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Introduction

Sequences of random (or pseudorandom) elements are needed

for various applications (cryptography, simulation meth-

ods, probabilistic algorithms,...). To assess randomness,

we can use complexity-theoretic properties and statistical

properties of sequences.

We focus on sequences over a finite field Fq with q an ar-

bitrary prime power.



A hierarchy of complexities

We first consider finite sequences. Let SN be a finite se-

quence over Fq of length N .

Def. 1. The linear complexity L(SN ) of SN is the least

order of a linear recurrence relation over Fq that generates

SN (with L(SN ) = 0 if SN is the zero sequence).

Equivalently, L(SN ) is the length of the shortest linear

feedback shift register (FSR) that generates SN .



Def. 2. The quadratic complexity Q(SN ) of SN is the

length of the shortest FSR with feedback function of degree

≤ 2 that generates SN .

We always have 0 ≤ Q(SN ) ≤ L(SN ) ≤ N . Similarly, we

can define the cubic complexity, quartic complexity,.... At

the end of this chain of complexities is the following one.



Def. 3 (Jansen, 1989). The maximum order complexity

M(SN ) of SN is the length of the shortest (arbitrary) FSR

that generates SN .

M(SN ) is a lower bound for all polynomial complexities.

M(SN ) can be computed by Blumer’s algorithm in graph

theory, by reformulating the problem of computing M(SN )

as a problem for directed acyclic graphs.

Recall that L(SN ) can be efficiently computed by the

Berlekamp-Massey algorithm.



In a different vein, we have the Kolmogorov complexity

which is important in theoretical computer science.

Def. 4 (Kolmogorov, 1965). The Kolmogorov complexity

K(SN ) of SN is the length of the shortest Turing machine

program (in an alphabet of size q, say) that generates SN .

We always have K(SN ) ≤ N +c with an absolute constant

c (just list the terms of SN ).

Actually, most results hold for the more refined self-delimiting

Kolmogorov complexity. These two Kolmogorov complexi-

ties differ at most by an additive term of logarithmic order.



For an infinite sequence S over Fq we define complexity

profiles. Let SN denote the finite sequence consisting of

the first N terms of S. Write LN (S) = L(SN ), etc.

Def. 5. The sequence L1(S), L2(S), . . . is called the

linear complexity profile of S.

Similarly for the other complexities. Each complexity pro-

file is a nondecreasing sequence of nonnegative integers.



Complexity and random sequences

Let F∞q denote the sequence space over Fq and let µq be

the natural probability measure on F∞q , i.e., the complete

product measure of the uniform probability measure on Fq

(the latter measure assigns measure q−1 to each element

of Fq).

We say that a property of sequences S over Fq is satisfied

µq-almost everywhere if the property holds for all S ∈
R ⊆ F∞q with µq(R) = 1. Such properties can be viewed

as typical properties of random sequences.



The behavior of the linear complexity profile of random

sequences is well understood.

Theorem 1 (H.N., 1988). We have µq-almost everywhere

lim
N→∞

LN (S)

N
=

1

2
. (1)

More precisely, we have µq-almost everywhere

lim sup
N→∞

|LN (S)−N/2|
logq N

=
1

2
.



Problem 1. Determine the behavior of the quadratic

(cubic,...) complexity profile of random sequences.

Theorem 2 (Jansen, 1989). For the expected value of

the maximum order complexity we have

lim
N→∞

E(MN (S))

logq N
= 2.

Problem 2. Determine whether limN→∞MN (S)/ logq N

exists for random sequences, i.e., µq-almost everywhere.



Theorem 3 (Martin-Löf, 1966). For every ε > 0 we have

µq-almost everywhere

KN (S) ≥ N − logq N − (1 + ε) logq log N

for all sufficiently large N . Moreover, for every sequence S

there are infinitely many N for which

KN (S) ≤ N − logq N.



∞-distribution

This concept was popularized by the book of Knuth, The

Art of Computer Programming, Vol. 2, at least in the

binary case.

Let S be the sequence s1, s2, . . . over Fq. For integers

k ≥ 1 and n ≥ 1, write

s
(k)
n = (sn, sn+1, . . . , sn+k−1) ∈ Fk

q .

For an integer N ≥ 1 and a given block b = (b0, b1, . . . , bk−1) ∈
Fk

q , let

A(b, S; N) = #{1 ≤ n ≤ N : s
(k)
n = b}.



Def. 6. For an integer k ≥ 1, the sequence S over Fq is

k-distributed in Fq if

lim
N→∞

A(b, S; N)

N
=

1

qk
for all b ∈ Fk

q .

The sequence S over Fq is ∞-distributed (or completely

uniformly distributed) in Fq if it is k-distributed in Fq for

all k ≥ 1.

Theorem 4. Sequences over Fq are ∞-distributed in Fq

µq-almost everywhere.



Complexity and ∞-distribution

∞-distribution is clearly a statistical randomness property.

Does this property imply, or is it implied by, complexity-

theoretic randomness properties?

Theorem 5 (Martin-Löf, 1971). If KN (S) ≥ N − c

for some constant c and infinitely many N , then S is ∞-

distributed.

Thus, Kolmogorov complexity is a sufficiently strong con-

cept to yield ∞-distribution.



How about linear complexity? Does the limit relation (1)

imply ∞-distribution? Answer: no.

Theorem 6 (H.N., 2012). We can construct a sequence

S over Fq which satisfies (1), but is not 1-distributed in

Fq.

Proof. Consider the sequence S whose generating func-

tion (in the variable x−1) is the power series σ ∈ Fq[[x
−1]]

with continued fraction expansion

σ = 1/(x + 1/(x + · · ·)),

where all partial quotients are equal to x.



Problem 3. If MN (S) ≈ 2 logq N , check whether this

implies that S is ∞-distributed.

For Theorem 6 there is also a result in the opposite direc-

tion.

Theorem 7 (H.N., 2012). We can construct a sequence

S over Fq which is ∞-distributed, but for which LN (S) =

O((log N)2).



Problem 4. If S is ∞-distributed, then it is trivial that

lim
N→∞

LN (S) = ∞.

Determine the minimal growth rate of LN (S) as N →∞.

Presumably it is smaller than (log N)2 in Theorem 7.



Expansion complexity

Let S be the sequence s1, s2, . . . over Fq. Let its generating

function be

γ(x) =

∞∑
i=1

six
i−1 ∈ Fq[[x]].

Def. 7 (Diem, preprint 2011). The expansion complex-

ity EN (S) is the least degree of a nonzero polynomial

h(x, y) ∈ Fq[x, y] with

h(x, γ) ≡ 0 mod xN .

Remark. If si = 0 for 1 ≤ i ≤ N , define EN (S) = 0.

Then 0 ≤ EN (S) ≤ N for any sequence S.



We can also introduce the expansion complexity profile

E1(S), E2(S), . . . of S.

Problem 5. Determine the relationship between the

maximum order complexity MN (S) and the expansion com-

plexity EN (S).

Problem 6. Determine the behavior of the expansion

complexity profile of random sequences. A partial result

is that µq-almost everywhere EN (S) grows at least at the

rate N1/2.


