and
$x^{(0)}$ (least significant byte), $x^{(1)}, x^{(2)}$ and $x^{(3)}$
(most significant byte) are four bytes.

## Functions

- $f_{1}(x)=(x \ggg 7) \oplus(x \gg 18) \oplus(x \gg 3)$.
- $f_{2}(x)=(x \gg 17) \oplus(x \gg 19) \oplus(x \gg 10)$.
- $g_{1}(x, y, z)=((x \gg 10) \oplus(z \ggg 23))+(y \ggg 8)$.
- $g_{2}(x, y, z)=((x \lll 10) \oplus(z \lll 23))+(y \lll 8)$.
- $h_{1}(x)=Q\left[x^{(0)}\right]+Q\left[256+x^{(2)}\right]$.
- $h_{2}(x)=P\left[x^{(0)}\right]+P\left[256+x^{(2)}\right]$

Here $x=x^{(3)}\left\|x^{(2)}\right\| x^{(1)} \| x^{(0)}, x$ is a 32-bit word and $x^{(0)}$ (least significant byte), $x^{(1)}, x^{(2)}$ and $x^{(3)}$ (most significant byte) are four bytes.

## Key and IV Setup

Let $K[0, \ldots, 3]$ be the secret key and $I V[0, \ldots, 3]$ be the initialization vector. Let $K[i+4]=K[i]$ and $I V[i+4]=I V[i]$ for $0 \leq i \leq 3$. The key and IV are expanded into an array $W[0, \ldots, 1279]$ as follows.


## Key and IV Setup

Let $K[0, \ldots, 3]$ be the secret key and $I V[0, \ldots, 3]$ be the initialization vector. Let $K[i+4]=K[i]$ and $I V[i+4]=I V[i]$ for $0 \leq i \leq 3$.
The key and IV are expanded into an array $W[0, \ldots, 1279]$ as follows.

$$
W[i]= \begin{cases}K[i] & 0 \leq i \leq 7 \\ M[i-8] & 8 \leq i \leq 15 \\ f_{2}(W[i-2])+W[i-7]+ & \\ f_{1}(W[i-15])+W[i-16]+i & \\ & 16 \leq i \leq 1279 .\end{cases}
$$

## Key and IV setup (Contd.)

Update the tables $P$ and $Q$ with the array $W$ as follows.

$$
\begin{aligned}
& P[i]=W[i+256], \text { for } 0 \leq i \leq 511 \\
& Q[i]=W[i+768], \text { for } 0 \leq i \leq 511
\end{aligned}
$$

Run the cipher 1024 steps and use the outputs to replace the table elements as follows.

For $i=0$ to 511, do
$P[i]=\left(P[i]+g_{1}(P[i \boxminus 3], P[i \boxminus 10], P[i \boxminus 511])\right) \oplus h_{1}(P[i \boxminus 12]) ;$
For $i=0$ to 511, do
$Q[i]=\left(Q[i]+g_{2}(Q[i \boxminus 3], Q[i \boxminus 10], Q[i \boxminus 511])\right) \oplus h_{2}(Q[i \boxminus 12]) ;$

## Key and IV setup (Contd.)

Update the tables $P$ and $Q$ with the array $W$ as follows.

$$
\begin{aligned}
& P[i]=W[i+256], \text { for } 0 \leq i \leq 511 \\
& Q[i]=W[i+768], \text { for } 0 \leq i \leq 511
\end{aligned}
$$

Run the cipher 1024 steps and use the outputs to replace the table elements as follows.

For $i=0$ to 511, do
$P[i]=\left(P[i]+g_{1}(P[i \boxminus 3], P[i \boxminus 10], P[i \boxminus 511])\right) \oplus h_{1}(P[i \boxminus 12])$;
For $i=0$ to 511, do
$Q[i]=\left(Q[i]+g_{2}(Q[i \boxminus 3], Q[i \boxminus 10], Q[i \boxminus 511])\right) \oplus h_{2}(Q[i \boxminus 12]) ;$

## The Keystream Generation Algorithm

```
i=0;
repeat until enough keystream bits are generated {
    j=i mod 512;
    if (i mod 1024) < 512{
                P[j] = P[j] + g ( (P[j\boxminus3],P[j\boxminus10],P[j\boxminus511]);
        si}=\mp@subsup{h}{1}{}(P[j\boxminus12])\oplusP[j]
    }
    else {
        Q[j] = Q[j] + g2 (Q[j\boxminus3], Q[j\boxminus10], Q[j\boxminus 511]);
        si}=\mp@subsup{h}{2}{}(Q[j\boxminus12])\oplusQ[j]
    }
    end-if
    i=i+1;
} end-repeat
```

(1) Introduction

- Background
- Description of HC-128
- Contribution
(2) Reconstructing One Array from Another
- First Phase: Complete $P_{N}$ from $P$
- Second Phase: Part of $Q$ from $P_{N}$
- Third Phase: Tail of $Q$ from its Parts
- Fourth Phase: Complete $Q_{N}$ from Tail of $Q$
- Fifth Phase (Verification) and Total Complexity
(3) Proposal for Design Modification


## Existing Results

(1) Wu, the designer of $\mathrm{HC}-128$ himself, presented a distinguisher that requires $2^{156}$ keystream words.
(2) Dunkelman in the eStream discussion forum: http: / /www. ecrypt. eu. org/stream/phorum/rea
1,1143 (dated November 14, 2007):
$\operatorname{Prob}\left(s_{j} \oplus s_{j+1}=P[j] \oplus P[j+1]\right) \approx 2^{-16}$.
Some Observations on HC-128,
Subhamoy Maitra, Goutam Paul and Shashwat Raizada,
Proc. WCC 2009, pages 527-539 (extended version to
appear in Designs, Codes and Cryptography Journal).

## Existing Results

(1) Wu, the designer of HC-128 himself, presented a distinguisher that requires $2^{156}$ keystream words.
(2) Dunkelman in the eStream discussion forum:
http://www.ecrypt.eu.org/stream/phorum/read.php? 1, 1143 (dated November 14, 2007):
$\operatorname{Prob}\left(s_{j} \oplus s_{j+1}=P[j] \oplus P[j+1]\right) \approx 2^{-16}$.
Some Observations on HC-128,
Subhamoy Maitra, Goutam Paul and Shashwat Raizada,
Proc. WCC 2009, pages 527-539 (extended version to
appear in Designs, Codes and Cryptography Journal).

## Existing Results

(1) Wu, the designer of HC-128 himself, presented a distinguisher that requires $2^{156}$ keystream words.
(2) Dunkelman in the eStream discussion forum:
http://www.ecrypt.eu.org/stream/phorum/read.php? 1, 1143 (dated November 14, 2007):
$\operatorname{Prob}\left(s_{j} \oplus s_{j+1}=P[j] \oplus P[j+1]\right) \approx 2^{-16}$.
(3) Some Observations on HC-128, Subhamoy Maitra, Goutam Paul and Shashwat Raizada, Proc. WCC 2009, pages 527-539 (extended version to appear in Designs, Codes and Cryptography Journal).

## Motivation for the Present Analysis

- Many attacks in the stream cipher domain assume knowledge of partial state information.
- State recovery attacks, on the other hand, assume knowledge of certain keystream bits and reconstruct the full internal state.
- Neither any partial state exposure attack nor any state recovery attack on HC-128 have been reported so far.


## Motivation for the Present Analysis

- Many attacks in the stream cipher domain assume knowledge of partial state information.
- State recovery attacks, on the other hand, assume knowledge of certain keystream bits and reconstruct the full internal state.
- Neither any partial state exposure attack nor any state recovery attack on HC-128 have been reported so far.


## Motivation for the Present Analysis

- Many attacks in the stream cipher domain assume knowledge of partial state information.
- State recovery attacks, on the other hand, assume knowledge of certain keystream bits and reconstruct the full internal state.
- Neither any partial state exposure attack nor any state recovery attack on HC-128 have been reported so far.


## Main Idea

- Keystream is generated in blocks of 512 words
- Consider four consecutive blocks $B_{1}, B_{2}, B_{3}, B_{4}$.

| Block $B_{1}:$ | Block $B_{2}:$ | Block $B_{3}:$ |
| :--- | :--- | :--- |
| $P$ unchanged, | $P$ updated to $P_{N}$, | $P_{N}$ unchanged, |
| $Q$ updated. | $Q$ unchanged. | $Q$ updated to $Q_{N}$. |
| ( $Q$ denotes the <br> updated array) |  |  |

used for verifying if our reconstruction is correct or not.

- Our algorithm, given the half state $P$, constructs the full
state $\left(P_{N}, Q_{N}\right)$
(Note that we would use notation $s_{b, i}$ to denote the $i$-th


## Main Idea

- Keystream is generated in blocks of 512 words
- Consider four consecutive blocks $B_{1}, B_{2}, B_{3}, B_{4}$.

| Block $B_{1}:$ | Block $B_{2}:$ | Block $B_{3}:$ |
| :--- | :--- | :--- |
| $P$ unchanged, | $P$ updated to $P_{N}$, | $P_{N}$ unchanged, |
| $Q$ updated. | $Q$ unchanged. | $Q$ updated to $Q_{N}$. |
| ( $Q$ denotes the <br> updated array) |  |  |

- Block $B_{4}$, that is not shown in the diagram, would only be used for verifying if our reconstruction is correct or not.


## Main Idea

- Keystream is generated in blocks of 512 words
- Consider four consecutive blocks $B_{1}, B_{2}, B_{3}, B_{4}$.

| Block $B_{1}:$ | Block $B_{2}:$ | Block $B_{3}:$ |
| :--- | :--- | :--- |
| $P$ unchanged, | $P$ updated to $P_{N}$, | $P_{N}$ unchanged, |
| $Q$ updated. | $Q$ unchanged. | $Q$ updated to $Q_{N}$. |
| ( $Q$ denotes the <br> updated array) |  |  |

- Block $B_{4}$, that is not shown in the diagram, would only be used for verifying if our reconstruction is correct or not.
- Our algorithm, given the half state $P$, constructs the full state $\left(P_{N}, Q_{N}\right)$.


## Main Idea

- Keystream is generated in blocks of 512 words
- Consider four consecutive blocks $B_{1}, B_{2}, B_{3}, B_{4}$.

| Block $B_{1}:$ | Block $B_{2}:$ | Block $B_{3}:$ |
| :--- | :--- | :--- |
| $P$ unchanged, | $P$ updated to $P_{N}$, | $P_{N}$ unchanged, |
| $Q$ updated. | $Q$ unchanged. | $Q$ updated to $Q_{N}$. |
| ( $Q$ denotes the <br> updated array) |  |  |

- Block $B_{4}$, that is not shown in the diagram, would only be used for verifying if our reconstruction is correct or not.
- Our algorithm, given the half state $P$, constructs the full state $\left(P_{N}, Q_{N}\right)$.
(Note that we would use notation $s_{b, i}$ to denote the $i$-th
keystream word generated in block $\left.B_{b}, 1 \leq b \leq 4,0 \leq i \leq 511.\right)$
(2) Reconstructing One Array from Another
- First Phase: Complete $P_{N}$ from $P$
- Second Phase: Part of $Q$ from $P_{N}$
- Third Phase: Tail of $Q$ from its Parts
- Fourth Phase: Complete $Q_{N}$ from Tail of $Q$
- Fifth Phase (Verification) and Total Complexity
(3) Proposal for Design Modification
(1) Introduction
- Background
- Description of HC-128
- Contribution
(2) Reconstructing One Array from Another
- First Phase: Complete $P_{N}$ from $P$
- Second Phase: Part of $Q$ from $P_{N}$
- Third Phase: Tail of $Q$ from its Parts
- Fourth Phase: Complete $Q_{N}$ from Tail of $Q$
- Fifth Phase (Verification) and Total Complexity
(3) Proposal for Design Modification


## Update of $P$ in Block $B_{2}$

- Update of $P$ (or $Q$ ) depends only on itself.

$$
P_{N}[i]= \begin{cases}P[i]+g_{1}\left(P[509+i], P_{1}[502+i], P[i+1]\right), & \text { for } 0 \leq i \leq 2 \\ P[i]+g_{1}\left(P_{N}[i-3], P_{1}[502+i], P[i+1]\right), & \text { for } 3 \leq i \leq 9 ; \\ P[i]+g_{1}\left(P_{N}[i-3], P_{N}[i-10], P[i+1]\right), & \text { for } 10 \leq i \leq 510 ; \\ P[i]+g_{1}\left(P_{N}[i-3], P_{N}[i-10], P_{N}[i-511]\right), & \text { for } i=511 .\end{cases}
$$

- If one knows the 512 words of $P($ or $Q)$ corresponding to any one block, then one can easily derive the complete $P$ (or $Q$ ) array corresponding to any subsequent block.


## Update of $P$ in Block $B_{2}$

- Update of $P$ (or $Q$ ) depends only on itself.

$$
P_{N}[i]= \begin{cases}P[i]+g_{1}(P[509+i], P[502+i], P[i+1]), & \text { for } 0 \leq i \leq 2 ; \\ P[i]+g_{1}\left(P_{N}[i-3], P[502+i], P[i+1]\right), & \text { for } 3 \leq i \leq 9^{\prime} ; \\ P[i]+g_{1}\left(P_{N}[i-3], P_{N}[i-10], P[i+1],\right. & \text { for } 10 \leq i \leq 510 ; \\ P[i]+g_{1}\left(P_{N}[i-3], P_{N}[i-10], P_{N}[i-511]\right), & \text { for } i=511 .\end{cases}
$$

- If one knows the 512 words of $P($ or $Q)$ corresponding to any one block, then one can easily derive the complete $P$ (or $Q$ ) array corresponding to any subsequent block.
（1）Introduction
－Background
－Description of HC－128
－Contribution
（2）Reconstructing One Array from Another
－First Phase：Complete $P_{N}$ from $P$
－Second Phase：Part of $Q$ from $P_{N}$
－Third Phase：Tail of $Q$ from its Parts
－Fourth Phase：Complete $Q_{N}$ from Tail of $Q$
－Fifth Phase（Verification）and Total Complexity
（3）Proposal for Design Modification


## Keystream Generation in Block $B_{2}$

$$
s_{2, i}= \begin{cases}h_{1}(P[500+i]) \oplus P_{N}[i], & \text { for } 0 \leq i \leq 11 \\ h_{1}\left(P_{N}[i-12]\right) \oplus P_{N}[i], & \text { for } 12 \leq i \leq 511\end{cases}
$$

Since $h_{1}(x)=Q\left[x^{(0)}\right]+Q\left[256+x^{(2)}\right]$, we can rewrite the above as


## Keystream Generation in Block $B_{2}$

$$
s_{2, i}= \begin{cases}h_{1}(P[500+i]) \oplus P_{N}[i], & \text { for } 0 \leq i \leq 11 ; \\ h_{1}\left(P_{N}[i-12]\right) \oplus P_{N}[i], & \text { for } 12 \leq i \leq 511 .\end{cases}
$$

Since $h_{1}(x)=Q\left[x^{(0)}\right]+Q\left[256+x^{(2)}\right]$, we can rewrite the above as

$$
Q\left[i_{i}\right]+Q\left[u_{i}\right]=s_{2, i} \oplus P_{N}[i]
$$

$\left.\begin{array}{ll}\left.\begin{array}{ll}\text { where for } 0 \leq i \leq 11, & l_{i}=(P[500+i])^{(0)} \\ \text { and } & u_{i}=256+(P[500+i])^{(2)}\end{array}\right\}\end{array}\right\}$

$$
\begin{array}{ll}
\left.\begin{array}{ll}
\text { and for } 12 \leq i \leq 511, & l_{i}=\left(P_{N}[i-12]\right)^{(0)} \\
\text { and } & u_{i}=256+\left(P_{N}[i-12]\right)^{(2)} .
\end{array}\right\}
\end{array}
$$

## Keystream Generation in Block $B_{2}$

$$
s_{2, i}= \begin{cases}h_{1}(P[500+i]) \oplus P_{N}[i], & \text { for } 0 \leq i \leq 11 ; \\ h_{1}\left(P_{N}[i-12]\right) \oplus P_{N}[i], & \text { for } 12 \leq i \leq 511 .\end{cases}
$$

Since $h_{1}(x)=Q\left[x^{(0)}\right]+Q\left[256+x^{(2)}\right]$, we can rewrite the above as

$$
Q\left[i_{i}\right]+Q\left[u_{i}\right]=s_{2, i} \oplus P_{N}[i]
$$

$$
\left.\begin{array}{ll}
\left.\begin{array}{ll}
\text { where for } 0 \leq i \leq 11, & l_{i}=(P[500+i])^{(0)} \\
\text { and } & u_{i}=256+(P[500+i])^{(2)}
\end{array}\right\} \\
\text { and for } 12 \leq i \leq 511, & l_{i}=\left(P_{N}[i-12]\right)^{(0)} \\
\text { and } & u_{i}=256+\left(P_{N}[i-12]\right)^{(2)} .
\end{array}\right\}
$$

- It can be proved that unique solution does not exist.


## Solution Trick: Resort to Random Bipartite Graphs

The above system of 512 equations can be represented in the form of a bipartite graph $G=\left(V_{1}, V_{2}, E\right)$, where $V_{1}=\{0, \ldots, 255\}, V_{2}=\{256, \ldots, 511\}$ and for $l_{i} \in V_{1}$ and $u_{i} \in V_{2}, \exists$ an edge $\left\{l_{i}, u_{i}\right\} \in E$ if and only if the sum $Q\left[i_{i}\right]+Q\left[u_{i}\right]$ is known. Thus, $|E|=512$ (counting repeated edges, if any).

$$
\begin{aligned}
& \text { We call such a graph } G \text { with the vertices as the indices of one } \\
& \text { internal array of HC-128 the index graph of the state of HC-128. }
\end{aligned}
$$

$\square$
Lemma
I et $M$ be the size of the largest connected component of the index graph G corresponding to block $B_{2}$. Then M out of 512 words of the array $Q$ can be derived in $2^{32}$ search complexity.

## Solution Trick: Resort to Random Bipartite Graphs

The above system of 512 equations can be represented in the form of a bipartite graph $G=\left(V_{1}, V_{2}, E\right)$, where $V_{1}=\{0, \ldots, 255\}, V_{2}=\{256, \ldots, 511\}$ and for $l_{i} \in V_{1}$ and $u_{i} \in V_{2}, \exists$ an edge $\left\{l_{i}, u_{i}\right\} \in E$ if and only if the sum $Q\left[l_{i}\right]+Q\left[u_{i}\right]$ is known. Thus, $|E|=512$ (counting repeated edges, if any). We call such a graph $G$ with the vertices as the indices of one internal array of $\mathrm{HC}-128$ the index graph of the state of $\mathrm{HC}-128$.

[^0]
## Solution Trick: Resort to Random Bipartite Graphs

The above system of 512 equations can be represented in the form of a bipartite graph $G=\left(V_{1}, V_{2}, E\right)$, where $V_{1}=\{0, \ldots, 255\}, V_{2}=\{256, \ldots, 511\}$ and for $I_{i} \in V_{1}$ and $u_{i} \in V_{2}, \exists$ an edge $\left\{l_{i}, u_{i}\right\} \in E$ if and only if the sum $Q\left[l_{i}\right]+Q\left[u_{i}\right]$ is known. Thus, $|E|=512$ (counting repeated edges, if any). We call such a graph $G$ with the vertices as the indices of one internal array of HC-128 the index graph of the state of HC-128.

## Lemma

Let $M$ be the size of the largest connected component of the index graph $G$ corresponding to block $B_{2}$. Then $M$ out of 512 words of the array $Q$ can be derived in $2^{32}$ search complexity.

## The Giant Component

Consider a bipartite graph $G\left(n_{1}, n_{2}, T\right)$, formed by $T$ independent trials, each of which joins two vertices chosen independently of each other from the distinct parts.
W.I.o.g., let $n_{1} \geq n_{2}, \alpha=\frac{n_{2}}{n_{1}}, \beta=(1-\alpha) \ln n_{1}, n=n_{1}+n_{2}$. Let $\xi_{n_{1}, n_{2}, T}$ and $\chi_{n_{1}, n_{2}, T}$ respectively denote the number of isolated vertices and the number of connected components in
$G\left(n_{1}, n_{2}, T\right)$

## The Giant Component

Consider a bipartite graph $G\left(n_{1}, n_{2}, T\right)$, formed by $T$ independent trials, each of which joins two vertices chosen independently of each other from the distinct parts.
W.I.o.g., let $n_{1} \geq n_{2}, \alpha=\frac{n_{2}}{n_{1}}, \beta=(1-\alpha) \ln n_{1}, n=n_{1}+n_{2}$. Let $\xi_{n_{1}, n_{2}, T}$ and $\chi_{n_{1}, n_{2}, T}$ respectively denote the number of isolated vertices and the number of connected components in $G\left(n_{1}, n_{2}, T\right)$.

## The Giant Component (Contd.)

A. I. Saltykov. The number of components in a random bipartite graph. Diskretnaya Matematika, vol. 7, no. 4, 1995, pages 86-94.

Proposition
If $n \rightarrow \infty$ and $(1+\alpha) T=n \ln n+X n+o(n)$, where $X$ is a fixed number, then $\operatorname{Prob}\left(\chi_{n_{1}, n_{2}, T}=\xi_{n_{1}, n_{2}, T}+1\right) \rightarrow 1$ and for any

## The Giant Component (Contd.)

A. I. Saltykov. The number of components in a random bipartite graph. Diskretnaya Matematika, vol. 7, no. 4, 1995, pages 86-94.

## Proposition

If $n \rightarrow \infty$ and $(1+\alpha) T=n \ln n+X n+o(n)$, where $X$ is a fixed number, then $\operatorname{Prob}\left(\chi_{n_{1}, n_{2}, T}=\xi_{n_{1}, n_{2}, T}+1\right) \rightarrow 1$ and for any
$k=0,1,2, \ldots, \operatorname{Prob}\left(\xi_{n_{1}, n_{2}, T}=k\right)-\frac{\lambda^{k} e^{-\lambda}}{k!} \rightarrow 0$, where
$\lambda=\frac{e^{-X}\left(1+e^{-\beta}\right)}{1+\alpha}$.

## Coming Back to Our Case

For our index graph model, $n_{1}=\left|V_{1}\right|, n_{2}=\left|V_{2}\right|$ and $T=|E|$.
Corollary
If $M$ is the size of the largest component of the index graph $G$, then the mean and standard deviation of $M$ is respectively given by $E(M) \approx 442.59$ and $s d(M) \approx 8.33$.

Simulations with 10 million trials, each time with 1024
consecutive words of keystream generation for the complete arrays $P$ and $Q$, gives the average and standard deviation of $M$ are found to be $407.91 \approx 408$ and 9.17 respectively.

## Coming Back to Our Case

For our index graph model, $n_{1}=\left|V_{1}\right|, n_{2}=\left|V_{2}\right|$ and $T=|E|$.

## Corollary

If $M$ is the size of the largest component of the index graph $G$, then the mean and standard deviation of $M$ is respectively given by $E(M) \approx 442.59$ and $s d(M) \approx 8.33$.

Simulations with 10 million trials, each time with 1024
consecutive words of keystream generation for the complete
arrays $P$ and $Q$, gives the average and standard deviation of $M$ are found to be $407.91 \approx 408$ and 9.17 respectively.

## Coming Back to Our Case

For our index graph model, $n_{1}=\left|V_{1}\right|, n_{2}=\left|V_{2}\right|$ and $T=|E|$.

## Corollary

If $M$ is the size of the largest component of the index graph $G$, then the mean and standard deviation of $M$ is respectively given by $E(M) \approx 442.59$ and $s d(M) \approx 8.33$.

Simulations with 10 million trials, each time with 1024 consecutive words of keystream generation for the complete arrays $P$ and $Q$, gives the average and standard deviation of $M$ are found to be $407.91 \approx 408$ and 9.17 respectively.
(1) Introduction

- Background
- Description of HC-128
- Contribution
(2) Reconstructing One Array from Another
- First Phase: Complete $P_{N}$ from $P$
- Second Phase: Part of $Q$ from $P_{N}$
- Third Phase: Tail of $Q$ from its Parts
- Fourth Phase: Complete $Q_{N}$ from Tail of $Q$
- Fifth Phase (Verification) and Total Complexity
(3) Proposal for Design Modification


## Keystream Generation in Block $B_{1}$

$$
s_{i, 1}=h_{2}(Q[i-12]) \oplus Q[i], \text { for } 12 \leq i \leq 511 .
$$

Written in another way, it becomes


Thus,

## Theorem (Propagation Theorem)

If $Q[y]$ is known for some $y$ in $[0,499]$, then $m=\left\lfloor\frac{511-y}{12}\right\rfloor$ more words of $Q$, namely, $Q[y+12], Q[y+24], \ldots, Q[y+12 m]$, can all be determined from $Q[y]$ in a time complexity that is linear in the size of $Q$.

## Keystream Generation in Block $B_{1}$

$s_{i, 1}=h_{2}(Q[i-12]) \oplus Q[i]$, for $12 \leq i \leq 511$.
Written in another way, it becomes
$Q[i]=s_{1, i} \oplus\left(P\left[(Q[i-12])^{(0)}\right]+P\left[256+(Q[i-12])^{(2)}\right]\right)$.
Thus,
Theorem (Propagation Theorem)
If $Q[y]$ is known for some $y$ in $[0,499]$, then $m=\left\lfloor\frac{511-y}{12}\right\rfloor$ more words of $Q$, namely, $Q[y+12], Q[y+24], \ldots, Q[y+12 m]$, can all be determined from $Q[y]$ in a time complexity that is linear in the size of $Q$.

## Keystream Generation in Block $B_{1}$

$s_{i, 1}=h_{2}(Q[i-12]) \oplus Q[i]$, for $12 \leq i \leq 511$.
Written in another way, it becomes
$Q[i]=s_{1, i} \oplus\left(P\left[(Q[i-12])^{(0)}\right]+P\left[256+(Q[i-12])^{(2)}\right]\right)$.
Thus,

## Theorem (Propagation Theorem)

If $Q[y]$ is known for some $y$ in $[0,499]$, then $m=\left\lfloor\frac{511-y}{12}\right\rfloor$ more words of $Q$, namely, $Q[y+12], Q[y+24], \ldots, Q[y+12 m]$, can all be determined from $Q[y]$ in a time complexity that is linear in the size of $Q$.

## Propagation Exhausts 12 Words in Tail

## Theorem

After the Third Phase, the expected number of unknown words amongst $Q[500], Q[501], \ldots, Q[511]$ is approximately $8 \cdot\left(1-\frac{43}{512}\right)^{M}+4 \cdot\left(1-\frac{42}{512}\right)^{M}$, where $M$ is the size of the largest component of the index graph $G$.

> Substituting $M$ by its theoretical mean estimate 443 as well as by its empirical mean estimate 408 yields $E(Y) \approx 0$.
> In fact, for any $M>200$, the expression
> $\left(1-\frac{43}{512}\right)^{M}+4 \cdot\left(1-\frac{42}{512}\right)^{M}$ for $E(Y)$ becomes vanishingly small.
> Our experimental data also supports that in every instance,
> none of the words Q[500], Q[501]
> Q[511] remains

## Propagation Exhausts 12 Words in Tail

## Theorem

After the Third Phase, the expected number of unknown words amongst $Q[500], Q[501], \ldots, Q[511]$ is approximately $8 \cdot\left(1-\frac{43}{512}\right)^{M}+4 \cdot\left(1-\frac{42}{512}\right)^{M}$, where $M$ is the size of the largest component of the index graph $G$.

Substituting $M$ by its theoretical mean estimate 443 as well as by its empirical mean estimate 408 yields $E(Y) \approx 0$.


## Propagation Exhausts 12 Words in Tail

## Theorem

After the Third Phase, the expected number of unknown words amongst $Q[500], Q[501], \ldots, Q[511]$ is approximately $8 \cdot\left(1-\frac{43}{512}\right)^{M}+4 \cdot\left(1-\frac{42}{512}\right)^{M}$, where $M$ is the size of the largest component of the index graph $G$.

Substituting $M$ by its theoretical mean estimate 443 as well as by its empirical mean estimate 408 yields $E(Y) \approx 0$.
In fact, for any $M>200$, the expression
$\left(1-\frac{43}{512}\right)^{M}+4 \cdot\left(1-\frac{42}{512}\right)^{M}$ for $E(Y)$ becomes vanishingly small.
Our experimental data also supports that in every instance,
none of the words $Q[500], Q[501]$,
Q[511] remains

## Propagation Exhausts 12 Words in Tail

## Theorem

After the Third Phase, the expected number of unknown words amongst $Q[500], Q[501], \ldots, Q[511]$ is approximately $8 \cdot\left(1-\frac{43}{512}\right)^{M}+4 \cdot\left(1-\frac{42}{512}\right)^{M}$, where $M$ is the size of the largest component of the index graph $G$.

Substituting $M$ by its theoretical mean estimate 443 as well as by its empirical mean estimate 408 yields $E(Y) \approx 0$.
In fact, for any $M>200$, the expression
$\left(1-\frac{43}{512}\right)^{M}+4 \cdot\left(1-\frac{42}{512}\right)^{M}$ for $E(Y)$ becomes vanishingly small.
Our experimental data also supports that in every instance, none of the words $Q[500], Q[501], \ldots, Q[511]$ remains unknown.
(1) Introduction

- Background
- Description of HC-128
- Contribution
(2) Reconstructing One Array from Another
- First Phase: Complete $P_{N}$ from $P$
- Second Phase: Part of $Q$ from $P_{N}$
- Third Phase: Tail of $Q$ from its Parts
- Fourth Phase: Complete $Q_{N}$ from Tail of $Q$
- Fifth Phase (Verification) and Total Complexity
(3) Proposal for Design Modification


## Keystream Generation in Block $B_{3}$

$$
s_{3, i}=h_{2}(Q[500+i]) \oplus Q_{N}[i], 0 \leq i \leq 11 .
$$

Expanding $h_{2}($.$) , we get, for 0 \leq i \leq 11$,


## Now apply Propagation Theorem. Thus, we have a new result.

## Theorem

Suppose the complete array $P_{N}$ and the 12 words
$Q[500], Q[501], \ldots, Q[511]$ from the array $Q$ are known. Then
the entire $Q_{N}$ array can be reconstructed in a time complexity linear in the size of $Q$.

## Keystream Generation in Block $B_{3}$

$s_{3, i}=h_{2}(Q[500+i]) \oplus Q_{N}[i], 0 \leq i \leq 11$.
Expanding $h_{2}($.$) , we get, for 0 \leq i \leq 11$,
$Q_{N}[i]=s_{3, i} \oplus\left(P_{N}\left[(Q[500+i])^{(0)}\right]+P_{N}\left[256+(Q[500+i])^{(2)}\right]\right)$.

## Now apply Propagation Theorem. Thus, we have a new result.

Theorem
Suppose the complete array $P_{N}$ and the 12 words
$Q[500], Q[501], \ldots, Q[511]$ from the array $Q$ are known. Then
the entire $Q_{N}$ array can be reconstructed in a time complexity
Itnear in the size of $Q$.

## Keystream Generation in Block $B_{3}$

$s_{3, i}=h_{2}(Q[500+i]) \oplus Q_{N}[i], 0 \leq i \leq 11$.
Expanding $h_{2}($.$) , we get, for 0 \leq i \leq 11$,
$Q_{N}[i]=s_{3, i} \oplus\left(P_{N}\left[(Q[500+i])^{(0)}\right]+P_{N}\left[256+(Q[500+i])^{(2)}\right]\right)$.

Now apply Propagation Theorem. Thus, we have a new result.

## Theorem

Suppose the complete array $P_{N}$ and the 12 words $Q[500], Q[501], \ldots, Q[511]$ from the array $Q$ are known. Then the entire $Q_{N}$ array can be reconstructed in a time complexity linear in the size of $Q$.
(1) Introduction

- Background
- Description of HC-128
- Contribution
(2) Reconstructing One Array from Another
- First Phase: Complete $P_{N}$ from $P$
- Second Phase: Part of $Q$ from $P_{N}$
- Third Phase: Tail of $Q$ from its Parts
- Fourth Phase: Complete $Q_{N}$ from Tail of $Q$
- Fifth Phase (Verification) and Total Complexity
(3) Proposal for Design Modification


## Keystream Generation in Block $B_{4}$

- We update $P_{N}$ as it would be updated in block $B_{4}$ and generate 512 keystream words with this $P_{N}$ and the derived $Q_{N}$.
- If the generated keystream words entirely match with the observed keystream words $\left\{s_{4,0}, s_{4,1}, \ldots, s_{4,511}\right\}$ of block $B_{4}$, then our guess is correct.
- If we find a mismatch, then we repeat the procedure with the next guess, i.e., with another possible value in $\left[0,2^{32}-1\right]$ of the word of $Q$ in the largest component of the index graph.


## Keystream Generation in Block $B_{4}$

- We update $P_{N}$ as it would be updated in block $B_{4}$ and generate 512 keystream words with this $P_{N}$ and the derived $Q_{N}$.
- If the generated keystream words entirely match with the observed keystream words $\left\{s_{4,0}, s_{4,1}, \ldots, s_{4,511}\right\}$ of block $B_{4}$, then our guess is correct.
- If we find a mismatch, then we repeat the procedure with the next guess, i.e., with another possible value in $\left[0,2^{32}-1\right]$ of the word of $Q$ in the largest component of the index graph.


## Keystream Generation in Block $B_{4}$

- We update $P_{N}$ as it would be updated in block $B_{4}$ and generate 512 keystream words with this $P_{N}$ and the derived $Q_{N}$.
- If the generated keystream words entirely match with the observed keystream words $\left\{s_{4,0}, s_{4,1}, \ldots, s_{4,511}\right\}$ of block $B_{4}$, then our guess is correct.
- If we find a mismatch, then we repeat the procedure with the next guess, i.e., with another possible value in $\left[0,2^{32}-1\right]$ of the word of $Q$ in the largest component of the index graph.


## Data Complexity

- For the First Phase, we do not need any keystream word.

> For each of the Second, Third, Fourth and Fifth Phases, we need a separate block of 512 keystream words.
> - Thus, the required amount of data is $4.512=2^{11}$ no. of 32 $\left(=2^{5}\right)$-bit keystream words, giving a data complexity $2^{16}$

## Data Complexity

- For the First Phase, we do not need any keystream word.
- For each of the Second, Third, Fourth and Fifth Phases, we need a separate block of 512 keystream words.
- Thus, the required amount of data is $4.512=2^{11}$ no. of 32 $\left(=2^{5}\right)$-bit keystream words, giving a data complexity $2^{16}$


## Data Complexity

- For the First Phase, we do not need any keystream word.
- For each of the Second, Third, Fourth and Fifth Phases, we need a separate block of 512 keystream words.
- Thus, the required amount of data is $4 \cdot 512=2^{11}$ no. of 32 $\left(=2^{5}\right)$-bit keystream words, giving a data complexity $2^{16}$.


## Time Complexity

We prove the time complexity to be $2^{42}$. This includes

- Time to find the largest component.

Time for computing Phases 3, 4 and 5 for each of $2^{32}$ guesses of the selected node in the largest component.

## Time Complexity

We prove the time complexity to be $2^{42}$. This includes

- Time to find the largest component.
- Time for computing Phases 3,4 and 5 for each of $2^{32}$ guesses of the selected node in the largest component.
(1) Introduction
- Background
- Description of HC-128
- Contribution
(2) Reconstructing One Array from Another
- First Phase: Complete $P_{N}$ from $P$
- Second Phase: Part of $Q$ from $P_{N}$
- Third Phase: Tail of $Q$ from its Parts
- Fourth Phase: Complete $Q_{N}$ from Tail of $Q$
- Fifth Phase (Verification) and Total Complexity
(3) Proposal for Design Modification


## Target

To guard against all known weaknesses:

- Weakness discovered in this work.
- Previously known weaknesses.

All known weaknesses exploit the fact that $h_{1}$ (.) as well as $h_{2}($. makes use of only 16 bits from the 32-bit input.

## Target

To guard against all known weaknesses:

- Weakness discovered in this work.
- Previously known weaknesses.

All known weaknesses exploit the fact that $h_{1}($.$) as well as h_{2}($. makes use of only 16 bits from the 32 -bit input.

## Fix 1: Use All Input Bits in $h_{1}, h_{2}$

We replace $h_{1}$ and $h_{2}$ as follows.

$$
\begin{aligned}
& h_{N 1}(x)=\left(P\left[x^{(0)}\right]+P\left[256+x^{(2)}\right]\right) \oplus x \\
& h_{N 2}(x)=\left(Q\left[x^{(0)}\right]+Q\left[256+x^{(2)}\right]\right) \oplus x
\end{aligned}
$$

## Fix 2: Make Updates of $P$ and $Q$ Interdependent

We include a randomly chosen word from the $Q$ array in the update of $P$ array elements and a randomly chosen word from the $P$ array while updating the $Q$ array elements.


The internal state would be preserved even if half the internal state elements are revealed and known distinguishers cannot be mounted.

## Fix 2: Make Updates of $P$ and $Q$ Interdependent

We include a randomly chosen word from the $Q$ array in the update of $P$ array elements and a randomly chosen word from the $P$ array while updating the $Q$ array elements.

$$
\begin{aligned}
& g_{N 1}(x, y, z)=((x \gg 10) \oplus(z \gg 23))+Q[(y \gg 7) \wedge 1 F F] . \\
& g_{N 2}(x, y, z)=((x \lll 10) \oplus(z \lll 23))+P[(y \gg 7) \wedge 1 F F] .
\end{aligned}
$$

The internal state would be preserved even if half the internal state elements are revealed and known distinguishers cannot be mounted.

## Fix 2: Make Updates of $P$ and $Q$ Interdependent

We include a randomly chosen word from the $Q$ array in the update of $P$ array elements and a randomly chosen word from the $P$ array while updating the $Q$ array elements.

$$
\begin{aligned}
& g_{N 1}(x, y, z)=((x \gg 10) \oplus(z \gg 23))+Q[(y \gg 7) \wedge 1 F F] . \\
& g_{N 2}(x, y, z)=((x \ll 10) \oplus(z \ll 23))+P[(y \gg 7) \wedge 1 F F] .
\end{aligned}
$$

The internal state would be preserved even if half the internal state elements are revealed and known distinguishers cannot be mounted.

## Performance of the New Design

We evaluated the performance of our new design using the eSTREAM testing framework.

|  | HC-128 | Our Proposal | HC-256 |
| :--- | ---: | ---: | ---: |
| Stream Encryption <br> (cycles/byte) | 4.13 | 4.29 | 4.88 |

Results obtained in a machine with Intel(R) Pentium(R) D CPU, 2.8 GHz Processor Clock, 2048 KB Cache Size, 1 GB DDR RAM on Ubuntu 7.04 (Linux 2.6.20-17-generic) OS using the gcc-3.4_prescott_O3-ofp compiler.

## Thank You

## Questions?


[^0]:    Lemma
    Let $M$ be the size of the largest connected component of the index araph G corresponding to block $B_{2}$. Then M out of 512 words of the array $Q$ can be derived in $2^{32}$ search complexity.

