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Introduction

Background:
Masters (Association schemes) & Ph.D. (Modulation codes)
both from Eindhoven Technical University, the Netherlands,
supervisor Jack van Lint (and Paul Siegel)

1982-1985:
CNET (Centre National d’Études des Télécommunications),
Issy-les-Moulineaux (Paris), France

Main research:

I FFT (Fast Fourier Transforms) and NTT (Number Theoretic
Transforms)

I Hardware design, patent −→ convolver prototype

I Factorisation of xN − q over Q.

I Co-inventor (with Pierre Duhamel) of split-radix FFT.



1985-2009:
Philips Research Laboratories, Eindhoven, the Netherlands
(1999-2009: Principal Scientist)

Responsible for Discrete Mathematics within Philips Research

Consultancy and research in Discrete Mathematics, Coding Theory,
Cryptography, Information Theory, and Digital Signal Processing.

2010-:
• Eindhoven University of Technology, the Netherlands
• Own math consultancy firm



More “applied” research topics: published on

I Fourier Transforms (FFT, NTT)

I Finite fields (arithmetic)

I Signal processing algorithms (filtering, write-equalization)

I Testing of IC’s (Integrated Circuits)

I Switching networks (self-routing optical switching)

I LFSR’s (Linear Feedback Shift Registers), m-sequences

I Block-designs and various design-like stuff

I Optimization, and algorithms [Pascal, Fortran, C, C++, ...]

I Constrained (modulation) codes (Magnetic recording, CD)

I Error-correcting codes, decoding (RS, iterative erasure)

I Video-on-demand

I Cryptography (timing attacks, visual crypto, whitebox crypto)

9 US patents (algorithms, arithmetic, constrained codes, crypto)



More “pure” research topics: published on

I Association schemes
(schemes related to conic in PG(2, q), q even, and PSL(2, q),
fusion schemes, finite geometry, Metz/Wilbrink SR graphs,
pseudocyclic association schemes)

I Permutation polynomials

I Kloosterman sum identities

I Cryptography - IPP (Codes with Identifiable Parent Property)

I p-rank problems in difference sets, bent functions, sequences

I Coding theory - many topics
(with Qing Xiang: proof of Welch and Niho conjectures)



Research interests: very broad, with emphasis on

I Algebraic combinatorics

I Finite fields and their applications

I Linear algebra and its applications

I like to collaborate: about 80% of my publications with co-authors

Co-authors include:

Aart Blokhuis, Gary Ebert (Geometry)
Janós Körner, Simon Lytsyn, Jack van Lint [7x] (Combinatorics)
Tor Helleseth, Qing Xiang [13x] (Algebraic combinatorics)

Ludo Tolhuizen [14x] (Coding theory/cryptography/combinatorics)

Pierre Duhamel [7x] (FFT/NTT)
Kees Schouhamer Immink [5x] (constrained coding)



p-Ary weight problems and applications I:
Difference sets and their p-ranks

(G , ·) abelian group, |G | = v .

D ⊆ G is a (v , k , λ)-difference set in G if |D| = k and ∀a 6= 1G

# (d1, d2) in D2 for which

d1 · d−12 = a

equals λ. (∑
d∈D

d

)(∑
d∈D

d−1
)

= (k − λ)1G + λ
∑
g∈G

g .

Consequence:
k(k − 1) = λ(v − 1).

G cyclic, then D cyclic difference set.



(Complex) character χ : (G , ·) 7→ (C∗, · · · ), homomorphism

χ0 : g 7→ 1 (g ∈ G ): trivial character.

Theorem (Character characterization)

Let |G | = v, and let k , λ satisfy

λ(v − 1) = k(k − 1).

Then a k-subset D ⊆ G is (v , k , λ)-difference set iff

χ(D)χ(D) = k − λ

for every nontrivial ( 6= 1) complex multiplicative character χ.
Here

χ(D) =
∑
d∈D

χ(d).

Proof by Fourier inversion.



Example

Classical parameters: Singer difference sets.

H∗ := {x ∈ F∗qm | Tr(x) = 0},

Tr(x) = TrFqm/Fq
(x) = x + xq + · · ·+ xqm−1

.

Tr(ax) = aTr(x) (a ∈ F∗q), so

H∗ ⊂ F∗qm/F
∗
q.

Theorem
H∗ is a

((qm − 1)/(q − 1), (qm−1 − 1)/(q − 1), (qm−2 − 1)/(q − 1))−

(cyclic) difference set in F∗qm/F
∗
q.

Proof?



Gauss and Jacoby sums

q = ps , p prime, Fq = GF(q), finite field with q elements,

F∗ = F \ {0}

Tr(x) = TrFq/Fp
= xp + xp2 + · · ·+ xps−1

, trace function.

ξn complex n-th root of unity

ψ : Fq 7→ C∗, ψ(x) = ξ
Tr(x)
p

is (nontrivial) additive character of Fq

χ : F∗q 7→ C∗ multiplicative character of F∗q; define χ(0) = 0.

χq−1 = 1, the trivial character.



Gauss sum

g(χ) =
∑
a∈Fq

χ(a)ψ(a).

Elementary property:

g(1) = −1, g(χ)g(χ) = q, χ 6= 1.

Note that g(χ) lives in Z[ξq−1, ξp].

Jacoby sum

J(χ1, χ2) =
∑
a∈Fq

χ1(a)χ2(1− a).

χ1, χ2, χ1χ2 6= 1, then

J(χ1, χ2) = g(χ1)g(χ2)/g(χ1χ2),

and so
J(χ1, χ2)J(χ1, χ2) = q, χ 6= 1.



Character characterization theorem can be used to prove that D is
difference set by expressing χ(D) in terms of Gauss and Jacoby
sums!

Example (Singer) χ non-trivial, then

g(χ) = q χ(H∗),

hence χ(H∗)χ(H∗) = qm−2 = k − λ.



Maschietti difference sets:

q = 2m, k integer, (k , q − 1) = 1.

Theorem
If τ : x 7→ x + xk two-to-one on Fq then Dk,m = Imτ \ {0} is a
(2m − 1, 2m−1 − 1, 2m−2 − 1)-difference set in F∗q

Proof: (k − 1, q − 1) = 1, so χ non-trivial, then ∃φ : χ = φk−1;
now

χ(Dk,m) =
1

2
J(φ, χ) (χ = φk).



Possible parameters:

I (regular) k = 2

I (translation) k = 2r , (m, r) = 1, 1 < r < m/2

I (Segre) k = 6

I (Glynn type I) k = 22r + 2r , m ≥ 7 odd, 4r ≡ 1 mod m

I (Glynn type II) k = 3 · 2r + 4, m ≥ 11 odd, 2r ≡ 1 mod m

Nonisomorphic? Compute p-ranks!



p-rank of D is Fp-rank of incidence matrix Ag ,h = δgh−1∈D of
associated (symmetric) design.

Only interesting if p|k − λ [or p|k] (det=0)

I Distinct p-ranks then distinct designs!

p-rank = complexity of associated 0, 1-sequence charD .

Theorem
If char(F) 6 |v, F contains all v∗th roots of 1 (v∗ = exp(G )), then
p-rank of D equals # F-characters χ : G 7→ F∗ with χ(D) 6= 0

Proof: Fourier inversion.

Xχ,g = χ(g), then X−1g ,χ = v−1χ(−g), and if Ag ,h = δgh−1∈D , then

XAX−1 = v · diag(χ(D))χ.



Stickelberger’s theorem

q = ps , α primitive in Fq, f (x) minimal polynomial of α over Fp

p = (f (ξq−1), p)

prime ideal in Z[ξq−1] lying over p:

Z[ξq−1]/p ∼= Fp[x ] mod f (x) ∼= Fq,

isomorphism:
ωp : α 7→ ξq−1

ωp : F∗q 7→ C∗ Teichmüller character.

If χ : F∗q 7→ Z[ξv ]∗ ⊂ C∗ complex multiplicative character, then

χ mod p

multiplicative Fq-character F∗q 7→ F∗q (p = char(Fq) 6 ||F∗q|).



Consequence: p-rank of D is # complex characters χ for which

χ(D) mod p 6= 0.

Let

P = (f (ξq−1), ξp − 1, p)

be the prime ideal in Z[ξq−1, ξp] above p.

(x − 1)p−1 ≡ xp−1 + xp−2 + · · ·+ x + 1 mod p,

so (ξp − 1)p−1 = 0 mod p and

Pp−1 = p, vP(p) = p − 1

(vP is P-adic valuation).



q = ps , p prime. If

a ≡ a0 + a1p + · · ·+ ap−1ps−1 6= 0 mod q − 1,

0 ≤ ai ≤ p − 1, then

w(a) = wp(a) = a0 + a1 + · · · as−1,

the p-ary weight of a.

Theorem (Stickelberger)

vP(g(ω−ap )) = wp(a).

So Pwp(a)||g(ω−ap ) and p(p−1)wp(a)||g(ω−ap )



Example: Singer difference sets, q = ps .

χ character on F∗qm/F
∗
q;

χ = ω
−a(q−1)
p , χ 6= 1 iff (q − 1)a 6= 0 mod qm − 1.

Now
g(ω

−a(q−1
p ) = q · ω−a(q−1)p (H∗),

vP(g(ω
−a(q−1)
p )) = wp(a(q − 1)), vP(q) = (p − 1)s,

and χ0 = 1 gives

χ0(H) = |H∗| 6≡ 0 mod p.

Conclusion: p-rank = 1+ # a, 0 < a < (qm − 1)/(q − 1), with

wp((q − 1)a) = (p − 1)s.



Answer: Hadama’s formulae (q = ps)

1 +

(
p + m − 1

m − 2

)s

.

Similar, but more complicated, for GMW difference sets
(work with Arasu, Player, Xiang)



Example: Maschietti difference sets Dk,m in F∗2m ,
(k , q − 1) = (k − 1, q − 1) = 1

χ(Dk,m) =
1

2
J(φ, χ) (χ = φk)

= 2−1g(χk−1)g(χ)/g(χk).

χ = ω−ap −→ need # a in Z2m−1 \ {0} for which

−1 + w2((k − 1)a) + w2(a)− w2(ka) = 0.



s, a(1), . . . , a(k) ∈ Zpm−1; t1, t2, . . . , tk ∈ Z \ {0},

s ≡ t1a(1) + t2a(2) + · · ·+ tka(k) mod pm − 1.

t+ =
∑

i , ti>0 ti , t− =
∑

i , ti<0 ti .

Theorem (Molular p-ary add-with-carry algorithm)

∃ unique γ = (γi )i∈Zm , indices mod m, so γ−1 = γm−1, for which

k∑
j=1

tja
(j)
i + γi−1 = si + pγi , 0 ≤ i ≤ m − 1. (1)

γ satisfies

(p − 1)w(γ) =
k∑

j=0

tjw(a(j))− w(s); (2)

t− ≤ γi ≤ t+ − 1 (3)

if ∃j : a(j) 6≡ 0 mod pm − 1.
ci modular carries for computation



Exampe: Segre case k = 6

Count a in Z2m−1 \ {0} for which

w(a) + w(5a) = w(6a) + 1.

Method: add-with-carry algorithms. Example: b = 5a = 4a + a,

ai + ai−2 + γi−1 = bi + 2γi ,

indices in Zm, with γi = 0, 1 for all i .

Similar, s = 6a = a + b,

ai + bi + δi−1 = si + 2δi ,

indices in Zm, with δi = 0, 1 for all i .

[2w(a) = w(b) + w(γ)], w(a) + w(b) = w(s) + w(δ),

so we want w(a) + w(b)− w(s) = w(δ) = 1.



Think of computation as

(ai−2, ai−1, γi−1, δi−1)
ai−→ (ai−1, ai , γi , δi ).

Labelled digraph: states (vertices) and arcs

(a′′, a′, γ′, δ′) −→ (a′, a, γ, δ)

whenever

a′′ + a + γ′ − 2γ = b ∈ {0, 1}, a + b + δ′ − 2δ = s ∈ {0, 1},

so initial state + a determines b, γ, s, δ, hence terminal state of arc.

Vδ: states (a′, a, γ, δ) (δ = 0, 1)

Count Bm= # closed directed paths of length m
starting in v ∈ V1, through V0 only, then returning to v .

Counting: tranfer matrix method, Bm = Tr(A10Am−2
00 A01)



A00 =



1 0 0 0 0 0
1 0 1 0 0 0
0 0 0 1 0 1
1 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 1 0


Minimal polynomial

f (X ) = X 6 −X 5 −X 4 + X 3 −X 2 + X = X (X − 1)(X 4 −X 2 − 1),

so
A5 − A4 − A3 + A2 − A + I = O.

In fact
Bm = Bm−2 + Bm−4.

Typically recursive relations for these p-ranks.

Glynn I&II similar but much more complicated, especially Glynn I.



p-Ary weight problems and applications II:
Few-weight codes

q = ps , p prime, m, t positive integers, (t,m) = 1.

C1,t cyclic code over Fq, length n = qm − 1, defining zero’s α, αt ,

α primitive in Fqm . (Usually dimension k = 2m.)

c = (c0, c1, . . . , cn−1) ∈ C1,t

iff
c(α) = c(αt) = 0,

where

c(x) = c0 + c1x + · · ·+ cm−1xm−1 ∈ Fq[x ] mod xn − 1.



A0 = 1,A1, . . . ,An weights of C1,t , where

Aw = {c ∈ C1,t | wt(c) = w}.

C⊥1,t is dual code, weights B0 = 1,B1, . . . ,Bn.

Sometimes C⊥1,t few-weight code.



Relation with sequences:

m-sequence a = a0, a1, . . . , an−1: codeword from simplex code C⊥1 .

decimation by a factor t:

b = a0, at , a2t , . . . , ant ∈ C⊥t .

Cross-correlation

θa,b(τ) =
n−1∑
i=0

(−1)ai+bi+τ = n − dist(a, b).

is weight in C⊥1,t !

Preferred pair of m-sequences: θa,b takes only values

−1, −1± 2b(m+2)/2c;

equivalently, non-zero weights in C⊥1,t are

2m−1, 2m−1 ± 2b(m+2)/2c−1.



Not possible if m ≡ 0 mod 4; four known cases with m ≡ 2 mod 4
(character theory proofs for the two difficult ones)

Known cases: with m odd:

I t = 2r + 1, if (r ,m) = 1 (Gold, 1968)

I t = 22r − 2r + 1, if (r ,m) = 1 (Welch, 1969; Kasami, 1971)

I t = 2r + 3, 2r ≡ −1 mod m (conjectured by Welch, 1972)

I t = 22r + 2r − 1, 4r ≡ −1 mod m (conjectured by Niho, 1972)

More three-weight cases (bigger gaps/CC values) in Gold-Kasami
cases with m/(r ,m) = 1.



Uniform method to prove few-weight results

Step 1: Pless power moment identities

MacWilliams transforms relating weights and dual weights

n−v∑
w=0

(
n − w

v

)
Bw = qk−v

v∑
w=0

(
n − w

v − w

)
Aw

(v = 0, 1, . . . , n) gives

Pi =
n∑

w=1

w iBw = expr(n, k,A0, . . . ,Ai )



0 < w1 ≤ w2 ≤ w3 ≤ w4 < n,

E =
n∑

w=1

(w−w1)(w−w2)(w−w3)(w−w4)Bw = expr(n, k ,A3,A4)

(A0 = 1,A1 = A2 = 0 )

C⊥ no weights in (w1,w2) ∪ (w3,w4) then

E ≥ 0,

equality iff C⊥ has only nonzero weights w1,w2,w1,w4.

In our case: take w2 = w3 = 2m−1,w1,w4 = 2m−1 ± 2m−1−M



Step 2: Compute low weights of C

Compute A3,A4, or show min dist(C) ≥ 5. Often difficult!

Breakthrough result by Hans Dobbertin:
both Welch and Niho codes have minimum distance 5.

If few-weight assumption correct, then now E = 0.



Step 3:
Find restrictions on weights of C = C⊥1,t : McEliece’s lemma

Theorem (McEliece)

C binary cyclic code, Bw weight enumerator, ` smallest positive
number for which ` nonzero’s of C (repetitions allowed, not all 1)
have product 1. Then

2`−1|Bw (w > 0), ∃w : 2` 6 |Bw .

Some proof method involve Gauss-sums and Stickelberger’s
theorem!



Example: C = C⊥1,t . Now C⊥ = C1,t has zero’s αi for i one of

1, 2, 4, . . . , 2m−1; t, 2t, 4t, . . . , 2m−1t.

nonzero’s of C = C⊥1,t are (Fourier inversion) αj for j one of

−1,−2,−4, . . . ,−2m−1; −t,−2t,−4t, . . . ,−2m−1t.∨ ∨
b a

product is 1 iff

−b − ta ≡ 0 mod 2m − 1, b̄ ≡ ta mod 2m − 1;

# is w(b) + w(a) = m − w(b̄) + w(a) = m − (w(ta)− w(a)

` = m −M(m; t), M(m; t) = max
a∈Z2m−1\{0}

(
w(ta)− w(a)

)
.



Gold case:

M(m; 2r + 1) =

{
m/2, m/(r ,m) even;
(m − (r ,m))/2, m/(r ,m) odd.

Proof:

M(m; 2r + 1) = max
a∈Z2m−1\{0}

(
w((2r + 1)a)− w(a)

)
.

s = (2r + 1)a = 2ra + a,

ai + ai−r + γi−1 = si + 2γi , i ∈ Zm,

with γi = 0, 1.

2w(a) = w(s) + w(γ) . Put ω = ai − γi =⇒
w(s)− w(a) = w(ω).

ωi = 1 =⇒ ai = 1, γi = 0 =⇒ ai−r = 0 =⇒ ωi−r ≤ 0.



Partition ω0, . . . , ωm−1 into groups

(ωi , ωi−r , . . . , ωi+r ).

# groups e = (r ,m), each size L = m/(r ,m).

Weight per group ≤ bL/2c
�

Kasami case similar.

Welch and especially Niho cases much more complicated!

Niho digraph (after trick) has 1296 vertices.



p-Ary weight problem III:
Algebraic immunity

Boolean functions on m variables:

f : F2m 7→ F2, f =
∑

a∈Z2m−1

faxa,

xa = xa0
0 xa1

1 · · · x
am−1

m−1 , deg(xa) = w(a),

a = a0 + a1 2 + · · ·+ am−12m−1.

Algebraic immunity

AIm(f ) = min{deg(g) | g 6= 0, f · g = 0 or (f + 1) · g = 0}.

AIm(f ) ≤ bm2 c (Courtois)



α primitive in F2m .

∆ = {α0 = 1, α, α2, . . . , α2m−1},

Define
g : F2m 7→ F2, supp(g) = ∆;

f : F2m × F2m 7→ F2, f (x , y) = g(xy2m−2).

Ψ = supp(f ) = {(γy , y) | γ ∈ ∆, y ∈ F∗2m}

f is bent (Dillon)

Conjecture (Tu, Deng)

AI2m(f ) = m, maximal.



Conjecture (Tu, Deng)

h(x , y) =
∑

a,b∈Z2m−1
ha,bxayb zero on Ψ, then deg(h) ≥ m.

If not, then
ha,b = 0, w(a) + w(b) ≥ m.

∑
a,b∈Z

a+b=s

ha,bγ
a = 0 (γ ∈ ∆)

for all s ∈ Z2m−1 \ {0}.

h(s) = (h0,s , h1,s−1, . . . , hs,0, hs+1,2m−2, . . . , h2m−2,s+1) ∈ BCH(∆),

so 0, or weight ≥ 2m−1 + 1.

Conjecture (Tu,Deng)

# (a, b) with a, b ∈ Z2m−1 \ {0} and a + b ≡ s for which

w(a) + w(b) ≤ m − 1

is at most 2m−1.

Almost solved using modular 2-ary add-with-carry techniques



Conclusions

I weight (in)equalities mostly derived by deep and powerful
algebraic methods (character theory, p-adic methods, . . . )

I Leads to interesting mathematics.

I p-Ary weight techniques are a valuable tool in algebraic
combinatorics.


