Construction of Full State from Half State of HC-128

Goutam Paul

Department of Computer Science & Engineering Jadavpur University, Kolkata, India http://www.jadavpur.edu/admin1/Faculty/GKP.htm

March 10, 2010

Seminar at Coding & Cryptography Research Group (CCRG) Division of Mathematical Sciences School of Physical & Mathematical Sciences Nanyang Technological University (NTU), Singapore

< □ > < @ > < 注 > < 注 > ... 注

Joint Work with Subhamoy Maitra and Shashwat Raizada Indian Statistical Institute, Kolkata, India

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Roadmap

- Background
- Description of HC-128
- Contribution

2 Reconstructing One Array from Another

- First Phase: Complete P_N from P
- Second Phase: Part of Q from P_N
- Third Phase: Tail of Q from its Parts
- Fourth Phase: Complete *Q_N* from Tail of *Q*
- Fifth Phase (Verification) and Total Complexity

イロト イヨト イヨト イヨト

3

Proposal for Design Modification

Roadmap

Introduction

Background

- Description of HC-128
- Contribution

2 Reconstructing One Array from Another

- First Phase: Complete P_N from P
- Second Phase: Part of Q from P_N
- Third Phase: Tail of Q from its Parts
- Fourth Phase: Complete *Q_N* from Tail of *Q*
- Fifth Phase (Verification) and Total Complexity

イロト イヨト イヨト イヨト

크

Proposal for Design Modification

Background Description of HC-128 Contribution

Basics of Stream Cipher

- Symmetric Key Cryptosystem, both sender and the receiver has the same key.
- Encryption: $C_i = M_i \oplus K_i$, Decryption: $M_i = C_i \oplus K_i$.
- The best possible scenario: the sender and receiver have a long common stream of bits that they have generated sitting in the same table and tossing an unbiased coin.
 - Pros: never used repeatedly (One Time Pad).
 - Cons: practically not possible.
- Solution: a Pseudorandom generator based on a seed (secret key).

イロン イロン イヨン イヨン

Background Description of HC-128 Contribution

Basics of Stream Cipher

- Symmetric Key Cryptosystem, both sender and the receiver has the same key.
- Encryption: $C_i = M_i \oplus K_i$, Decryption: $M_i = C_i \oplus K_i$.
- The best possible scenario: the sender and receiver have a long common stream of bits that they have generated sitting in the same table and tossing an unbiased coin.
 - Pros: never used repeatedly (One Time Pad).
 - Cons: practically not possible.
- Solution: a Pseudorandom generator based on a seed (secret key).

イロン イロン イヨン イヨン

Background Description of HC-128 Contribution

Basics of Stream Cipher

- Symmetric Key Cryptosystem, both sender and the receiver has the same key.
- Encryption: $C_i = M_i \oplus K_i$, Decryption: $M_i = C_i \oplus K_i$.
- The best possible scenario: the sender and receiver have a long common stream of bits that they have generated sitting in the same table and tossing an unbiased coin.
 - Pros: never used repeatedly (One Time Pad).
 - Cons: practically not possible.
- Solution: a Pseudorandom generator based on a seed (secret key).

ヘロト ヘワト ヘビト ヘビト

Background Description of HC-128 Contribution

Basics of Stream Cipher

- Symmetric Key Cryptosystem, both sender and the receiver has the same key.
- Encryption: $C_i = M_i \oplus K_i$, Decryption: $M_i = C_i \oplus K_i$.
- The best possible scenario: the sender and receiver have a long common stream of bits that they have generated sitting in the same table and tossing an unbiased coin.
 - Pros: never used repeatedly (One Time Pad).
 - Cons: practically not possible.
- Solution: a Pseudorandom generator based on a seed (secret key).

ヘロト ヘワト ヘビト ヘビト

Background Description of HC-128 Contribution

Basics of Stream Cipher

- Symmetric Key Cryptosystem, both sender and the receiver has the same key.
- Encryption: $C_i = M_i \oplus K_i$, Decryption: $M_i = C_i \oplus K_i$.
- The best possible scenario: the sender and receiver have a long common stream of bits that they have generated sitting in the same table and tossing an unbiased coin.
 - Pros: never used repeatedly (One Time Pad).
 - Cons: practically not possible.
- Solution: a Pseudorandom generator based on a seed (secret key).

ヘロト ヘワト ヘビト ヘビト

Background Description of HC-128 Contribution

Basics of Stream Cipher

- Symmetric Key Cryptosystem, both sender and the receiver has the same key.
- Encryption: $C_i = M_i \oplus K_i$, Decryption: $M_i = C_i \oplus K_i$.
- The best possible scenario: the sender and receiver have a long common stream of bits that they have generated sitting in the same table and tossing an unbiased coin.
 - Pros: never used repeatedly (One Time Pad).
 - Cons: practically not possible.
- Solution: a Pseudorandom generator based on a seed (secret key).

イロト イポト イヨト イヨト

Background Description of HC-128 Contribution

The eSTREAM Project

- A project of ECRYPT, a Network of Excellence within the Information Societies Technology (IST) Programme of the European Commission.
- An effort to get some secure stream ciphers satisfying the current requirements.
- This multi-year effort running from 2004 to 2008 has identified a portfolio of promising new stream ciphers.
- http://www.ecrypt.eu.org/stream

イロト イポト イヨト イヨト

Background Description of HC-128 Contribution

The eSTREAM Project

- A project of ECRYPT, a Network of Excellence within the Information Societies Technology (IST) Programme of the European Commission.
- An effort to get some secure stream ciphers satisfying the current requirements.
- This multi-year effort running from 2004 to 2008 has identified a portfolio of promising new stream ciphers.
- http://www.ecrypt.eu.org/stream

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Background Description of HC-128 Contribution

The eSTREAM Project

- A project of ECRYPT, a Network of Excellence within the Information Societies Technology (IST) Programme of the European Commission.
- An effort to get some secure stream ciphers satisfying the current requirements.
- This multi-year effort running from 2004 to 2008 has identified a portfolio of promising new stream ciphers.
- http://www.ecrypt.eu.org/stream

ヘロア 人間 アメヨア 人口 ア

Background Description of HC-128 Contribution

The eSTREAM Project

- A project of ECRYPT, a Network of Excellence within the Information Societies Technology (IST) Programme of the European Commission.
- An effort to get some secure stream ciphers satisfying the current requirements.
- This multi-year effort running from 2004 to 2008 has identified a portfolio of promising new stream ciphers.
- http://www.ecrypt.eu.org/stream

イロン イロン イヨン イヨン

Background Description of HC-128 Contribution

The eSTREAM Portfolio (Revision 1, September 2008)

Profile 1 (SW)	Profile 2 (HW)
HC-128	Grain v1
Rabbit	MICKEY v2
Salsa20/12	Trivium
SOSEMANUK	

Goutam Paul CCRG Seminar, NTU

イロト イポト イヨト イヨト

3

Introduction

- Background
- Description of HC-128
- Contribution

Reconstructing One Array from Another

- First Phase: Complete P_N from P
- Second Phase: Part of Q from P_N
- Third Phase: Tail of Q from its Parts
- Fourth Phase: Complete Q_N from Tail of Q
- Fifth Phase (Verification) and Total Complexity

イロト イヨト イヨト イヨト

크

Background Description of HC-128 Contribution

- Designed by Hongjun Wu.
- A scaled down version of HC-256 that has been presented in FSE 2004.
- A synchronous software stream cipher with 32-bit word output in each step.
- Intellectual Property: free for any use.
- Available at

http://www.ecrypt.eu.org/stream/hcp3.html.

• 128-bit secret key.

イロン イロン イヨン イヨン

Background Description of HC-128 Contribution

Notations

- +: x + y means $x + y \mod 2^{32}$, where $0 \le x < 2^{32}$ and $0 \le y < 2^{32}$.
- \square : $x \square y$ means x y mod 512.
- \oplus : bit-wise exclusive OR.
- I : concatenation.
- \gg : right shift operator. $x \gg n$ means x being right shifted n bits.
- « : left shift operator. $x \ll n$ means x being left shifted n bits.
- \gg : right rotation operator. $x \gg n$ means $((x \gg n) \oplus (x \ll (32 n)))$, where $0 \le n < 32, 0 \le x < 2^{32}$.
- \ll : left rotation operator. $x \ll n$ means $((x \ll n) \oplus (x \gg (32 n)))$, where $0 \le n < 32, 0 \le x < 2^{32}$.

프 에 에 프 어 - -

= 990

Background Description of HC-128 Contribution

Data Structures

- Two tables *P* and *Q*, each with 512 many 32-bit elements are used as internal states of HC-128.
- A 128-bit key array *K*[0,...,3] and a 128-bit initialization vector *IV*[0,...,3] are used, where each entry of the array is a 32-bit element.
- s_t denotes the keystream word generated at the *t*-th step, t = 0, 1, 2, ...

ヘロト ヘアト ヘビト ヘビト

Background Description of HC-128 Contribution

Data Structures

- Two tables *P* and *Q*, each with 512 many 32-bit elements are used as internal states of HC-128.
- A 128-bit key array *K*[0,...,3] and a 128-bit initialization vector *IV*[0,...,3] are used, where each entry of the array is a 32-bit element.
- s_t denotes the keystream word generated at the *t*-th step, t = 0, 1, 2, ...

ヘロン 人間 とくほ とくほ とう

Background Description of HC-128 Contribution

Data Structures

- Two tables *P* and *Q*, each with 512 many 32-bit elements are used as internal states of HC-128.
- A 128-bit key array *K*[0,...,3] and a 128-bit initialization vector *IV*[0,...,3] are used, where each entry of the array is a 32-bit element.
- s_t denotes the keystream word generated at the *t*-th step, t = 0, 1, 2, ...

◆□ > ◆□ > ◆豆 > ◆豆 > -

Background Description of HC-128 Contribution

Functions

- $f_1(x) = (x \gg 7) \oplus (x \gg 18) \oplus (x \gg 3).$
- $f_2(x) = (x \implies 17) \oplus (x \implies 19) \oplus (x \gg 10).$
- $g_1(x, y, z) = ((x \implies 10) \oplus (z \implies 23)) + (y \implies 8).$
- $g_2(x, y, z) = ((x \ll 10) \oplus (z \ll 23)) + (y \ll 8).$

•
$$h_1(x) = Q[x^{(0)}] + Q[256 + x^{(2)}].$$

• $h_2(x) = P[x^{(0)}] + P[256 + x^{(2)}]$

Here $x = x^{(3)} ||x^{(2)}||x^{(1)}||x^{(0)}$, *x* is a 32-bit word and $x^{(0)}$ (least significant byte) , $x^{(1)}$, $x^{(2)}$ and $x^{(3)}$ (most significant byte) are four bytes.

イロト イポト イヨト イヨト

1

Background Description of HC-128 Contribution

Functions

- $f_1(x) = (x \gg 7) \oplus (x \gg 18) \oplus (x \gg 3).$
- $f_2(x) = (x \gg 17) \oplus (x \gg 19) \oplus (x \gg 10).$
- $g_1(x, y, z) = ((x \implies 10) \oplus (z \implies 23)) + (y \implies 8).$
- $g_2(x, y, z) = ((x \ll 10) \oplus (z \ll 23)) + (y \ll 8).$

•
$$h_1(x) = Q[x^{(0)}] + Q[256 + x^{(2)}].$$

• $h_2(x) = P[x^{(0)}] + P[256 + x^{(2)}]$

Here $x = x^{(3)} ||x^{(2)}||x^{(1)}||x^{(0)}$, *x* is a 32-bit word and $x^{(0)}$ (least significant byte), $x^{(1)}$, $x^{(2)}$ and $x^{(3)}$ (most significant byte) are four bytes.

イロト 不得 とくほと くほとう

э.

Background Description of HC-128 Contribution

Functions

- $f_1(x) = (x \gg 7) \oplus (x \gg 18) \oplus (x \gg 3).$
- $f_2(x) = (x \implies 17) \oplus (x \implies 19) \oplus (x \gg 10).$
- $g_1(x, y, z) = ((x \implies 10) \oplus (z \implies 23)) + (y \implies 8).$
- $g_2(x, y, z) = ((x \ll 10) \oplus (z \ll 23)) + (y \ll 8).$

•
$$h_1(x) = Q[x^{(0)}] + Q[256 + x^{(2)}].$$

•
$$h_2(x) = P[x^{(0)}] + P[256 + x^{(2)}]$$

Here $x = x^{(3)} ||x^{(2)}||x^{(1)}||x^{(0)}$, *x* is a 32-bit word and $x^{(0)}$ (least significant byte) , $x^{(1)}$, $x^{(2)}$ and $x^{(3)}$ (most significant byte) are four bytes.

イロト 不得 とくほと くほとう

э.

Background Description of HC-128 Contribution

Functions

- $f_1(x) = (x \gg 7) \oplus (x \gg 18) \oplus (x \gg 3).$
- $f_2(x) = (x \implies 17) \oplus (x \implies 19) \oplus (x \gg 10).$
- $g_1(x, y, z) = ((x \gg 10) \oplus (z \gg 23)) + (y \gg 8).$
- $g_2(x, y, z) = ((x \ll 10) \oplus (z \ll 23)) + (y \ll 8).$

•
$$h_1(x) = Q[x^{(0)}] + Q[256 + x^{(2)}].$$

•
$$h_2(x) = P[x^{(0)}] + P[256 + x^{(2)}]$$

Here $x = x^{(3)} ||x^{(2)}||x^{(1)}||x^{(0)}$, *x* is a 32-bit word and $x^{(0)}$ (least significant byte), $x^{(1)}$, $x^{(2)}$ and $x^{(3)}$ (most significant byte) are four bytes.

ヘロン 人間 とくほ とくほ とう

э.

Background Description of HC-128 Contribution

Key and IV Setup

Let K[0,...,3] be the secret key and IV[0,...,3] be the initialization vector. Let K[i+4] = K[i] and IV[i+4] = IV[i] for $0 \le i \le 3$. The key and IV are expanded into an array W[0,...,1279] as follows.

$$W[i] = \begin{cases} K[i] & 0 \le i \le 7; \\ IV[i-8] & 8 \le i \le 15; \\ f_2(W[i-2]) + W[i-7] + \\ f_1(W[i-15]) + W[i-16] + i \\ 16 \le i \le 1279. \end{cases}$$

ヘロト 人間 ト ヘヨト ヘヨト

Background Description of HC-128 Contribution

Key and IV Setup

Let K[0, ..., 3] be the secret key and IV[0, ..., 3] be the initialization vector. Let K[i+4] = K[i] and IV[i+4] = IV[i] for $0 \le i \le 3$. The key and IV are expanded into an array W[0, ..., 1279] as follows.

$$W[i] = \begin{cases} K[i] & 0 \le i \le 7; \\ IV[i-8] & 8 \le i \le 15; \\ f_2(W[i-2]) + W[i-7] + \\ f_1(W[i-15]) + W[i-16] + i \\ 16 \le i \le 1279. \end{cases}$$

◆□ > ◆□ > ◆豆 > ◆豆 > -

Background Description of HC-128 Contribution

Key and IV setup (Contd.)

Update the tables P and Q with the array W as follows.

$$P[i] = W[i + 256]$$
, for $0 \le i \le 511$
 $Q[i] = W[i + 768]$, for $0 \le i \le 511$

Run the cipher 1024 steps and use the outputs to replace the table elements as follows.

For i = 0 to 511, do $P[i] = (P[i] + g_1(P[i \Box 3], P[i \Box 10], P[i \Box 511])) \oplus h_1(P[i \Box 12]);$ For i = 0 to 511, do $Q[i] = (Q[i] + g_2(Q[i \Box 3], Q[i \Box 10], Q[i \Box 511])) \oplus h_2(Q[i \Box 12]);$

イロト イポト イヨト イヨト

Background Description of HC-128 Contribution

Key and IV setup (Contd.)

Update the tables P and Q with the array W as follows.

$$P[i] = W[i + 256]$$
, for $0 \le i \le 511$
 $Q[i] = W[i + 768]$, for $0 \le i \le 511$

Run the cipher 1024 steps and use the outputs to replace the table elements as follows.

For i = 0 to 511, do $P[i] = (P[i] + g_1(P[i \Box 3], P[i \Box 10], P[i \Box 511])) \oplus h_1(P[i \Box 12]);$ For i = 0 to 511, do $Q[i] = (Q[i] + g_2(Q[i \Box 3], Q[i \Box 10], Q[i \Box 511])) \oplus h_2(Q[i \Box 12]);$

Background Description of HC-128 Contribution

The Keystream Generation Algorithm

```
i = 0:
repeat until enough keystream bits are generated {
    i = i \mod{512};
    if (i mod 1024) < 512{
        P[i] = P[i] + g_1(P[i \square 3], P[i \square 10], P[i \square 511]);
        s_i = h_1(P[i \boxminus 12]) \oplus P[i];
    }
    else {
        Q[i] = Q[i] + g_2(Q[i \boxminus 3], Q[i \boxminus 10], Q[i \boxminus 511]);
        s_i = h_2(Q[j \boxminus 12]) \oplus Q[j];
    }
    end-if
    i = i + 1:
} end-repeat
```

ヘロト 人間 ト ヘヨト ヘヨト

æ

Roadmap

Background

- Description of HC-128
- Contribution

2 Reconstructing One Array from Another

- First Phase: Complete P_N from P
- Second Phase: Part of Q from P_N
- Third Phase: Tail of Q from its Parts
- Fourth Phase: Complete *Q_N* from Tail of *Q*
- Fifth Phase (Verification) and Total Complexity

イロト イヨト イヨト イヨト

크

Proposal for Design Modification

Background Description of HC-128 Contribution

Existing Results

- Wu, the designer of HC-128 himself, presented a distinguisher that requires 2¹⁵⁶ keystream words.
- ② Dunkelman in the eStream discussion forum: http://www.ecrypt.eu.org/stream/phorum/read.php? 1,1143 (dated November 14, 2007): Prob(s_j ⊕ s_{j+1} = P[j] ⊕ P[j + 1]) ≈ 2⁻¹⁶.
- Some Observations on HC-128, Subhamoy Maitra, Goutam Paul and Shashwat Raizada, Proc. WCC 2009, pages 527-539 (extended version to appear in *Designs, Codes and Cryptography* Journal).

くロト (過) (目) (日)

Background Description of HC-128 Contribution

Existing Results

- Wu, the designer of HC-128 himself, presented a distinguisher that requires 2¹⁵⁶ keystream words.
- ② Dunkelman in the eStream discussion forum: http://www.ecrypt.eu.org/stream/phorum/read.php? 1,1143 (dated November 14, 2007): $Prob(s_j \oplus s_{j+1} = P[j] \oplus P[j+1]) \approx 2^{-16}$.

Some Observations on HC-128, Subhamoy Maitra, Goutam Paul and Shashwat Raizada, Proc. WCC 2009, pages 527-539 (extended version to appear in *Designs, Codes and Cryptography* Journal).

ヘロト ヘアト ヘビト ヘビト

Background Description of HC-128 Contribution

Existing Results

- Wu, the designer of HC-128 himself, presented a distinguisher that requires 2¹⁵⁶ keystream words.
- ② Dunkelman in the eStream discussion forum: http://www.ecrypt.eu.org/stream/phorum/read.php? 1,1143 (dated November 14, 2007): $Prob(s_j \oplus s_{j+1} = P[j] \oplus P[j+1]) \approx 2^{-16}$.
- Some Observations on HC-128, Subhamoy Maitra, Goutam Paul and Shashwat Raizada, Proc. WCC 2009, pages 527-539 (extended version to appear in *Designs, Codes and Cryptography* Journal).

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Background Description of HC-128 Contribution

Motivation for the Present Analysis

- Many attacks in the stream cipher domain assume knowledge of partial state information.
- State recovery attacks, on the other hand, assume knowledge of certain keystream bits and reconstruct the full internal state.
- Neither any partial state exposure attack nor any state recovery attack on HC-128 have been reported so far.

ヘロト ヘアト ヘヨト ヘ

Background Description of HC-128 Contribution

Motivation for the Present Analysis

- Many attacks in the stream cipher domain assume knowledge of partial state information.
- State recovery attacks, on the other hand, assume knowledge of certain keystream bits and reconstruct the full internal state.
- Neither any partial state exposure attack nor any state recovery attack on HC-128 have been reported so far.

ヘロト ヘアト ヘヨト ヘ

Background Description of HC-128 Contribution

Motivation for the Present Analysis

- Many attacks in the stream cipher domain assume knowledge of partial state information.
- State recovery attacks, on the other hand, assume knowledge of certain keystream bits and reconstruct the full internal state.
- Neither any partial state exposure attack nor any state recovery attack on HC-128 have been reported so far.

ヘロト ヘアト ヘヨト

Background Description of HC-128 Contribution

Main Idea

- Keystream is generated in *blocks* of 512 words
- Consider four consecutive blocks *B*₁, *B*₂, *B*₃, *B*₄.

Block B ₁ :	Block B ₂ :	Block B ₃ :
P unchanged,	P updated to P_N ,	P_N unchanged,
Q updated.	Q unchanged.	Q updated to Q_N .
(Q denotes the		
updated array)		

- Block *B*₄, that is not shown in the diagram, would only be used for verifying if our reconstruction is correct or not.
- Our algorithm, given the half state P, constructs the full state (P_N, Q_N) .

(Note that we would use notation $s_{b,i}$ to denote the *i*-th keystream word generated in block B_b , $1 \le b \le 4$, $0 \le i \le 511$.)

Background Description of HC-128 Contribution

Main Idea

- Keystream is generated in *blocks* of 512 words
- Consider four consecutive blocks *B*₁, *B*₂, *B*₃, *B*₄.

Block B ₁ :	Block B ₂ :	Block B ₃ :
P unchanged,	P updated to P_N ,	P _N unchanged,
Q updated.	Q unchanged.	Q updated to Q_N .
(Q denotes the		
updated array)		

- Block B₄, that is not shown in the diagram, would only be used for verifying if our reconstruction is correct or not.
- Our algorithm, given the half state P, constructs the full state (P_N, Q_N) .

(Note that we would use notation $s_{b,i}$ to denote the *i*-th keystream word generated in block B_b , $1 \le b \le 4$, $0 \le i \le 51^{-1}$

Background Description of HC-128 Contribution

Main Idea

- Keystream is generated in *blocks* of 512 words
- Consider four consecutive blocks *B*₁, *B*₂, *B*₃, *B*₄.

Block B ₁ :	Block B ₂ :	Block B ₃ :
P unchanged,	P updated to P_N ,	P _N unchanged,
Q updated.	Q unchanged.	Q updated to Q_N .
(Q denotes the		
updated array)		

- Block B₄, that is not shown in the diagram, would only be used for verifying if our reconstruction is correct or not.
- Our algorithm, given the half state *P*, constructs the full state (*P_N*, *Q_N*).

(Note that we would use notation $s_{b,i}$ to denote the *i*-th keystream word generated in block B_b , $1 \le b \le 4$, $0 \le i \le 511$.)

Background Description of HC-128 Contribution

Main Idea

- Keystream is generated in *blocks* of 512 words
- Consider four consecutive blocks *B*₁, *B*₂, *B*₃, *B*₄.

Block B ₁ :	Block B ₂ :	Block B ₃ :
P unchanged,	P updated to P_N ,	P_N unchanged,
Q updated.	Q unchanged.	Q updated to Q_N .
(Q denotes the		
updated array)		

- Block B₄, that is not shown in the diagram, would only be used for verifying if our reconstruction is correct or not.
- Our algorithm, given the half state *P*, constructs the full state (*P_N*, *Q_N*).

(Note that we would use notation $s_{b,i}$ to denote the *i*-th keystream word generated in block B_b , $1 \le b \le 4$, $0 \le i \le 511$.)

Introduction

- Background
- Description of HC-128
- Contribution

2 Reconstructing One Array from Another

- First Phase: Complete P_N from P
- Second Phase: Part of Q from P_N
- Third Phase: Tail of Q from its Parts
- Fourth Phase: Complete Q_N from Tail of Q
- Fifth Phase (Verification) and Total Complexity

Introduction

- Background
- Description of HC-128
- Contribution

2 Reconstructing One Array from Another

- First Phase: Complete *P_N* from *P*
- Second Phase: Part of Q from P_N
- Third Phase: Tail of Q from its Parts
- Fourth Phase: Complete *Q_N* from Tail of *Q*
- Fifth Phase (Verification) and Total Complexity

(日) (四) (三) (三) (三)

크

Proposal for Design Modification

First Phase: Complete P_N from P Second Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of Q Fifth Phase (Verification) and Total Complexity

ヘロト ヘ回ト ヘヨト ヘヨト

Update of *P* in Block *B*₂

• Update of *P* (or *Q*) depends only on itself.

$$P_{N}[i] = \begin{cases} P[i] + g_{1}(P[509 + i], P[502 + i], P[i + 1]), & \text{for } 0 \le i \le 2; \\ P[i] + g_{1}(P_{N}[i - 3], P[502 + i], P[i + 1]), & \text{for } 3 \le i \le 9; \\ P[i] + g_{1}(P_{N}[i - 3], P_{N}[i - 10], P[i + 1]), & \text{for } 10 \le i \le 510; \\ P[i] + g_{1}(P_{N}[i - 3], P_{N}[i - 10], P_{N}[i - 511]), & \text{for } i = 511. \end{cases}$$

 If one knows the 512 words of P (or Q) corresponding to any one block, then one can easily derive the complete P (or Q) array corresponding to any subsequent block.

First Phase: Complete P_N from P Second Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of Q Fifth Phase (Verification) and Total Complexity

ヘロト ヘアト ヘヨト ヘ

Update of P in Block B₂

• Update of *P* (or *Q*) depends only on itself.

$$P_{N}[i] = \begin{cases} P[i] + g_{1}(P[509 + i], P[502 + i], P[i + 1]), & \text{for } 0 \le i \le 2; \\ P[i] + g_{1}(P_{N}[i - 3], P[502 + i], P[i + 1]), & \text{for } 3 \le i \le 9; \\ P[i] + g_{1}(P_{N}[i - 3], P_{N}[i - 10], P[i + 1]), & \text{for } 10 \le i \le 510; \\ P[i] + g_{1}(P_{N}[i - 3], P_{N}[i - 10], P_{N}[i - 511]), & \text{for } i = 511. \end{cases}$$

 If one knows the 512 words of P (or Q) corresponding to any one block, then one can easily derive the complete P (or Q) array corresponding to any subsequent block.

Introduction

- Background
- Description of HC-128
- Contribution

2 Reconstructing One Array from Another

First Phase: Complete P_N from P

• Second Phase: Part of Q from P_N

- Third Phase: Tail of Q from its Parts
- Fourth Phase: Complete Q_N from Tail of Q
- Fifth Phase (Verification) and Total Complexity

(日) (四) (三) (三) (三)

크

Proposal for Design Modification

First Phase: Complete *P_N* from *P* Second Phase: Part of *Q* from *P_N* Third Phase: Tail of *Q* from its Parts Fourth Phase: Complete *Q_N* from Tail of *Q* Fifth Phase (Verification) and Total Complexity

Keystream Generation in Block B₂

$$s_{2,i} = \begin{cases} h_1(P[500+i]) \oplus P_N[i], & \text{for } 0 \le i \le 11; \\ h_1(P_N[i-12]) \oplus P_N[i], & \text{for } 12 \le i \le 511. \end{cases}$$

ince $h_1(x) = Q[x^{(0)}] + Q[256 + x^{(2)}]$, we can rewrite the bove as

$$Q[l_i] + Q[u_i] = s_{2,i} \oplus P_N[i]$$

where for
$$0 \le i \le 11$$
, $l_i = (P[500 + i])^{(0)}$
and $u_i = 256 + (P[500 + i])^{(2)}$
and for $12 \le i \le 511$, $l_i = (P_N[i - 12])^{(0)}$
and $u_i = 256 + (P_N[i - 12])^{(2)}$.

• It can be proved that unique solution does not exist.

First Phase: Complete *P_N* from *P* Second Phase: Part of *Q* from *P_N* Third Phase: Tail of *Q* from its Parts Fourth Phase: Complete *Q_N* from Tail of *Q* Fifth Phase (Verification) and Total Complexity

Keystream Generation in Block B₂

$$s_{2,i} = \begin{cases} h_1(P[500+i]) \oplus P_N[i], & \text{for } 0 \le i \le 11; \\ h_1(P_N[i-12]) \oplus P_N[i], & \text{for } 12 \le i \le 511. \end{cases}$$

Since $h_1(x) = Q[x^{(0)}] + Q[256 + x^{(2)}]$, we can rewrite the above as

$$Q[l_i] + Q[u_i] = s_{2,i} \oplus P_N[i]$$

where for
$$0 \le i \le 11$$
, $l_i = (P[500 + i])^{(0)}$
and $u_i = 256 + (P[500 + i])^{(2)}$
and for $12 \le i \le 511$, $l_i = (P_N[i - 12])^{(0)}$
and $u_i = 256 + (P_N[i - 12])^{(2)}$.

It can be proved that unique solution does not exist.

First Phase: Complete *P_N* from *P* Second Phase: Part of *Q* from *P_N* Third Phase: Tail of *Q* from its Parts Fourth Phase: Complete *Q_N* from Tail of *Q* Fifth Phase (Verification) and Total Complexity

Keystream Generation in Block B₂

$$s_{2,i} = \begin{cases} h_1(P[500+i]) \oplus P_N[i], & \text{for } 0 \le i \le 11; \\ h_1(P_N[i-12]) \oplus P_N[i], & \text{for } 12 \le i \le 511. \end{cases}$$

Since $h_1(x) = Q[x^{(0)}] + Q[256 + x^{(2)}]$, we can rewrite the above as

$$Q[l_i] + Q[u_i] = s_{2,i} \oplus P_N[i]$$

where for
$$0 \le i \le 11$$
, $l_i = (P[500 + i])^{(0)}$
and $u_i = 256 + (P[500 + i])^{(2)}$
and for $12 \le i \le 511$, $l_i = (P_N[i - 12])^{(0)}$
and $u_i = 256 + (P_N[i - 12])^{(2)}$.

It can be proved that unique solution does not exist.

First Phase: Complete *P_N* from *P* Second Phase: Part of *Q* from *P_N* Third Phase: Tail of *Q* from its Parts Fourth Phase: Complete *Q_N* from Tail of *Q* Fifth Phase (Verification) and Total Complexity

イロト イポト イヨト イヨト

Solution Trick: Resort to Random Bipartite Graphs

The above system of 512 equations can be represented in the form of a bipartite graph $G = (V_1, V_2, E)$, where $V_1 = \{0, \ldots, 255\}, V_2 = \{256, \ldots, 511\}$ and for $I_i \in V_1$ and $u_i \in V_2$, \exists an edge $\{I_i, u_i\} \in E$ if and only if the sum $Q[I_i] + Q[u_i]$ is known. Thus, |E| = 512 (counting repeated edges, if any). We call such a graph *G* with the vertices as the indices of one internal array of HC-128 the *index graph* of the state of HC-128.

_emma

Let M be the size of the largest connected component of the index graph G corresponding to block B_2 . Then M out of 512 words of the array Q can be derived in 2^{32} search complexity.

First Phase: Complete *P_N* from *P* Second Phase: Part of *Q* from *P_N* Third Phase: Tail of *Q* from its Parts Fourth Phase: Complete *Q_N* from Tail of *Q* Fifth Phase (Verification) and Total Complexity

イロト イポト イヨト イヨト

Solution Trick: Resort to Random Bipartite Graphs

The above system of 512 equations can be represented in the form of a bipartite graph $G = (V_1, V_2, E)$, where $V_1 = \{0, \ldots, 255\}, V_2 = \{256, \ldots, 511\}$ and for $I_i \in V_1$ and $u_i \in V_2, \exists$ an edge $\{I_i, u_i\} \in E$ if and only if the sum $Q[I_i] + Q[u_i]$ is known. Thus, |E| = 512 (counting repeated edges, if any). We call such a graph *G* with the vertices as the indices of one internal array of HC-128 the *index graph* of the state of HC-128.

.emma

Let M be the size of the largest connected component of the index graph G corresponding to block B_2 . Then M out of 512 words of the array Q can be derived in 2^{32} search complexity.

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

ヘロン 人間 とくほ とくほ とう

Solution Trick: Resort to Random Bipartite Graphs

The above system of 512 equations can be represented in the form of a bipartite graph $G = (V_1, V_2, E)$, where $V_1 = \{0, \ldots, 255\}, V_2 = \{256, \ldots, 511\}$ and for $I_i \in V_1$ and $u_i \in V_2$, \exists an edge $\{I_i, u_i\} \in E$ if and only if the sum $Q[I_i] + Q[u_i]$ is known. Thus, |E| = 512 (counting repeated edges, if any). We call such a graph *G* with the vertices as the indices of one internal array of HC-128 the *index graph* of the state of HC-128.

Lemma

Let M be the size of the largest connected component of the index graph G corresponding to block B_2 . Then M out of 512 words of the array Q can be derived in 2^{32} search complexity.

First Phase: Complete *P_N* from *P* Second Phase: Part of *Q* from *P_N* Third Phase: Tail of *Q* from its Parts Fourth Phase: Complete *Q_N* from Tail of *Q* Fifth Phase (Verification) and Total Complexity

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

The Giant Component

Consider a bipartite graph $G(n_1, n_2, T)$, formed by T independent trials, each of which joins two vertices chosen independently of each other from the distinct parts.

W.l.o.g., let $n_1 \ge n_2$, $\alpha = \frac{n_2}{n_1}$, $\beta = (1 - \alpha) \ln n_1$, $n = n_1 + n_2$. Let $\xi_{n_1,n_2,T}$ and $\chi_{n_1,n_2,T}$ respectively denote the number of isolated vertices and the number of connected components in $G(n_1, n_2, T)$.

First Phase: Complete *P_N* from *P* Second Phase: Part of *Q* from *P_N* Third Phase: Tail of *Q* from its Parts Fourth Phase: Complete *Q_N* from Tail of *Q* Fifth Phase (Verification) and Total Complexity

ヘロト ヘヨト ヘヨト ヘ

The Giant Component

Consider a bipartite graph $G(n_1, n_2, T)$, formed by T independent trials, each of which joins two vertices chosen independently of each other from the distinct parts.

W.l.o.g., let $n_1 \ge n_2$, $\alpha = \frac{n_2}{n_1}$, $\beta = (1 - \alpha) \ln n_1$, $n = n_1 + n_2$. Let $\xi_{n_1,n_2,T}$ and $\chi_{n_1,n_2,T}$ respectively denote the number of isolated vertices and the number of connected components in $G(n_1, n_2, T)$.

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

ヘロト 人間 とくほとくほとう

The Giant Component (Contd.)

A. I. Saltykov. The number of components in a random bipartite graph. *Diskretnaya Matematika*, vol. 7, no. 4, 1995, pages 86-94.

Proposition

If $n \to \infty$ and $(1 + \alpha)T = n \ln n + Xn + o(n)$, where X is a fixed number, then Prob $(\chi_{n_1,n_2,T} = \xi_{n_1,n_2,T} + 1) \to 1$ and for any $k = 0, 1, 2, \dots$, Prob $(\xi_{n_1,n_2,T} = k) - \frac{\lambda^k e^{-\lambda}}{k!} \to 0$, where $\lambda = \frac{e^{-X}(1+e^{-\beta})}{1+\alpha}$.

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

ヘロト ヘアト ヘビト ヘ

The Giant Component (Contd.)

A. I. Saltykov. The number of components in a random bipartite graph. *Diskretnaya Matematika*, vol. 7, no. 4, 1995, pages 86-94.

Proposition

If
$$n \to \infty$$
 and $(1 + \alpha)T = n \ln n + Xn + o(n)$, where X is a fixed
number, then Prob $(\chi_{n_1,n_2,T} = \xi_{n_1,n_2,T} + 1) \to 1$ and for any
 $k = 0, 1, 2, \ldots$, Prob $(\xi_{n_1,n_2,T} = k) - \frac{\lambda^k e^{-\lambda}}{k!} \to 0$, where
 $\lambda = \frac{e^{-X}(1+e^{-\beta})}{1+\alpha}$.

First Phase: Complete *P_N* from *P* Second Phase: Part of *Q* from *P_N* Third Phase: Tail of *Q* from its Parts Fourth Phase: Complete *Q_N* from Tail of *Q* Fifth Phase (Verification) and Total Complexity

・ロト ・ 同ト ・ ヨト ・ ヨト

Coming Back to Our Case

For our index graph model, $n_1 = |V_1|$, $n_2 = |V_2|$ and T = |E|.

Corollary

If *M* is the size of the largest component of the index graph *G*, then the mean and standard deviation of *M* is respectively given by $E(M) \approx 442.59$ and $sd(M) \approx 8.33$.

Simulations with 10 million trials, each time with 1024 consecutive words of keystream generation for the complete arrays *P* and *Q*, gives the average and standard deviation of *M* are found to be 407.91 \approx 408 and 9.17 respectively.

First Phase: Complete *P_N* from *P* Second Phase: Part of *Q* from *P_N* Third Phase: Tail of *Q* from its Parts Fourth Phase: Complete *Q_N* from Tail of *Q* Fifth Phase (Verification) and Total Complexity

・ロト ・ 同ト ・ ヨト ・ ヨト

Coming Back to Our Case

For our index graph model, $n_1 = |V_1|$, $n_2 = |V_2|$ and T = |E|.

Corollary

If M is the size of the largest component of the index graph G, then the mean and standard deviation of M is respectively given by $E(M) \approx 442.59$ and $sd(M) \approx 8.33$.

Simulations with 10 million trials, each time with 1024 consecutive words of keystream generation for the complete arrays *P* and *Q*, gives the average and standard deviation of *M* are found to be 407.91 \approx 408 and 9.17 respectively.

First Phase: Complete *P_N* from *P* Second Phase: Part of *Q* from *P_N* Third Phase: Tail of *Q* from its Parts Fourth Phase: Complete *Q_N* from Tail of *Q* Fifth Phase (Verification) and Total Complexity

イロト イポト イヨト イヨ

Coming Back to Our Case

For our index graph model, $n_1 = |V_1|$, $n_2 = |V_2|$ and T = |E|.

Corollary

If M is the size of the largest component of the index graph G, then the mean and standard deviation of M is respectively given by $E(M) \approx 442.59$ and $sd(M) \approx 8.33$.

Simulations with 10 million trials, each time with 1024 consecutive words of keystream generation for the complete arrays *P* and *Q*, gives the average and standard deviation of *M* are found to be 407.91 \approx 408 and 9.17 respectively.

Introduction

- Background
- Description of HC-128
- Contribution

2 Reconstructing One Array from Another

- First Phase: Complete P_N from P
- Second Phase: Part of Q from P_N
- Third Phase: Tail of Q from its Parts
- Fourth Phase: Complete Q_N from Tail of Q
- Fifth Phase (Verification) and Total Complexity

- 32

Proposal for Design Modification

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N **Third Phase: Tail of Q from its Parts** Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

イロン イロン イヨン イヨン

Keystream Generation in Block B₁

$s_{i,1} = h_2(Q[i-12]) \oplus Q[i]$, for $12 \le i \le 511$.

Written in another way, it becomes $Q[i] = s_{1,i} \oplus (P[(Q[i-12])^{(0)}] + P[256 + (Q[i-12])^{(2)}]).$ Thus,

Theorem (Propagation Theorem)

If Q[y] is known for some y in [0, 499], then $m = \lfloor \frac{511-y}{12} \rfloor$ more words of Q, namely, Q[y + 12], Q[y + 24], ..., Q[y + 12m], can all be determined from Q[y] in a time complexity that is linear in the size of Q.

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N **Third Phase: Tail of Q from its Parts** Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

ヘロン 人間 とくほど くほとう

Keystream Generation in Block B₁

 $s_{i,1} = h_2(Q[i - 12]) \oplus Q[i]$, for $12 \le i \le 511$. Written in another way, it becomes $Q[i] = s_{1,i} \oplus (P[(Q[i - 12])^{(0)}] + P[256 + (Q[i - 12])^{(2)}])$. Thus,

Theorem (Propagation Theorem)

If Q[y] is known for some y in [0, 499], then $m = \lfloor \frac{511-y}{12} \rfloor$ more words of Q, namely, Q[y + 12], Q[y + 24], ..., Q[y + 12m], can all be determined from Q[y] in a time complexity that is linear in the size of Q.

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

ヘロト ヘワト ヘビト ヘビト

Keystream Generation in Block B₁

 $s_{i,1} = h_2(Q[i - 12]) \oplus Q[i]$, for $12 \le i \le 511$. Written in another way, it becomes $Q[i] = s_{1,i} \oplus (P[(Q[i - 12])^{(0)}] + P[256 + (Q[i - 12])^{(2)}])$. Thus,

Theorem (Propagation Theorem)

If Q[y] is known for some y in [0, 499], then $m = \lfloor \frac{511-y}{12} \rfloor$ more words of Q, namely, Q[y + 12], Q[y + 24], ..., Q[y + 12m], can all be determined from Q[y] in a time complexity that is linear in the size of Q.

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

Propagation Exhausts 12 Words in Tail

Theorem

After the Third Phase, the expected number of unknown words amongst Q[500], Q[501], ..., Q[511] is approximately $8 \cdot (1 - \frac{43}{512})^M + 4 \cdot (1 - \frac{42}{512})^M$, where M is the size of the largest component of the index graph G.

Substituting *M* by its theoretical mean estimate 443 as well as by its empirical mean estimate 408 yields $E(Y) \approx 0$. In fact, for any M > 200, the expression $(1 - \frac{43}{512})^M + 4 \cdot (1 - \frac{42}{512})^M$ for E(Y) becomes vanishingly small. Our experimental data also supports that in every instance, none of the words $Q[500], Q[501], \dots, Q[511]$ remains unknown.

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

Propagation Exhausts 12 Words in Tail

Theorem

After the Third Phase, the expected number of unknown words amongst Q[500], Q[501], ..., Q[511] is approximately $8 \cdot (1 - \frac{43}{512})^M + 4 \cdot (1 - \frac{42}{512})^M$, where M is the size of the largest component of the index graph G.

Substituting *M* by its theoretical mean estimate 443 as well as by its empirical mean estimate 408 yields $E(Y) \approx 0$.

In fact, for any M > 200, the expression $(1 - \frac{43}{512})^M + 4 \cdot (1 - \frac{42}{512})^M$ for E(Y) becomes vanishingly small. Our experimental data also supports that in every instance, none of the words $Q[500], Q[501], \dots, Q[511]$ remains unknown.

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

Propagation Exhausts 12 Words in Tail

Theorem

After the Third Phase, the expected number of unknown words amongst Q[500], Q[501], ..., Q[511] is approximately $8 \cdot (1 - \frac{43}{512})^M + 4 \cdot (1 - \frac{42}{512})^M$, where M is the size of the largest component of the index graph G.

Substituting *M* by its theoretical mean estimate 443 as well as by its empirical mean estimate 408 yields $E(Y) \approx 0$. In fact, for any M > 200, the expression $(1 - \frac{43}{512})^M + 4 \cdot (1 - \frac{42}{512})^M$ for E(Y) becomes vanishingly small. Our experimental data also supports that in every instance, none of the words $Q[500], Q[501], \dots, Q[511]$ remains unknown.

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

Propagation Exhausts 12 Words in Tail

Theorem

After the Third Phase, the expected number of unknown words amongst Q[500], Q[501], ..., Q[511] is approximately $8 \cdot (1 - \frac{43}{512})^M + 4 \cdot (1 - \frac{42}{512})^M$, where M is the size of the largest component of the index graph G.

Substituting *M* by its theoretical mean estimate 443 as well as by its empirical mean estimate 408 yields $E(Y) \approx 0$. In fact, for any M > 200, the expression $(1 - \frac{43}{512})^M + 4 \cdot (1 - \frac{42}{512})^M$ for E(Y) becomes vanishingly small. Our experimental data also supports that in every instance, none of the words $Q[500], Q[501], \dots, Q[511]$ remains unknown.

Introduction

- Background
- Description of HC-128
- Contribution

2 Reconstructing One Array from Another

- First Phase: Complete P_N from P
- Second Phase: Part of Q from P_N
- Third Phase: Tail of Q from its Parts

• Fourth Phase: Complete Q_N from Tail of Q

Fifth Phase (Verification) and Total Complexity

- 3

Proposal for Design Modification

First Phase: Complete *P_N* from *P* Second Phase: Part of *Q* from *P_N* Third Phase: Tail of *Q* from its Parts Fourth Phase: Complete *Q_N* from Tail of *Q* Fifth Phase (Verification) and Total Complexity

ヘロト 人間 とくほ とくほう

Keystream Generation in Block B₃

 $s_{3,i} = h_2(Q[500 + i]) \oplus Q_N[i], 0 \le i \le 11.$ Expanding $h_2(.)$, we get, for $0 \le i \le 11$,

 $Q_N[i] = s_{3,i} \oplus \left(P_N \left[(Q[500+i])^{(0)} \right] + P_N \left[256 + (Q[500+i])^{(2)} \right] \right).$

Now apply Propagation Theorem. Thus, we have a new result.

Theorem

Suppose the complete array P_N and the 12 words $Q[500], Q[501], \ldots, Q[511]$ from the array Q are known. Then the entire Q_N array can be reconstructed in a time complexity linear in the size of Q.

First Phase: Complete *P_N* from *P* Second Phase: Part of *Q* from *P_N* Third Phase: Tail of *Q* from its Parts Fourth Phase: Complete *Q_N* from Tail of *Q* Fifth Phase (Verification) and Total Complexity

ヘロン 人間 とくほ とくほう

Keystream Generation in Block B₃

 $s_{3,i} = h_2(Q[500 + i]) \oplus Q_N[i], 0 \le i \le 11.$ Expanding $h_2(.)$, we get, for $0 \le i \le 11$,

$$Q_{N}[i] = s_{3,i} \oplus \left(P_{N} \left[(Q[500+i])^{(0)} \right] + P_{N} \left[256 + (Q[500+i])^{(2)} \right] \right).$$

Now apply Propagation Theorem. Thus, we have a new result.

Theorem

Suppose the complete array P_N and the 12 words $Q[500], Q[501], \ldots, Q[511]$ from the array Q are known. Then the entire Q_N array can be reconstructed in a time complexity linear in the size of Q.

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

ヘロン 人間 とくほ とくほう

Keystream Generation in Block B₃

 $s_{3,i} = h_2(Q[500 + i]) \oplus Q_N[i], 0 \le i \le 11.$ Expanding $h_2(.)$, we get, for $0 \le i \le 11$,

$$Q_{N}[i] = s_{3,i} \oplus \left(P_{N} \left[(Q[500+i])^{(0)} \right] + P_{N} \left[256 + (Q[500+i])^{(2)} \right] \right).$$

Now apply Propagation Theorem. Thus, we have a new result.

Theorem

Suppose the complete array P_N and the 12 words $Q[500], Q[501], \ldots, Q[511]$ from the array Q are known. Then the entire Q_N array can be reconstructed in a time complexity linear in the size of Q.

Introduction

- Background
- Description of HC-128
- Contribution

2 Reconstructing One Array from Another

- First Phase: Complete P_N from P
- Second Phase: Part of Q from P_N
- Third Phase: Tail of Q from its Parts
- Fourth Phase: Complete Q_N from Tail of Q
- Fifth Phase (Verification) and Total Complexity

Proposal for Design Modification

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

イロン イロン イヨン イヨン

Keystream Generation in Block B₄

- We update *P_N* as it would be updated in block *B*₄ and generate 512 keystream words with this *P_N* and the derived *Q_N*.
- If the generated keystream words entirely match with the observed keystream words {s_{4,0}, s_{4,1},..., s_{4,511}} of block B₄, then our guess is correct.
- If we find a mismatch, then we repeat the procedure with the next guess, i.e., with another possible value in [0, 2³² - 1] of the word of Q in the largest component of the index graph.

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

イロン イロン イヨン イヨン

Keystream Generation in Block B₄

- We update *P_N* as it would be updated in block *B*₄ and generate 512 keystream words with this *P_N* and the derived *Q_N*.
- If the generated keystream words entirely match with the observed keystream words {s_{4,0}, s_{4,1},..., s_{4,511}} of block B₄, then our guess is correct.
- If we find a mismatch, then we repeat the procedure with the next guess, i.e., with another possible value in [0, 2³² - 1] of the word of *Q* in the largest component of the index graph.

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

・ロト ・ 同ト ・ ヨト ・ ヨト

Keystream Generation in Block B₄

- We update *P_N* as it would be updated in block *B*₄ and generate 512 keystream words with this *P_N* and the derived *Q_N*.
- If the generated keystream words entirely match with the observed keystream words {s_{4,0}, s_{4,1},..., s_{4,511}} of block B₄, then our guess is correct.
- If we find a mismatch, then we repeat the procedure with the next guess, i.e., with another possible value in [0, 2³² - 1] of the word of *Q* in the largest component of the index graph.

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

イロト イポト イヨト イヨト

• For the First Phase, we do not need any keystream word.

- For each of the Second, Third, Fourth and Fifth Phases, we need a separate block of 512 keystream words.
- Thus, the required amount of data is $4 \cdot 512 = 2^{11}$ no. of 32 $(= 2^5)$ -bit keystream words, giving a data complexity 2^{16} .

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

- For the First Phase, we do not need any keystream word.
- For each of the Second, Third, Fourth and Fifth Phases, we need a separate block of 512 keystream words.
- Thus, the required amount of data is $4 \cdot 512 = 2^{11}$ no. of 32 $(= 2^5)$ -bit keystream words, giving a data complexity 2^{16} .

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

ヘロト ヘアト ヘヨト ヘ

- For the First Phase, we do not need any keystream word.
- For each of the Second, Third, Fourth and Fifth Phases, we need a separate block of 512 keystream words.
- Thus, the required amount of data is $4 \cdot 512 = 2^{11}$ no. of 32 $(= 2^5)$ -bit keystream words, giving a data complexity 2^{16} .

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

イロト イポト イヨト イヨト

We prove the time complexity to be 2⁴². This includes

- Time to find the largest component.
- Time for computing Phases 3, 4 and 5 for each of 2³² guesses of the selected node in the largest component.

First Phase: Complete P_N from PSecond Phase: Part of Q from P_N Third Phase: Tail of Q from its Parts Fourth Phase: Complete Q_N from Tail of QFifth Phase (Verification) and Total Complexity

イロト イポト イヨト イヨ

We prove the time complexity to be 2⁴². This includes

- Time to find the largest component.
- Time for computing Phases 3, 4 and 5 for each of 2³² guesses of the selected node in the largest component.

Introduction

- Background
- Description of HC-128
- Contribution

2 Reconstructing One Array from Another

- First Phase: Complete *P_N* from *P*
- Second Phase: Part of Q from P_N
- Third Phase: Tail of Q from its Parts
- Fourth Phase: Complete Q_N from Tail of Q
- Fifth Phase (Verification) and Total Complexity

イロト イヨト イヨト イヨト

크

Proposal for Design Modification

To guard against all known weaknesses:

- Weakness discovered in this work.
- Previously known weaknesses.

All known weaknesses exploit the fact that $h_1(.)$ as well as $h_2(.)$ makes use of only 16 bits from the 32-bit input.

・ロト ・ 一下・ ・ ヨト・

-∃=->

To guard against all known weaknesses:

- Weakness discovered in this work.
- Previously known weaknesses.

All known weaknesses exploit the fact that $h_1(.)$ as well as $h_2(.)$ makes use of only 16 bits from the 32-bit input.

< 🗇 > < 🖻 >

Fix 1: Use All Input Bits in h_1, h_2

We replace h_1 and h_2 as follows.

$$\begin{array}{rcl} h_{N1}(x) &=& (P[x^{(0)}] + P[256 + x^{(2)}]) \oplus x. \\ h_{N2}(x) &=& (Q[x^{(0)}] + Q[256 + x^{(2)}]) \oplus x. \end{array}$$

Goutam Paul CCRG Seminar, NTU

イロト イポト イヨト イヨト

3

Fix 2: Make Updates of P and Q Interdependent

We include a randomly chosen word from the Q array in the update of P array elements and a randomly chosen word from the P array while updating the Q array elements.

 $\begin{array}{lll} g_{N1}(x,y,z) &=& \left((x \ggg 10) \oplus (z \ggg 23) \right) + Q[(y \gg 7) \land 1FF].\\ g_{N2}(x,y,z) &=& \left((x \lll 10) \oplus (z \lll 23) \right) + P[(y \gg 7) \land 1FF]. \end{array}$

The internal state would be preserved even if half the internal state elements are revealed and known distinguishers cannot be mounted.

ヘロト 人間 とくほとく ほとう

Fix 2: Make Updates of P and Q Interdependent

We include a randomly chosen word from the Q array in the update of P array elements and a randomly chosen word from the P array while updating the Q array elements.

$$\begin{array}{lll} g_{N1}(x,y,z) &=& \left((x \ggg 10) \oplus (z \ggg 23) \right) + Q[(y \gg 7) \land 1FF]. \\ g_{N2}(x,y,z) &=& \left((x \lll 10) \oplus (z \lll 23) \right) + P[(y \gg 7) \land 1FF]. \end{array}$$

The internal state would be preserved even if half the internal state elements are revealed and known distinguishers cannot be mounted.

Fix 2: Make Updates of P and Q Interdependent

We include a randomly chosen word from the Q array in the update of P array elements and a randomly chosen word from the P array while updating the Q array elements.

$$\begin{array}{lll} g_{N1}(x,y,z) &=& \left((x \ggg 10) \oplus (z \ggg 23) \right) + Q[(y \gg 7) \land 1FF]. \\ g_{N2}(x,y,z) &=& \left((x \lll 10) \oplus (z \lll 23) \right) + P[(y \gg 7) \land 1FF]. \end{array}$$

The internal state would be preserved even if half the internal state elements are revealed and known distinguishers cannot be mounted.

Performance of the New Design

We evaluated the performance of our new design using the eSTREAM testing framework.

	HC-128	Our Proposal	HC-256
Stream Encryption	4.13	4.29	4.88
(cycles/byte)			

Results obtained in a machine with Intel(R) Pentium(R) D CPU, 2.8 GHz Processor Clock, 2048 KB Cache Size, 1 GB DDR RAM on Ubuntu 7.04 (Linux 2.6.20-17-generic) OS using the gcc-3.4_prescott_O3-ofp compiler.

Thank You

Questions?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで