Automorphisms of cyclic codes (preceded by a brief research overview)

Henk Hollmann

Singapore, Nanyang Technological University, 29 Sept. 2010

Contents

Introduction

Brief research overview

Automorphisms of cyclic codes

- 1. Recurrence relations, recurring sequences, and q-polynomials
- 2. Two basic non-standard examples
- 3. Permutation automorphisms of (linear) cyclic codes
- 4. Extension and lifting
- 5. A subgroup in PGL(m, q)
- 6. The case m = 2: subgroups of PGL(2, q)
- 7. Reversing the construction
- 8. Conclusions
- 9. Further problems

Introduction

Background: graduation (association schemes) & Ph.D. (modulation codes) from Eindhoven Technical University, the Netherlands, supervisor Jack van Lint (and Paul Siegel)

1982-1985: CNET (Centre National d'Études des Télécommunications), Issy-les-Moulineaux (Paris), France

Main work: FFT (Fast Fourier Transforms) NTT (Number Theoretic Transforms)

Co-inventor (with Pierre Duhamel) of split-radix FFT.

<u>1985-2009</u>:

Philips Research Laboratories, Eindhoven, the Netherlands (1999-2009: Principal Scientist)

Responsible for Discrete Mathematics within Philips Research

Consultancy and research in Discrete Mathematics, Coding Theory, Cryptography, Information Theory, and Digital Signal Processing.

<u>2010-</u>:

- Eindhoven University of Technology, the Netherlands
- Own math consultancy firm

1. Recurrence relations, recurring sequences, and *q*-polynomials

 $q = p^r$ p prime $\sigma_0, \sigma_1, \dots, \sigma_{m-1} \in \mathbf{F}_q$ $\sigma_0 \neq 0$ recurrence relation (of order m)

$$u_{k} = \sigma_{m-1}u_{k-1} + \dots + \sigma_{1}u_{k-m+1} + \sigma_{0}u_{k-m}$$
(1)

with characteristic polynomial

$$f(x) = x^m - \sigma_{m-1}x^{m-1} - \dots - \sigma_1 x - \sigma_0$$
(2)

 $u = u(u_0, u_1, \dots, u_{m-1})$ sequence generated by (1) from u_0, \dots, u_{m-1} .

The smallest period per(u) is smallest $M \ge 1$ for which $u_{M+k} = u_k \ \forall k$.

The <u>order</u> ord(f) is smallest $N \ge 1$ for which $f(x)|x^N - 1$.

<u>Fact 1</u>: per(u)|ord(f)

<u>Fact 2</u>: f <u>irreducible</u> over \mathbf{F}_q with zeroes $\xi, \xi^q \dots, \xi^{q^{m-1}} \in \mathbf{F}_{q^m}$, then

 $L(x) = L_0 x + L_1 x^q \dots + L_{m-1} x^{q^{m-1}}, \qquad L_1, \dots, L_{m-1} \in \mathbf{F}_{q^m}$ will be referred to as a <u>q-polynomial over \mathbf{F}_{q^m} of <u>q-degree</u> m. (linearized polynomial).</u>

<u>Fact</u>: 1-1 with \mathbf{F}_q -linear maps on \mathbf{F}_{q^m} .

Brison, Nogueira (2003)

A multiplicative subgroup $\mathbf{K} \subseteq \mathbf{F}^*$, with $\mathbf{F}_q \subseteq \mathbf{F}$, is called *f*-subgroup if $\exists u_0, \ldots, u_{m-1}$ such that

$$\mathbf{K} = \{u_0, u_1, \dots, u_{n-1}\}, \qquad |\mathbf{K}| = n = \operatorname{ord}(u)$$

- ▶ wlog u₀ = 1
- F^* cyclic, so K uniquely determined by |K|
- ξ zero of f, then $\langle \xi \rangle$ is f-subgroup (take $u_i = \xi^i$)
- *f* irreducible over F_q with zero ξ, then ⟨ξ⟩ is only *f*-subgroup (since ord(u) = ord(f) = ord(ξ)).

f not mentioned: K is linear recurring sequence subgroup

<u>Question</u>: Is an *f*-subgroup <u>always</u> of the form $\langle \xi \rangle$, for a zero ξ of *f*?

From now on, f is irreducible over \mathbf{F}_q , of degree m, with zero $\xi \in \mathbf{F}_{q^m}$

 $\langle \xi \rangle$ is called <u>non-standard</u> f-subgroup if

$$\langle \xi \rangle = \{ u_0 = 1, u_1, \dots, u_{n-1} \}, \qquad n = |\langle \xi \rangle| = \operatorname{ord}(\xi)$$
with $(u_0, \dots, u_{m-1}) \neq (1, \xi^{q^j}, \xi^{2q^j}, \dots, \xi^{(m-1)q^j})$ for all j
(Brison and Nogueira)

- ► ξ is called <u>non-standard</u>, of <u>degree</u> m over \mathbf{F}_q and <u>order</u> n, if its <u>minimal polynomial</u> f <u>over</u> \mathbf{F}_q has <u>degree</u> m, with $\langle \xi \rangle$ <u>non-standard</u> f-subgroup, of <u>order</u> (size) n
- A q-polynomial L(x) = L₀x + L₁x^q ··· + L_{m-1}x^{q^{m-1}} is called <u>non-standard</u>, of <u>q-degree</u> m over F_{q^m}, if L₀, ..., L_{m-1} ∈ F_{q^m} and L(x) ≠ cx^{q^j} for all c ∈ F_{q^m} and all j = 0, ..., m − 1.

Consequence: ξ is non-standard of degree m over \mathbf{F}_q if and only if there exists a non-standard q-polynomial L of q-degree m over \mathbf{F}_{q^m} such that

$$L(\langle \xi \rangle) = \langle \xi \rangle.$$

 ξ is called non-standard of degree m over \mathbf{F}_q if

▶ \mathbf{F}_{q^m} is <u>smallest</u> extension of \mathbf{F}_q containing ξ , and

► if \exists **F**_q-linear map *L* on **F**_{q^m}, not of the form $L(x) = cx^{q^{j}}$, for which $L(\langle \xi \rangle) = \langle \xi \rangle$.

2. Two basic non-standard examples

 $\xi \in \mathbf{F}_{q^m}$, degree m over \mathbf{F}_q , order $n = \operatorname{ord}(\xi)$

Obviously no non-standard examples for m = 1. $(u_k = \sigma_0 u_{k-1}, u_0 = 1 \implies u_k = \sigma_0^k)$

No non-standard examples with $n \le 4$: If m > 1, then $n \ge 3$; if n = 3, then $\langle \xi \rangle = \{1, \xi, \xi^q\}$; if n = 4, then $\xi^2 = -1$ and $\xi^q = -\xi$.

Example 1: $n = q^m - 1$, that is, ξ primitive in \mathbf{F}_{q^m} , i.e., $\langle \xi \rangle = \mathbf{F}_{q^m}^*$. Then ξ non-standard iff $m \ge 2$ and $q^m > 4$ (i.e., n > 4).

Proof:

 $m \times m \mathbf{F}_q$ -matrix $\mathcal{L} \leftrightarrow q$ -polynomial L of q-degree m over \mathbf{F}_{q^m} .

Straightforward counting of non-singular matrices \implies not all from standard *q*-polynomials $cx^{q^{j}}$ if $m \ge 2$ and $q^{m} > 4$. Example 2: ξ has minimal polynomial $f(x) = x^m - \eta$ over \mathbf{F}_q . Then ξ non-standard over \mathbf{F}_q iff m > 1 and n > 4.

Proof:
$$\langle \xi \rangle = \langle \eta \rangle. \{1, \xi, \dots, \xi^{m-1}\}.$$

Hence for $i = 0, \dots, m-1$:
 $L(\xi^i) = \eta_i \xi^{\tau(i)},$
with $\eta_i \in \langle \eta \rangle$, and τ permutation on $\{0, \dots, m-1\}.$
 $L(1) = 1$ iff $\eta_0 = 1$ and $\tau(0) = 0.$
Extend by \mathbf{F}_q -linearity $\Longrightarrow L(\langle \xi \rangle) \subseteq \langle \xi \rangle$ and non-singular on $\mathbf{F}_{q^m}.$
 $e = \operatorname{ord}(\eta)$, then $e > 1$ (since $x^m - 1$ not irreducible for $m > 1$).
 $\#$ choices $e^{m-1}(m-1)! > m$ (= $\#$ "forbidden" choices
 $L(x) = x^{q^i})$
iff ($e = 2$ and $m \ge 3$) or ($e \ge 3$ and $m \ge 2$), that is [$m, e > 1$], iff
 $n = me > 4.$

 \implies Examples with m = 2, $n = 2e \ge 6$, if both q, (q - 1)/e odd.

3. Permutation automorphisms of (linear) cyclic codes

$$(n,q)=1$$

Cyclic code of length *n* over \mathbf{F}_q is \mathbf{F}_q -subspace $C \subseteq \mathbf{F}_q^n$ such that $c = (c_0, c_1, \dots, c_{n-1}) \in C \Longrightarrow c^{\sigma} := (c_{n-1}, c_0, c_1, \dots, c_{n-2}) \in C.$ Ideal in $\mathcal{R} = \mathbf{F}_q[x] \mod x^n - 1$, hence if $n | q^m - 1 \ (m > 0)$, then $\exists Z \subseteq \mathbf{F}_{q^m}^*$, all *n*-th roots of 1, such that $C = \{c(x) \in \mathcal{R} \mid c(\beta) = 0 \quad \forall \beta \in Z\}.$

<u>Definition</u>: $\pi \in S_n$ (permutations on $\{0, 1, \ldots, n-1\}$), then

$$c^{\pi} = (c_{\pi(0)}, c_{\pi(1)}, \dots, c_{\pi(n-1)}).$$

Permutation automorphisms PermAut(C):

All $\pi \in S_n$ such that $c \in C \Longrightarrow c^{\pi} \in C$.

- $\sigma \in \operatorname{PermAut}(C)$
- ▶ $\psi : i \mapsto qi \mod n$, then $\psi \in \operatorname{PermAut}(C)$ Frobenius automorphism, $c^{\psi}(x) = c(x^q)$.

So $< \sigma, \psi > \subseteq \operatorname{PermAut}(C)$.

Question: When is there more?

Theorem

C cyclic code, length *n*, over \mathbf{F}_q , with <u>defining zero</u> ξ , of degree *m* over \mathbf{F}_q , and of order *n*. Then *C* has more permutation automorphisms if and only if ξ non-standard over \mathbf{F}_q .

Proof:

a) Suppose L q-polynomial of q-degree m and

$$L(\xi^i) = \xi^{\pi(i)}, \qquad \pi \in S_n.$$

If $c \in C$, then

$$0 = L(0) = L(\sum_{i=0}^{n-1} c_i \xi^i)$$

= $\sum_{i=0}^{n-1} c_i L(\xi^i)$
= $\sum_{i=0}^{n-1} c_i \xi^{\pi(i)} = \sum_{j=0}^{n-1} c_{\pi^{-1}(j)} \xi^j,$

hence $c^{\pi^{-1}(i)} \in C$. So $\pi^{-1} \in \text{PermAut}(C)$.

b) Let $\pi^{-1} \in \operatorname{PermAut}(C)$. Define a *q*-polynomial *L* on \mathbf{F}_{q^m} by $L(\xi^j) = \xi^{\pi(j)}, \qquad j = 0, \dots, m-1,$ (3)

and extend by \mathbf{F}_{q} -linearity.

For $j \ge m$, let

$$\xi^{j} = a_{0} + a_{1}\xi + \dots + a_{m-1}\xi^{m-1}.$$

Then

$$c = (a_0, a_1, \ldots, a_{m-1}, 0, \ldots, 0, -1, 0, \ldots, 0) \in C,$$

 $(-1 ext{ in position } j)$, hence also $c^{\pi^{-1}} \in \mathcal{C}$, so that

$$0 = \sum_{i=0}^{n-1} c_i^{\pi^{-1}} \xi^i = \sum_{i=0}^{n-1} c_{\pi^{-1}}(i) \xi^i = \sum_{k=0}^{n-1} c_k \xi^{\pi(k)}$$

= $a_0 \xi^{\pi(0)} + a_1 \xi^{\pi(1)} + \dots + a_{m-1} \xi^{\pi(m-1)} - \xi^{\pi(j)}$
= $L(\xi^j) - \xi^{\pi(j)}$.

So (3) holds for all j, that is, $L(\xi^i) = \xi^{\pi(i)}$, $\pi \in S_n$.

Fact:
$$\sigma \leftrightarrow L(x) = \xi x$$
 and $\psi^{-1} \leftrightarrow L(x) = x^q$.

So PermAut(C) is bigger than $\langle \sigma, \psi \rangle$ iff there are non-standard L fixing $\langle \xi \rangle$.

Conclusion: full classification is a difficult problem!

New examples:

Example 3: (Binary Golay code) Let q = 2, n = 23, and m = 11; let α primitive in $\mathbf{F}_{2^{11}}$ and $\xi = \alpha^{(2^{11}-1)/23}$. ξ is defining zero for the length-23 binary Golay code, and is non-standard of order n = 23 and degree m = 11 over \mathbf{F}_2 .

Example 4: (Ternary Golay) Let q = 3, n = 11, and m = 5; let α primitive in \mathbf{F}_{3^5} and $\xi = \alpha^{(2^5-1)/11}$.

 ξ is defining zero for the length-11 ternary Golay code, and is non-standard of order n = 1 and degree m = 5 over \mathbf{F}_3 .

Further examples rare: only "non-standard" binary QR- codes of length < 4000 are the (7, 4, 3) Hamming and the binary Golay.

4. Extening and lifting

 $\frac{\text{Important definition: } q \text{-order } \text{ord}_q(\xi) \text{: smallest } d \ge 1 \text{ for which} \\ \overline{\xi^d} \in \mathbf{F}_q. \text{ (Restricted period of } f.)$

Lemma (i) $d = \operatorname{ord}_q(\xi) = n/(n, q - 1)$ (ii) n = de, with e = (n, q - 1) and $(d, \frac{q-1}{e}) = 1$ **Proof:** e = (n, q - 1), then $\xi^d \in \mathbf{F}_q$ iff $\xi^{d(q-1)} = 1$ iff n|d(q-1) iff $\frac{n}{e}|d$.

Theorem

 $d = \operatorname{ord}_q(\xi)$, then $m \leq d$, $d | \frac{q^m - 1}{q - 1}$, and m = d iff $f(x) = x^d - \xi^d$.

Proof: $\xi \in \mathbf{F}_{q^m} \Longrightarrow \xi^{\frac{q^m-1}{q-1}} \in \mathbf{F}_q$; f(x) minimal polynomial of ξ over $\mathbf{F}_q \Longrightarrow f(x)|x^d - \xi^d$.

Theorem (Extension)

Let ϕ non-standard of degree m over \mathbf{F}_q , with order $\operatorname{ord}(\phi) = n$ and q-order $d = \operatorname{ord}_q(\phi)$. If ξ in $\mathbf{F}_q^*\langle\phi\rangle$ with $\langle\phi\rangle \subseteq \langle\xi\rangle$, then ξ also non-standard of degree m over \mathbf{F}_q , with same q-order and same non-standard q-polynomials.

Proof:

Let $\langle \phi \rangle \subseteq \langle \xi \rangle \subseteq \mathbf{F}_{q}^{*} \langle \phi \rangle$.

• Obviously, ξ and ϕ have the same degree over \mathbf{F}_q .

►
$$\operatorname{ord}_q(\xi) = \operatorname{ord}_q(\phi) = d$$
:
Let $e = (n, q - 1)$ and write $f = (q - 1)/e$.
Then $n = de$, $(d, f) = 1$, and
 $|\mathbf{F}_q^*\langle\phi\rangle| = |\mathbf{F}_q^*\{1, \phi, \dots, \phi^{d-1}\}| = (q - 1)d = nf$.
So $N = \operatorname{ord}(\langle\xi\rangle) = nk$ with $k|f$.
Then $(N, q - 1) = (dek, ef) = ek(d, f/k) = ek$, hence
 $\operatorname{ord}_q(\xi) = N/ek = d$.

L q-polynomial of q-degree m over F_{q^m}, L bijection on ⟨φ⟩, then L also bijection on F^{*}_a⟨φ⟩:

$$\begin{array}{l} \alpha, \beta \in \mathbf{F}_q \text{ and } L(\alpha \phi^i) = L(\beta \phi^j) \Longrightarrow \\ \alpha \beta^{-1} = L(\phi^j)/L(\phi^i) \in \langle \phi \rangle \text{ and } L(\alpha \beta^{-1} \phi^i) = L(\phi^j) \Longrightarrow \\ \alpha \beta^{-1} \phi^i = \phi^j, \text{ or } \alpha \phi^i = \beta \phi^j. \end{array}$$

Finally, $\langle \phi \rangle \subseteq \langle \xi \rangle \iff \langle \xi \rangle = H \langle \phi \rangle$ with *H* subgroup of $\mathbf{F}_q^* \Longrightarrow L(\langle \xi \rangle) \subseteq \langle \xi \rangle$, so *L* bijection on $\langle \xi \rangle$.

In fact, $H = \mathbf{F}_q \cap \langle \xi \rangle = \langle \xi^d \rangle$, of size *ke* since $\phi^d \in H$.

<u>**Remark1</u>**: $\langle \phi \rangle \subseteq \langle \xi \rangle$ iff $n = \operatorname{ord}(\phi) | \operatorname{ord}(\xi)$.</u>

<u>Remark2</u>: ϕ non-standard of degree m over \mathbf{F}_q , $\xi \in \langle \phi \rangle$, and $\langle \xi \rangle = \langle \phi \rangle$, then ξ also non-standard.

<u>Remark 3</u>: Apllies to ternary Golay \implies non-standard element in \mathbf{F}_{3^5} , of of order 22 and degree 5 over \mathbf{F}_3 .

Let
$$q_0 = p^s$$
 and $q = q_0^t$.

Theorem (Lifting)

 ξ non-standard of degree m over \mathbf{F}_{q_0} and (m, t) = 1, then ξ also non-standard of degree m over \mathbf{F}_{q} , with $\operatorname{ord}_q(\xi) = \operatorname{ord}_{q_0}(\xi)$.

Proof:

• q-order:
$$n|q_0^m - 1$$
, hence

$$(n, q-1) = (n, q_0^m - 1, q_0^t - 1) = (n, q_0 - 1).$$

degree and non-standard:

$$\xi, \xi^{q_0}, \dots, \xi^{q_0^{m-1}} \text{ distinct}, \qquad \xi^{q_0^m} = \xi.$$
Now $\boxed{\xi^{q_0^k} = \xi^{q_0^{k \mod m}}}$ and
 $\{0, t, 2t, \dots, (m-1)t\} \equiv \{0, 1, \dots, m-1\} \mod m,$
so $\{\xi, \xi^q, \dots, \xi^{q^{m-1}}\} = \{\xi, \xi^{q_0}, \dots, \xi^{q_0^{m-1}}\},$ and
same minimal polynomial & same recursion.

Conclusion: If

▶ ϕ non-standard of degree m over \mathbf{F}_{q_0} , with order $n_0 = de_0$ and q_0 -order d, so $e_0|q_0 - 1$ and $\left(d, \frac{q_0 - 1}{e_0}\right) = 1$;

• $q = q_0^t$ with (t, m) = 1, then (first lift, then extend)

 $\exists \xi$ non-standard of degree *m* over \mathbf{F}_q , with order n = de and *q*-order *d* whenever

$$e_0|e|q-1.$$

Example 1 (primitive element) \longrightarrow Example 1^{*}, with

$$d = rac{q_0^m - 1}{q_0 - 1}, \qquad n = rac{q_0^m - 1}{q_0 - 1} e, \qquad ext{with} \qquad q_0 - 1 |e|q - 1|e|q - 1|e|q$$

for $m \ge 2$ and $q_0^m > 4$.

"Classical" examples for m = 2, $f(x) = x^2 - \sigma_1 x - \sigma_0$ over \mathbf{F}_q :

σ₁ = 0; q-order d = m = 2, well understood
σ₁ ≠ 0;
d = 3 not possible
d = q₀ + 1, q = q₀^t with t odd, q₀ > 2, n = (q₀ + 1)e with q₀ - 1|e|q - 1 by extension and lifting a primitive element.

<u>Aim</u>: Show that we can <u>reverse</u> this construction.

So ξ non-standard of degree *m* and *q*-order *d* over \mathbf{F}_q , then

- First task: $d = q_0 + 1$, where $q = q_0^t$ with t odd;
- Then: ξ obtained from φ, with ⟨φ⟩ = ⟨ξ⟩ ∩ F_{q₀²}, by extension and lifting.
- Finally: show that ϕ primitive.

5. A subgroup in PGL(m, q)

• characteristic polynomial of ξ over \mathbf{F}_q is

$$f(x) = x^m - \sigma_{m-1}x^{m-1} - \cdots - \sigma_1 x - \sigma_0.$$

$$T: \xi^{i} \mapsto \xi^{i+1};$$

$$L: \xi^{i} \mapsto \xi^{\pi(i)}, \ (\pi \in S_{n}).$$

Both F_q-linear maps on F_{q^{m}} fixing set $\langle \xi \rangle.$

Note that $T^d = \xi^d I = \eta I$,

Consider T and L as maps on $\operatorname{PG}(m-1,q) o \widetilde{T}$ and \widetilde{L}

So identify ξ and $\lambda \xi \forall \lambda in \mathbf{F}_q^*$.

Consequence: \tilde{T} has order d.

 $\tilde{G} = \langle \tilde{T}, \tilde{L} \rangle$ subgroup of PGL(*m*, *q*) fixing set $C = \{1, \xi, \dots, \xi^{d-1}\}$ of size *d* in PG(*m*-1, *q*).

6. The case m = 2: subgroups of PGL(2, q)

From now on,
$$\boxed{m=2}$$
, $f(x) = x^2 - \sigma_1 x - \sigma_0$.
 $L(1) = 1$, $L(\xi) = \omega + \nu \xi$.
 $L = \begin{pmatrix} 1 & \omega \\ 0 & \nu \end{pmatrix}$, $T = \begin{pmatrix} 0 & \sigma_0 \\ 1 & \sigma_1 \end{pmatrix}$.

normalisation:
$$\lambda = \sigma_0/\sigma_1^2$$
, $\tilde{\xi} = \xi/\sigma_1$ zero of $x^2 - x - \lambda$;
 $\tilde{\omega} = \omega/\sigma_1$, $L(\tilde{\xi}) = \tilde{\omega} + \nu \tilde{\xi}$,

$$L \to \Gamma = \begin{pmatrix} 1 & \tilde{\omega} \\ 0 & \nu \end{pmatrix} \qquad T \to \Lambda = \begin{pmatrix} 0 & \lambda \\ 1 & 1 \end{pmatrix}$$

w.r.t. basis $\langle 1, \tilde{\xi} \rangle$.

 $\mathcal{O} = \{1, \Lambda(1) = \tilde{\xi}, \dots, \Lambda^{d-1}(1)\} = \tilde{\xi}^{d-1}\} \subseteq \mathrm{PG}(1, q) \text{ is an orbit of subgroup } G = \langle \Lambda, \Gamma \rangle \text{ of } \mathrm{PGL}(2, q), \text{ of size } d.$

Theorem (Dickson, around 1900) Let $q = p^r$ with p prime. (i) If $g \neq id$ in PGL(2, q) has order k, with f fixed points, then all orbits of size > 1 have size k, and one of:

$$f = 0, k|q + 1;$$
 $f = 1, k = p;$ $f = 2, k|q - 1.$

Theorem (continued)

(ii) The subgroups of PGL(2, q) are as follows:

- 1. Cyclic subgroups C_k , of order k = 2 (if p is odd), or of order k > 2 with $k|q \pm 1$.
- 2. <u>Dihedral</u> subgroups D_{2k} of order 2k, with k = 2 (if p is odd), or with k > 2 and $k|q \pm 1$.
- 3. Elementary abelian subgroups E_{p^k} , of order p^k ($0 \le k \le r$).
- 4. A semidirect product $E_{p^k} \rtimes C_{\ell}$ of an elementary subgroup E_{p^k} , $1 \le k \le r$, and a cyclic group C_{ℓ} , where $\ell | q - 1$ and $\ell | p^k - 1$.
- 5. Subgroups isomorphic to $A_4 \cong PSL(2,3)$, $S_4 \cong PGL(2,3)$, or $A_5 \cong PSL(2,4)$.
- One conjugacy class of subgroups isomorphic to PSL(2, p^k), where k|r.
- 7. One conjugacy class of subgroups isomorphic to $PGL(2, p^k)$, where k|r.

Analysis of Λ and Γ :

 $\Lambda: \widetilde{\xi}^i\mapsto \widetilde{\xi}^{i+1}$ has order d and no fixed points, so d|q+1.

$$L(x) = x \qquad \Leftrightarrow \qquad \Gamma = I, \qquad \nu = 1, \qquad \tilde{\omega} = 0;$$

$$L(x) = x^{q} \qquad \Leftrightarrow \qquad \nu = -1, \qquad \tilde{\omega} = 1.$$

Theorem

The group $G = \langle \Lambda, \Gamma \rangle$ is one of the following.

- A cyclic group, when L(x) = x;
- a dihedral group, when $L(x) = x^q$;
- ► a conjugate of PSL(2, q₀) or PGL(2, q₀), in the nonstandard case, with d = q₀ + 1 > 3 and q = q₀^t, with t odd.

Proof:

1.
$$G$$
 cyclic $\implies \Gamma\Lambda = \Lambda\Gamma \implies \Lambda = I$ (case $L(x) = x$);
2. G dihedral $\implies \Lambda^2 = (\Lambda\Gamma)^2 \implies \nu = -1, \tilde{\omega} = 1, L(x) = x^q$;
3. $G \neq E_{p^k}$ with $k \ge 2$: note $d|q + 1$, so $(p, d) = 1$;
4. $G \neq E_{p^k} \rtimes C_{\ell}, \ell |q - 1, \ell|p^k - 1$;
note $(d, p) = 1$, so $d|\ell$; then $d|q + 1 \implies d|2$ (no, $d \ge 3$).
5. If $G \simeq A_4, S_4, A_5$, then $d \in \{3, 4, 5\}$.
Separate argument:
 $d = 3$ impossible;
 $d = 4 \implies p = 3, \qquad d = 5 \implies p = 2$
6,7 $G \simeq PSL(2, q_0), PGL(2, q_0), with q_0 = p^s, q = p^r, s|r.$
Orbitsizes $q_0 + 1, q_0^2 - q_0, q_0(q_0^2 - 1)$ and $(d, p) = 1$, so
 $d = q_0 + 1|q + 1$, hence $t = r/s$ odd.

Theorem

 $\lambda, \nu, \tilde{\omega} \in \mathbf{F}_{q_0}$, hence $G = PSL(2, q_0)$ or $G = PGL(2, q_0)$.

Proof:

 $\underbrace{ \underline{\text{Step 1}} }_{\text{then } M \in \operatorname{PGL}(2, q), \ q = q_0^t, \\ \text{then } M \in \operatorname{PGL}(2, q_0) \text{ iff } M^{(q_0)} = \phi M \exists_{\phi \in \mathbf{F}_q^*}, \text{ where }$

$$\left(\begin{array}{cc} a & b \\ c & d \end{array}\right)^{(q_0)} = \left(\begin{array}{cc} a^{(q_0)} & b^{(q_0)} \\ c^{(q_0)} & d^{(q_0)} \end{array}\right)$$

[Idea: iff $x \mapsto \frac{ax+b}{cx+d}$ fixes $\mathbf{F}_{q_0}^+ := \mathbf{F}_{q_0} \cup \{\infty\}$ setwise, so iff $\left(\frac{ax+b}{cx+d}\right)^{(q_0)} = \frac{ax+b}{cx+d} \forall x$ So second-degree polynomial in x is zero, so all coefficients are zero.] $\frac{\text{Consequence: If } AMA^{-1} \in \text{PGL}(2, q_0),}{\text{then } (AMA^{-1})^{(q_0)} = \phi AMA^{-1}, \text{ so}}$

$$\det(M)^{q_0-1}=\phi^2, \qquad \operatorname{Tr}(M)=0 ext{ or } \phi=\operatorname{Tr}(M)^{q_0-1}$$

Now det $(\Lambda) = -\lambda$, $\operatorname{Tr}(\Lambda) = 1$, so $\phi = 1$, $(-\lambda)^{q_0-1} = 1$, hence $\lambda \in \mathbf{F}_{q_0}^*$.

Step 2: $d = q_0 + 1$, so $\langle \Lambda \rangle (1) = \{1, \tilde{\xi}, \dots, \tilde{\xi}^{q_0}\} = PG(1, q_0)$, hence Γ fixes $PG(1, q_0)$, so $\nu, \tilde{\omega} \in \mathbf{F}_{q_0}$.

7. Reversing the construction

Theorem If $d = q_0 + 1 \ge 4$, then $\xi \in \mathbf{F}_{q^2} \setminus \mathbf{F}_q$ obtained from some $\phi \in \mathbf{F}_{q_0^2} \setminus \mathbf{F}_{q_0}$, with q_0 -order $q_0 + 1$ again, by lifting and extension. **Proof:** We want $\langle \phi \rangle \subseteq \langle \xi \rangle \subseteq \mathbf{F}_q^* \langle \phi \rangle$ and $\langle \phi \rangle \subseteq \mathbf{F}_{q_0^2}^*$.

So consider

$$\begin{split} \langle \phi \rangle &:= \mathbf{F}_{q_0}^* \cap \langle \xi \rangle \qquad \text{(cyclic)}. \\ \mathcal{L}(1) &= 1, \qquad \mathcal{L}(\tilde{\xi}) = \nu \tilde{\xi} + \tilde{\omega}, \qquad \nu, \tilde{\omega} \in \mathbf{F}_{q_0}; \\ \tilde{\xi} \in \mathbf{F}_{q_0} \setminus \mathbf{F}_{q_0} \text{ since zero of } x^2 - x - \lambda \text{ (irreducible), } \lambda \in \mathbf{F}_{q_0}^*; \\ \text{hence } \mathcal{L}(\mathbf{F}_{q_0}^2) \subseteq \mathbf{F}_{q_0}^2, \text{ so that} \end{split}$$

L bijection on $\langle \phi \rangle$.

 $n = \operatorname{ord}(\xi) = (q_0 + 1)e,$ e = (n, q - 1), $q = q_0^t (t \text{ odd}).$ By "definition", $\phi = \xi^{\delta_0}$, where

$$\delta_0 = n/(n, q_0^2 - 1)$$

is q_0^2 -order of ξ .

Put
$$e_0 = (e, q_0 - 1)$$
; now $\left\lfloor \delta_0 = e/e_0 \right\rfloor$, so
 $n_0 = \operatorname{ord}(\phi) = (q_0 + 1)e_0$.
 $d = q_0 + 1$: $(d, \frac{q-1}{e}) = 1 \Leftrightarrow (q-1)/e \text{ odd} \implies (q_0 - 1)/e_0 \text{ odd}$.
Hence q_0 -order

$$egin{array}{rcl} d_0&=&n_0/(n_0,q_0-1)\ &=&(q_0+1)/(q_0+1,rac{q_0-1}{e_0}), \end{array}$$

so $d_0 = \operatorname{ord}_{q_0}(\phi) = q_0 + 1$.

Last step: Done if

$$\xi \in \mathbf{F}_{q}^{*}\langle \phi \rangle.$$

Now $\eta = \xi^{q_0+1} \in \mathbf{F}_q$, $\phi = \xi^{e/e_0}$, so $\mathbb{F}_q^* \langle \phi \rangle \ge \langle \eta \rangle \langle \phi \rangle$

contains all ξ^k with

$$k = i(q_0 + 1) + je/e_0 \mod n = (q_0 + 1)e.$$

So ok if $(q_0 + 1, e/e_0) = 1$.

Follows from e/e_0 odd. (Details...)

8. Conclusions

 ξ non-standard of degree 2 over \mathbf{F}_q , with $n = \operatorname{ord}(\xi)$ and q-order $d = \operatorname{ord}_q(\xi)$: either $\boxed{d = 2}$ (well-understood) or $d \ge 4$ of form $\boxed{d = q_0 + 1}$, where $q = q_0^t$, t odd, and obtainable from non-standard ϕ of degree 2 over \mathbf{F}_{q_0} with q_0 -order $q_0 + 1$ again, by first lifting ϕ to \mathbf{F}_q , nad then extension to ξ .

Now use theorem (Brison, Nogueira):

If ϕ non-standard of degree 2 over \mathbf{F}_{q_0} with q_0 -order $q_0 + 1$, then ϕ primitive.

9. Further problems

- $m \ge 3$? Subgroups of PGL(3, q)?
- Other cyclic codes?