p-ary Weight problems in designs, coding, and cryptography

(preceded by a brief research overview)

Henk Hollmann

Singapore, Nanyang Technological University, 29 Sept. 2010
(mostly joint work with Qing Xiang and others)

Contents

1. Introduction of the speaker
2. Brief research overview
3. p-Ary weight problems I: Difference sets and their p-ranks

- Difference sets in abelian groups
- Gauss and Jacoby sums
- Stickelberger's theorem
- Modular p-ary add-with-carry
- Examples

4. p-Ary weight problems II: Few-weight codes

- Cyclic codes, m-sequences
- Pless power moments
- Counting low-weight codewords
- McEliece's Theorem
- Examples

5. p-Ary weight problems III: Algebraic immunity

Introduction

Background:
Masters (Association schemes) \& Ph.D. (Modulation codes) both from Eindhoven Technical University, the Netherlands, supervisor Jack van Lint (and Paul Siegel)

1982-1985:
CNET (Centre National d'Études des Télécommunications), Issy-les-Moulineaux (Paris), France

Main research:

- FFT (Fast Fourier Transforms) and NTT (Number Theoretic Transforms)
- Hardware design, patent \longrightarrow convolver prototype
- Factorisation of $x^{N}-q$ over \mathbb{Q}.
- Co-inventor (with Pierre Duhamel) of split-radix FFT.

1985-2009:
Philips Research Laboratories, Eindhoven, the Netherlands (1999-2009: Principal Scientist)

Responsible for Discrete Mathematics within Philips Research
Consultancy and research in Discrete Mathematics, Coding Theory, Cryptography, Information Theory, and Digital Signal Processing.

2010-:

- Eindhoven University of Technology, the Netherlands
- Own math consultancy firm

More "applied" research topics: published on

- Fourier Transforms (FFT, NTT)
- Finite fields (arithmetic)
- Signal processing algorithms (filtering, write-equalization)
- Testing of IC's (Integrated Circuits)
- Switching networks (self-routing optical switching)
- LFSR's (Linear Feedback Shift Registers), m-sequences
- Block-designs and various design-like stuff
- Optimization, and algorithms [Pascal, Fortran, C, C++, ...]
- Constrained (modulation) codes (Magnetic recording, CD)
- Error-correcting codes, decoding (RS, iterative erasure)
- Video-on-demand
- Cryptography (timing attacks, visual crypto, whitebox crypto)

9 US patents (algorithms, arithmetic, constrained codes, crypto)

More "pure" research topics: published on

- Association schemes (schemes related to conic in $\operatorname{PG}(2, q), q$ even, and $\operatorname{PSL}(2, q)$, fusion schemes, finite geometry, Metz/Wilbrink SR graphs, pseudocyclic association schemes)
- Permutation polynomials
- Kloosterman sum identities
- Cryptography - IPP (Codes with Identifiable Parent Property)
- p-rank problems in difference sets, bent functions, sequences
- Coding theory - many topics (with Qing Xiang: proof of Welch and Niho conjectures)

Research interests: very broad, with emphasis on

- Algebraic combinatorics
- Finite fields and their applications
- Linear algebra and its applications

I like to collaborate: about 80% of my publications with co-authors
Co-authors include:
Aart Blokhuis, Gary Ebert (Geometry)
Janós Körner, Simon Lytsyn, Jack van Lint [7x] (Combinatorics)
Tor Helleseth, Qing Xiang [13x] (Algebraic combinatorics)
Ludo Tolhuizen [14x] (Coding theory/cryptography/combinatorics)
Pierre Duhamel [7x] (FFT/NTT)
Kees Schouhamer Immink [5x] (constrained coding)

p-Ary weight problems and applications I:

Difference sets and their p-ranks
(G, \cdot) abelian group, $|G|=v$.
$D \subseteq G$ is a (v, k, λ)-difference set in G if $|D|=k$ and $\forall a \neq 1_{G}$
\# $\left(d_{1}, d_{2}\right)$ in D^{2} for which

$$
d_{1} \cdot d_{2}^{-1}=a
$$

equals λ.

$$
\left(\sum_{d \in D} d\right)\left(\sum_{d \in D} d^{-1}\right)=(k-\lambda) 1_{G}+\lambda \sum_{g \in G} g .
$$

Consequence:

$$
k(k-1)=\lambda(v-1)
$$

G cyclic, then D cyclic difference set.
(Complex) character $\chi:(G, \cdot) \mapsto\left(\mathbb{C}^{*}, \cdots\right)$, homomorphism
$\chi_{0}: g \mapsto 1 \quad(g \in G): \underline{\text { trivial }}$ character.
Theorem (Character characterization)
Let $|G|=v$, and let k, λ satisfy

$$
\lambda(v-1)=k(k-1) .
$$

Then a k-subset $D \subseteq G$ is (v, k, λ)-difference set iff

$$
\chi(D) \overline{\chi(D)}=k-\lambda
$$

for every nontrivial $(\neq 1)$ complex multiplicative character χ. Here

$$
\chi(D)=\sum_{d \in D} \chi(d)
$$

Proof by Fourier inversion.

Example

Classical parameters: Singer difference sets.

$$
\begin{gathered}
H^{*}:=\left\{x \in \mathbf{F}_{q^{m}}^{*} \mid \operatorname{Tr}(x)=0\right\}, \\
\operatorname{Tr}(x)=\operatorname{Tr}_{\mathbf{F}_{q^{m}} / \mathbf{F}_{q}}(x)=x+x^{q}+\cdots+x^{q^{m-1}} \\
\operatorname{Tr}(a x)=a \operatorname{Tr}(x) \quad\left(a \in \mathbf{F}_{q}^{*}\right), \text { so } \\
H^{*} \subset \mathbf{F}_{q^{m}}^{*} / \mathbf{F}_{q}^{*} .
\end{gathered}
$$

Theorem
H^{*} is a

$$
\left(\left(q^{m}-1\right) /(q-1),\left(q^{m-1}-1\right) /(q-1),\left(q^{m-2}-1\right) /(q-1)\right)-
$$

(cyclic) difference set in $\mathbf{F}_{q^{m}}^{*} / \mathbf{F}_{q}^{*}$.
Proof?

Gauss and Jacoby sums

$q=p^{s}, p$ prime, $\quad F_{q}=\mathrm{GF}(q)$, finite field with q elements,
$\mathbf{F}^{*}=\mathbf{F} \backslash\{0\}$
$\operatorname{Tr}(x)=\operatorname{Tr}_{\mathbf{F}_{q} / \mathbf{F}_{p}}=x^{p}+x^{p^{2}}+\cdots+x^{p^{s-1}}$, trace function.
ξ_{n} complex n-th root of unity

$$
\psi: \mathbf{F}_{q} \mapsto \mathbb{C}^{*}, \quad \psi(x)=\xi_{p}^{\operatorname{Tr}(x)}
$$

is (nontrivial) additive character of \mathbf{F}_{q}

$\chi^{q-1}=1$, the trivial character.

Gauss sum

$$
g(\chi)=\sum_{a \in \mathbf{F}_{q}} \chi(a) \psi(a)
$$

Elementary property:

$$
g(1)=-1, \quad g(\chi) \overline{g(\chi)}=q, \quad \chi \neq 1
$$

Note that $g(\chi)$ lives in $\mathbb{Z}\left[\xi_{q-1}, \xi_{p}\right]$.
Jacoby sum

$$
J\left(\chi_{1}, \chi_{2}\right)=\sum_{a \in \mathbf{F}_{q}} \chi_{1}(a) \chi_{2}(1-a)
$$

$\chi_{1}, \chi_{2}, \chi_{1} \chi_{2} \neq 1$, then

$$
J\left(\chi_{1}, \chi_{2}\right)=g\left(\chi_{1}\right) g\left(\chi_{2}\right) / g\left(\chi_{1} \chi_{2}\right)
$$

and so

$$
J\left(\chi_{1}, \chi_{2}\right) \overline{J\left(\chi_{1}, \chi_{2}\right)}=q, \quad \chi \neq 1
$$

Character characterization theorem can be used to prove that D is difference set by expressing $\chi(D)$ in terms of Gauss and Jacoby sums!

Example (Singer) χ non-trivial, then

$$
g(\chi)=q \chi\left(H^{*}\right)
$$

hence $\chi\left(H^{*}\right) \overline{\chi\left(H^{*}\right)}=q^{m-2}=k-\lambda$.

Maschietti difference sets:

$$
q=2^{m}, \quad k \text { integer }, \quad(k, q-1)=1 .
$$

Theorem
If $\tau: x \mapsto x+x^{k}$ two-to-one on \mathbf{F}_{q} then $D_{k, m}=\operatorname{Im} \tau \backslash\{0\}$ is a $\left(2^{m}-1,2^{m-1}-1,2^{m-2}-1\right)$-difference set in \mathbf{F}_{q}^{*}

Proof: $(k-1, q-1)=1$, so χ non-trivial, then $\exists \phi: \chi=\phi^{k-1}$; now

$$
\chi\left(D_{k, m}\right)=\frac{1}{2} J(\phi, \chi) \quad\left(\chi=\phi^{k}\right) .
$$

Possible parameters:

- (regular) $k=2$
- (translation) $k=2^{r},(m, r)=1,1<r<m / 2$
- (Segre) $k=6$
- (Glynn type I) $k=2^{2 r}+2^{r}, m \geq 7$ odd, $4 r \equiv 1 \bmod m$
- (Glynn type II) $k=3 \cdot 2^{r}+4, m \geq 11$ odd, $2 r \equiv 1 \bmod m$

Nonisomorphic? Compute p-ranks!
p-rank of D is $\mathbf{F}_{p^{-}}$-rank of incidence matrix $A_{g, h}=\delta_{g h^{-1} \in D}$ of associated (symmetric) design.

Only interesting if $p \mid k-\lambda$ [or $p \mid k](\operatorname{det}=0)$

- Distinct p-ranks then distinct designs!
p-rank $=\underline{\text { complexity }}$ of associated 0,1 -sequence char ${ }_{D}$.
Theorem
If char $(\mathbf{F}) \nmid v, \mathbf{F}$ contains all v^{*} th roots of $1\left(v^{*}=\exp (G)\right)$, then p-rank of D equals \# F-characters $\chi: G \mapsto \mathbf{F}^{*}$ with $\chi(D) \neq 0$

Proof: Fourier inversion.
$X_{\chi, g}=\chi(g)$, then $X_{g, \chi}^{-1}=v^{-1} \chi(-g)$, and if $A_{g, h}=\delta_{g h^{-1} \in D}$, then

$$
X A X^{-1}=v \cdot \operatorname{diag}(\chi(D))_{\chi}
$$

Stickelberger's theorem

$q=p^{s}, \quad \alpha \underline{\text { primitive in }} \mathbf{F}_{q}, f(x) \underline{\text { minimal polynomial }}$ of α over \mathbf{F}_{p}

$$
\mathfrak{p}=\left(f\left(\xi_{q-1}\right), p\right)
$$

prime ideal in $\mathbb{Z}\left[\xi_{q-1}\right]$ lying over p :

$$
\mathbb{Z}\left[\xi_{q-1}\right] / \mathfrak{p} \cong \mathbf{F}_{p}[x] \bmod f(x) \cong \mathbf{F}_{q},
$$

isomorphism:

$$
\omega_{\mathfrak{p}}: \alpha \mapsto \xi_{q-1}
$$

$\omega_{p}: \mathbf{F}_{q}^{*} \mapsto \mathbb{C}^{*}$ Teichmüller character.
If $\chi: \mathbf{F}_{q}^{*} \mapsto \mathbb{Z}\left[\xi_{v}\right]^{*} \subset \mathbb{C}^{*}$ complex multiplicative character, then

$$
\chi \bmod \mathfrak{p}
$$

multiplicative \mathbf{F}_{q}-character $\mathbf{F}_{q}^{*} \mapsto \mathbf{F}_{q}^{*} \quad\left(p=\operatorname{char}\left(\mathbf{F}_{q}\right) \backslash\left|\mathbf{F}_{q}^{*}\right|\right)$.

Consequence: p-rank of D is \# complex characters χ for which

$$
\chi(D) \bmod \mathfrak{p} \neq 0
$$

Let

$$
\mathfrak{P}=\left(f\left(\xi_{q-1}\right), \xi_{p}-1, p\right)
$$

be the prime ideal in $\mathbb{Z}\left[\xi_{q-1}, \xi_{p}\right]$ above \mathfrak{p}.

$$
(x-1)^{p-1} \equiv x^{p-1}+x^{p-2}+\cdots+x+1 \bmod p
$$

so $\left(\xi_{p}-1\right)^{p-1}=0 \bmod p$ and

$$
\mathfrak{P}^{p-1}=\mathfrak{p}, \quad \operatorname{vap}(p)=p-1
$$

($v_{\mathfrak{F}}$ is \mathfrak{P}-adic valuation).
$q=p^{s}, p$ prime. If

$$
a \equiv a_{0}+a_{1} p+\cdots+a_{p-1} p^{s-1} \neq 0 \bmod q-1
$$

$0 \leq a_{i} \leq p-1$, then

$$
w(a)=w_{p}(a)=a_{0}+a_{1}+\cdots a_{s-1}
$$

the p-ary weight of a.
Theorem (Stickelberger)

$$
v_{\mathfrak{P}}\left(g\left(\omega_{\mathfrak{p}}^{-a}\right)\right)=w_{p}(a)
$$

So $\mathfrak{P}^{w_{p}(a)} \| g\left(\omega_{\mathfrak{p}}^{-a}\right)$ and $\mathfrak{p}^{(p-1) w_{p}(a)} \| g\left(\omega_{\mathfrak{p}}^{-a}\right)$

Example: Singer difference sets, $q=p^{s}$.
χ character on $\mathbf{F}_{q^{m}}^{*} / \mathbf{F}_{q}^{*}$;
$\chi=\omega_{\mathfrak{p}}^{-a(q-1)}, \quad \chi \neq 1$ iff $(q-1) a \neq 0 \bmod q^{m}-1$.
Now

$$
\begin{gathered}
g\left(\omega_{\mathfrak{p}}^{-a(q-1}\right)=q \cdot \omega_{\mathfrak{p}}^{-a(q-1)}\left(H^{*}\right), \\
v_{\mathfrak{P}}\left(g\left(\omega_{\mathfrak{p}}^{-a(q-1)}\right)\right)=w_{p}(a(q-1)), \quad v_{\mathfrak{P}}(q)=(p-1) s,
\end{gathered}
$$

and $\chi_{0}=1$ gives

$$
\chi_{0}(H)=\left|H^{*}\right| \not \equiv 0 \bmod \mathfrak{p} .
$$

Conclusion: p-rank $=1+\# a, 0<a<\left(q^{m}-1\right) /(q-1)$, with

$$
w_{p}((q-1) a)=(p-1) s
$$

Answer: Hadama's formulae $\left(q=p^{s}\right)$

$$
1+\binom{p+m-1}{m-2}^{s}
$$

Similar, but more complicated, for GMW difference sets (work with Arasu, Player, Xiang)

Example: Maschietti difference sets $D_{k, m}$ in $\mathbf{F}_{2^{m}}^{*}$, $(k, q-1)=(k-1, q-1)=1$

$$
\begin{aligned}
\chi\left(D_{k, m}\right) & =\frac{1}{2} J(\phi, \chi) \quad\left(\chi=\phi^{k}\right) \\
& =2^{-1} g\left(\chi^{k-1}\right) g(\chi) / g\left(\chi^{k}\right)
\end{aligned}
$$

$\chi=\omega_{\mathfrak{p}}^{-a} \longrightarrow$ need $\# \mathrm{a}$ in $\mathbb{Z}_{2^{m}-1} \backslash\{0\}$ for which

$$
-1+w_{2}((k-1) a)+w_{2}(a)-w_{2}(k a)=0 .
$$

$s, \quad a^{(1)}, \ldots, a^{(k)} \in \mathbb{Z}_{p^{m}-1} ; \quad t_{1}, t_{2}, \ldots, t_{k} \in \mathbb{Z} \backslash\{0\}$,

$$
\begin{aligned}
& s \equiv t_{1} a^{(1)}+t_{2} a^{(2)}+\cdots+t_{k} a^{(k)} \bmod p^{m}-1 . \\
& t_{+}=\sum_{i, t_{i}>0} t_{i}, \quad t_{-}=\sum_{i, t_{i}<0} t_{i} .
\end{aligned}
$$

Theorem (Molular p-ary add-with-carry algorithm)
$\exists \underline{\text { unique }} \gamma=\left(\gamma_{i}\right)_{i \in \mathbb{Z}_{m}}$, $\underline{\text { indices mod } m}$, so $\gamma_{-1}=\gamma_{m-1}$, for which

$$
\begin{equation*}
\sum_{j=1}^{k} t_{j} a_{i}^{(j)}+\gamma_{i-1}=s_{i}+p \gamma_{i}, \quad 0 \leq i \leq m-1 \tag{1}
\end{equation*}
$$

γ satisfies

$$
\begin{align*}
(p-1) w(\gamma) & =\sum_{j=0}^{k} t_{j} w\left(a^{(j)}\right)-w(s) \tag{2}\\
t_{-} & \leq \gamma_{i} \leq t_{+}-1 \tag{3}
\end{align*}
$$

if $\exists j: a^{(j)} \not \equiv 0 \bmod p^{m}-1$.
c_{i} modular carries for computation

Exampe: Segre case $k=6$
Count a in $\mathbb{Z}_{2^{m}-1} \backslash\{0\}$ for which

$$
w(a)+w(5 a)=w(6 a)+1 .
$$

Method: add-with-carry algorithms. Example: $b=5 a=4 a+a$,

$$
a_{i}+a_{i-2}+\gamma_{i-1}=b_{i}+2 \gamma_{i},
$$

indices in \mathbb{Z}_{m}, with $\gamma_{i}=0,1$ for all i.
Similar, $s=6 a=a+b$,

$$
a_{i}+b_{i}+\delta_{i-1}=s_{i}+2 \delta_{i},
$$

indices in \mathbb{Z}_{m}, with $\delta_{i}=0,1$ for all i.

$$
[2 w(a)=w(b)+w(\gamma)], \quad w(a)+w(b)=w(s)+w(\delta),
$$

so we want $w(a)+w(b)-w(s)=w(\delta)=1$.

Think of computation as

$$
\left(a_{i-2}, a_{i-1}, \gamma_{i-1}, \delta_{i-1}\right) \xrightarrow{a_{i}}\left(a_{i-1}, a_{i}, \gamma_{i}, \delta_{i}\right) .
$$

Labelled digraph: states (vertices) and arcs

$$
\left(a^{\prime \prime}, a^{\prime}, \gamma^{\prime}, \delta^{\prime}\right) \longrightarrow\left(a^{\prime}, a, \gamma, \delta\right)
$$

whenever

$$
a^{\prime \prime}+a+\gamma^{\prime}-2 \gamma=b \in\{0,1\}, \quad a+b+\delta^{\prime}-2 \delta=s \in\{0,1\}
$$

so initial state $+a$ determines b, γ, s, δ, hence terminal state of arc.
V_{δ} : states $\left(a^{\prime}, a, \gamma, \delta\right) \quad(\delta=0,1)$
Count $B_{m}=\#$ closed directed paths of length m starting in $v \in V_{1}$, through V_{0} only, then returning to v.
Counting: tranfer matrix method, $B_{m}=\operatorname{Tr}\left(A_{10} A_{00}^{m-2} A_{01}\right)$

$$
A_{00}=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0
\end{array}\right)
$$

Minimal polynomial
$f(X)=X^{6}-X^{5}-X^{4}+X^{3}-X^{2}+X=X(X-1)\left(X^{4}-X^{2}-1\right)$,
so

$$
A^{5}-A^{4}-A^{3}+A^{2}-A+I=O
$$

In fact

$$
B_{m}=B_{m-2}+B_{m-4}
$$

Typically recursive relations for these p-ranks.
Glynn I\&II similar but much more complicated, especially Glynn I.

p-Ary weight problems and applications II:

Few-weight codes

$q=p^{s}, p$ prime, m, t positive integers, $(t, m)=1$.
$C_{1, t}$ cyclic code over \mathbf{F}_{q}, length $n=q^{m}-1$, defining zero's α, α^{t}, α primitive in $\mathbf{F}_{q^{m}}$. (Usually dimension $k=2 m$.)

$$
c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C_{1, t}
$$

iff

$$
c(\alpha)=c\left(\alpha^{t}\right)=0,
$$

where

$$
c(x)=c_{0}+c_{1} x+\cdots+c_{m-1} x^{m-1} \in \mathbf{F}_{q}[x] \bmod x^{n}-1 .
$$

$A_{0}=1, A_{1}, \ldots, A_{n}$ weights of $C_{1, t}$, where

$$
A_{w}=\left\{c \in C_{1, t} \mid \mathrm{wt}(c)=w\right\} .
$$

$C_{1, t}^{\perp}$ is dual code, weights $B_{0}=1, B_{1}, \ldots, B_{n}$.

Sometimes $C_{1, t}^{\perp}$ few-weight code.

Relation with sequences:
m-sequence $a=a_{0}, a_{1}, \ldots, a_{n-1}$: codeword from simplex code C_{1}^{\perp}. decimation by a factor t :

$$
b=a_{0}, a_{t}, a_{2 t}, \ldots, a_{n t} \in C_{t}^{\perp}
$$

Cross-correlation

$$
\theta_{a, b}(\tau)=\sum_{i=0}^{n-1}(-1)^{a_{i}+b_{i+\tau}}=n-\operatorname{dist}(\mathrm{a}, \mathrm{~b})
$$

is weight in $C_{1, t}^{\perp}$!
Preferred pair of m-sequences: $\theta_{a, b}$ takes only values

$$
-1, \quad-1 \pm 2^{\lfloor(m+2) / 2\rfloor} ;
$$

equivalently, non-zero weights in $C_{1, t}^{\perp}$ are

$$
2^{m-1}, \quad 2^{m-1} \pm 2^{\lfloor(m+2) / 2\rfloor-1}
$$

Not possible if $m \equiv 0 \bmod 4$; four known cases with $m \equiv 2 \bmod 4$ (character theory proofs for the two difficult ones)

Known cases: with modd:

- $t=2^{r}+1$, if $(r, m)=1$ (Gold, 1968)
- $t=2^{2 r}-2^{r}+1$, if $(r, m)=1$ (Welch, 1969; Kasami, 1971)
- $t=2^{r}+3,2 r \equiv-1 \bmod m$ (conjectured by Welch, 1972)
- $t=2^{2 r}+2^{r}-1,4 r \equiv-1 \bmod m($ conjectured by Niho, 1972)

More three-weight cases (bigger gaps/CC values) in Gold-Kasami cases with $m /(r, m)=1$.

Uniform method to prove few-weight results

Step 1: Pless power moment identities

MacWilliams transforms relating weights and dual weights

$$
\sum_{w=0}^{n-v}\binom{n-w}{v} B_{w}=q^{k-v} \sum_{w=0}^{v}\binom{n-w}{v-w} A_{w}
$$

$(v=0,1, \ldots, n)$ gives

$$
P_{i}=\sum_{w=1}^{n} w^{i} B_{w}=\operatorname{expr}\left(n, k, A_{0}, \ldots, A_{i}\right)
$$

$$
0<w_{1} \leq w_{2} \leq w_{3} \leq w_{4}<n,
$$

$E=\sum_{w=1}^{n}\left(w-w_{1}\right)\left(w-w_{2}\right)\left(w-w_{3}\right)\left(w-w_{4}\right) B_{w}=\operatorname{expr}\left(n, k, A_{3}, A_{4}\right)$
$\left(A_{0}=1, A_{1}=A_{2}=0\right)$
C^{\perp} no weights in $\left(w_{1}, w_{2}\right) \cup\left(w_{3}, w_{4}\right)$ then

$$
E \geq 0
$$

equality iff C^{\perp} has only nonzero weights $w_{1}, w_{2}, w_{1}, w_{4}$.
In our case: take $w_{2}=w_{3}=2^{m-1}, w_{1}, w_{4}=2^{m-1} \pm 2^{m-1-M}$

Step 2: Compute low weights of C
Compute A_{3}, A_{4}, or show min $\operatorname{dist}(\mathrm{C}) \geq 5$. Often difficult!

Breakthrough result by Hans Dobbertin: both Welch and Niho codes have minimum distance 5.

If few-weight assumption correct, then now $E=0$.

Step 3:
Find restrictions on weights of $C=C_{1, t}^{\perp}$: McEliece's lemma
Theorem (McEliece)
C binary cyclic code, B_{w} weight enumerator, ℓ smallest positive number for which ℓ nonzero's of C (repetitions allowed, not all 1) have product 1. Then

$$
2^{\ell-1} \mid B_{w} \quad(w>0), \quad \exists w: 2^{\ell} \nmid B_{w} .
$$

Some proof method involve Gauss-sums and Stickelberger's theorem!

Example: $C=C_{1, t}^{\perp}$. Now $C^{\perp}=C_{1, t}$ has zero's α^{i} for i one of

$$
1,2,4, \ldots, 2^{m-1} ; \quad t, 2 t, 4 t, \ldots, 2^{m-1} t
$$

nonzero's of $C=C_{1, t}^{\perp}$ are ($\left.\underline{\text { Fourier inversion }}\right) \alpha^{j}$ for j one of

$$
-1,-2,-4, \ldots,-2^{m-1} ; \quad-t,-2 t,-4 t, \ldots,-2^{m-1} t
$$

b

a
product is 1 iff

$$
-b-t a \equiv 0 \bmod 2^{m}-1, \quad \bar{b} \equiv \operatorname{ta} \bmod 2^{m}-1 ;
$$

$\#$ is $w(b)+w(a)=m-w(\bar{b})+w(a)=m-(w(t a)-w(a)$

$$
\ell=m-M(m ; t), \quad M(m ; t)=\max _{a \in \mathbb{Z}_{2^{m}-1} \backslash\{0\}}(w(t a)-w(a)) .
$$

Gold case:

$$
M\left(m ; 2^{r}+1\right)= \begin{cases}m / 2, & m /(r, m) \text { even } \\ (m-(r, m)) / 2, & m /(r, m) \text { odd }\end{cases}
$$

Proof:

$$
M\left(m ; 2^{r}+1\right)=\max _{a \in \mathbb{Z}_{2^{m}-1} \backslash\{0\}}\left(w\left(\left(2^{r}+1\right) a\right)-w(a)\right) .
$$

$$
s=\left(2^{r}+1\right) a=2^{r} a+a
$$

$$
a_{i}+a_{i-r}+\gamma_{i-1}=s_{i}+2 \gamma_{i}, \quad i \in \mathbb{Z}_{m}
$$

with $\gamma_{i}=0,1$.

$$
\begin{aligned}
& 2 w(a)=w(s)+w(\gamma) . \text { Put } \omega=a_{i}-\gamma_{i} \Longrightarrow \\
& w(s)-w(a)=w(\omega) .
\end{aligned}
$$

$$
\omega_{i}=1 \Longrightarrow a_{i}=1, \gamma_{i}=0 \Longrightarrow a_{i-r}=0 \Longrightarrow \omega_{i-r} \leq 0
$$

Partition $\omega_{0}, \ldots, \omega_{m-1}$ into groups

$$
\left(\omega_{i}, \omega_{i-r}, \ldots, \omega_{i+r}\right)
$$

\# groups $e=(r, m)$, each size $L=m /(r, m)$.
Weight per group $\leq\lfloor L / 2\rfloor$

Kasami case similar.
Welch and especially Niho cases much more complicated!
Niho digraph (after trick) has 1296 vertices.

p-Ary weight problem III:

Algebraic immunity

Boolean functions on m variables:

$$
\begin{gathered}
f: \mathbf{F}_{2^{m}} \mapsto \mathbf{F}_{2}, \quad f=\sum_{a \in \mathbb{Z}_{2^{m}-1}} f_{a} x^{a}, \\
x^{a}=x_{0}^{a_{0}} x_{1}^{a_{1}} \cdots x_{m-1}^{a_{m-1}}, \quad \operatorname{deg}\left(x^{a}\right)=w(a), \\
a=a_{0}+a_{1} 2+\cdots+a_{m-1} 2^{m-1} .
\end{gathered}
$$

Algebraic immunity

$$
A I_{m}(f)=\min \{\operatorname{deg}(g) \mid g \neq 0, \quad f \cdot g=0 \text { or }(f+1) \cdot g=0\} .
$$

$A I_{m}(f) \leq\left\lfloor\frac{m}{2}\right\rfloor$ (Courtois)
α primitive in $\mathbf{F}_{2^{m}}$.

$$
\Delta=\left\{\alpha^{0}=1, \alpha, \alpha^{2}, \ldots, \alpha^{2^{m-1}}\right\}
$$

Define

$$
\begin{gathered}
g: \mathbf{F}_{2^{m}} \mapsto \mathbf{F}_{2}, \quad \operatorname{supp}(g)=\Delta ; \\
f: \mathbf{F}_{2^{m}} \times \mathbf{F}_{2^{m}} \mapsto \mathbf{F}_{2}, \quad f(x, y)=g\left(x y^{2^{m}-2}\right) \\
\Psi=\operatorname{supp}(f)=\left\{(\gamma y, y) \mid \gamma \in \Delta, y \in \mathbf{F}_{2^{m}}^{*}\right\}
\end{gathered}
$$

f is bent (Dillon)
Conjecture (Tu, Deng)
$A l_{2 m}(f)=m$, maximal.

Conjecture (Tu, Deng)
$h(x, y)=\sum_{a, b \in \mathbb{Z}_{2} m_{-1}} h_{a, b} x^{a} y^{b}$ zero on Ψ, then $\operatorname{deg}(h) \geq m$.
If not, then

$$
h_{a, b}=0, \quad w(a)+w(b) \geq m .
$$

$$
\sum_{\substack{a, b \in \mathbb{Z} \\ a+b=s}} h_{a, b} \gamma^{a}=0 \quad(\gamma \in \Delta)
$$

for all $s \in \mathbb{Z}_{2^{m}-1} \backslash\{0\}$.
$h^{(s)}=\left(h_{0, s}, h_{1, s-1}, \ldots, h_{s, 0}, h_{s+1,2^{m}-2}, \ldots, h_{2^{m}-2, s+1}\right) \in \operatorname{BCH}(\Delta)$,
so 0 , or weight $\geq 2^{m-1}+1$.
Conjecture (Tu,Deng)
$\#(a, b)$ with $a, b \in \mathbb{Z}_{2^{m}-1} \backslash\{0\}$ and $a+b \equiv s$ for which

$$
w(a)+w(b) \leq m-1
$$

is at most 2^{m-1}.
Almost solved using modular 2-ary add-with-carry techniques

Conclusions

- weight (in)equalities mostly derived by deep and powerful algebraic methods (character theory, p-adic methods, ...)
- Leads to interesting mathematics.
- p-Ary weight techniques are a valuable tool in algebraic combinatorics.

