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Introduction

Sequences of random (or pseudorandom ) elements are needed
for various applications (cryptography, simulation meth-
ods, probabilistic algorithms,...). To assess randomness,
we can use complexity-theoretic properties and statistical

properties of sequences.

We focus on sequences over a finite field F, with ¢ an ar-

bitrary prime power.



A hierarchy of complexities

We first consider finite sequences. Let S be a finite se-

quence over Iy of length V.

Def. 1. The linear complexity L(Sp) of Sy is the least
order of a linear recurrence relation over Iy that generates

Sy (with L(Spy) = 0 if Sy is the zero sequence).

Equivalently, L(Sp) is the length of the shortest linear
feedback shift register (FSR) that generates Sy



Def. 2. The quadratic complexity Q(Spy) of Sy is the
length of the shortest FSR with feedback function of degree
< 2 that generates Sy.

We always have 0 < Q(Sy) < L(Sy) < N. Similarly, we
can define the cubic complexity, quartic complexity..... At

the end of this chain of complexities is the following one.



Def. 3 (Jansen, 1989). The maximum order complexity
M (S ) of Sy is the length of the shortest (arbitrary) FSR
that generates Sy

M (S ) is a lower bound for all polynomial complexities.

M (Sp) can be computed by Blumer’s algorithm in graph
theory, by reformulating the problem of computing M (Sy)

as a problem for directed acyclic graphs.

Recall that L(.Sp) can be efficiently computed by the
Berlekamp-Massey algorithm.



In a different vein, we have the Kolmogorov complexity

which is important in theoretical computer science.

Def. 4 (Kolmogorov, 1965). The Kolmogorov complexity
K (Sy) of Sjy is the length of the shortest Turing machine
program (in an alphabet of size ¢, say) that generates Sy

We always have K (Sy) < N+c with an absolute constant

¢ (just list the terms of Spy).

Actually, most results hold for the more refined self-delimiting
Kolmogorov complexity. These two Kolmogorov complexi-

ties differ at most by an additive term of logarithmic order.



For an infinite sequence S over F, we define complexity

profiles. Let Sp denote the finite sequence consisting of
the first IV terms of S. Write L (S) = L(Sy), etc.

Def. 5. The sequence Li(5), Lo(S), ... is called the

linear complexity profile of S.

Similarly for the other complexities. Each complexity pro-

file is a nondecreasing sequence of nonnegative integers.



Complexity and random sequences

Let IFSO denote the sequence space over IFy and let uq be
the natural probability measure on F5°. i.e., the complete
product measure of the uniform probability measure on IF

(the latter measure assigns measure ¢! to each element

of Fy).

We say that a property of sequences S over [F is satisfied
pg-almost everywhere 1f the property holds for all S &
R C Fg° with pg(R) = 1. Such properties can be viewed

as typical properties of random sequences.



The behavior of the linear complexity profile of random

sequences 1s well understood.

Theorem 1 (H.N., 1988). We have p4-almost everywhere

O Ly(S) 1
= 1
VTN T 1)

More precisely, we have pg-almost everywhere
Ly(S)=N/2| 1

lim sup —.
N—o00 1qu N 2




Problem 1. Determine the behavior of the quadratic

(cubic,...) complexity profile of random sequences.

Theorem 2 (Jansen, 1989). For the expected value of

the maximum order complexity we have

o E(My(S)
N—oo log, N

= 2.

Problem 2. Determine whether lim n_, o My(S)/ log, N

exists for random sequences, 1.e., pg-almost everywhere.



Theorem 3 (Martin-Lof, 1966). For every € > 0 we have

pg-almost everywhere
Kn(S) > N —log, N — (1 +¢)log, log N

for all sufficiently large N. Moreover, for every sequence S

there are infinitely many N for which

KN(S> S N—logqN.



oo-distribution

This concept was popularized by the book of Knuth, The
Art of Computer Programming, Vol. 2, at least in the

binary case.

Let S be the sequence s1,s9,... over . For integers
k>1and n > 1, write
()

Sn’ = (Sns Sptls -+ s Sn—|—k—1> < Ffj
For an integer N > 1 and a given block b = (b, by, ..., bp._1) €
F]q’“, let

Ab,S:N) = #{1 <n <N s —p}.



Def. 6. For an integer £ > 1, the sequence S over [F is
k-distributed in Fg if
Ab,S;N) 1

lim =
N—o0 N qk

for all b € IF];.

The sequence S over F; is oo-distributed (or completely
uniformly distributed) in Fy if it is k-distributed in F, for
all kK > 1.

Theorem 4. Sequences over Fy are oo-distributed in IF,

pqg-almost everywhere.



Complexity and oo-distribution

oo-distribution is clearly a statistical randomness property:.
Does this property imply, or is it implied by, complexity-
theoretic randomness properties?

Theorem 5 (Martin-Lof, 1971). If Kn(S) > N — ¢

for some constant ¢ and infinitely many IV, then .S is oo-
distributed.

Thus, Kolmogorov complexity is a sufficiently strong con-

cept to yield oo-distribution.



How about linear complexity? Does the limit relation (1)

imply oo-distribution? Answer: no.

Theorem 6 (H.N., 2012). We can construct a sequence
S over IF, which satisfies (1), but is not 1-distributed in
Fq.

Proof. Consider the sequence S whose generating func-
tion (in the variable 1) is the power series o € Fy[[z 1]

with continued fraction expansion
o=1/(x+1/(z+--)),

where all partial quotients are equal to x.



Problem 3. If My(S) = 2log, N, check whether this
implies that S is co-distributed.

For Theorem 6 there is also a result in the opposite direc-

tion.

Theorem 7 (H.N., 2012). We can construct a sequence
S over F, which is co-distributed, but for which L (S) =
O((log N)?).



Problem 4. If S is co-distributed, then it is trivial that
lim LN(S) — Q.

N—o0

Determine the minimal growth rate of Ljr(S) as N — oo.

Presumably it is smaller than (log N)? in Theorem 7.



Expansion complexity
Let S be the sequence s1, s9, ... over IF;. Let its generating

function be
o0

Y(x) = sia' " e Fylla]]
1=1
Def. 7 (Diem, preprint 2011). The expansion complex-
ity En(S) is the least degree of a nonzero polynomial
h(z,y) € Fylx,y] with

h(z,~) =0 mod z'.

Remark. If s; = 0for 1 <1i < N, define En(S) = 0.
Then 0 < En(S) < N for any sequence S.



We can also introduce the expansion complexity profile

F1(S), Ex(S), ... of S,

Problem 5. Determine the relationship between the

maximum order complexity M (.S) and the expansion com-
plexity En(S).

Problem 6. Determine the behavior of the expansion
complexity profile of random sequences. A partial result

is that pg-almost everywhere En(.S) grows at least at the
rate N1/2



