# Automorphisms of cyclic codes (preceded by a brief research overview) 

Henk Hollmann

Singapore, Nanyang Technological University, 29 Sept. 2010

## Contents

Introduction
Brief research overview
Automorphisms of cyclic codes

1. Recurrence relations, recurring sequences, and $q$-polynomials
2. Two basic non-standard examples
3. Permutation automorphisms of (linear) cyclic codes
4. Extension and lifting
5. A subgroup in $\operatorname{PGL}(m, q)$
6. The case $m=2$ : subgroups of $\operatorname{PGL}(2, q)$
7. Reversing the construction
8. Conclusions
9. Further problems

## Introduction

Background:
graduation (association schemes) \& Ph.D. (modulation codes) from Eindhoven Technical University, the Netherlands, supervisor Jack van Lint (and Paul Siegel)

1982-1985:
CNET (Centre National d'Études des Télécommunications), Issy-les-Moulineaux (Paris), France

Main work:
FFT (Fast Fourier Transforms)
NTT (Number Theoretic Transforms)
Co-inventor (with Pierre Duhamel) of split-radix FFT.

1985-2009:
Philips Research Laboratories, Eindhoven, the Netherlands (1999-2009: Principal Scientist)

Responsible for Discrete Mathematics within Philips Research
Consultancy and research in Discrete Mathematics, Coding Theory, Cryptography, Information Theory, and Digital Signal Processing.

2010-:

- Eindhoven University of Technology, the Netherlands
- Own math consultancy firm

1. Recurrence relations, recurring sequences, and $q$-polynomials
$q=p^{r}, \quad p$ prime
$\sigma_{0}, \sigma_{1}, \ldots, \sigma_{m-1} \in \mathbf{F}_{q}, \quad \sigma_{0} \neq 0$
recurrence relation (of order $m$ )

$$
\begin{equation*}
u_{k}=\sigma_{m-1} u_{k-1}+\cdots+\sigma_{1} u_{k-m+1}+\sigma_{0} u_{k-m} \tag{1}
\end{equation*}
$$

with characteristic polynomial

$$
\begin{equation*}
f(x)=x^{m}-\sigma_{m-1} x^{m-1}-\cdots-\sigma_{1} x-\sigma_{0} \tag{2}
\end{equation*}
$$

$u=u\left(u_{0}, u_{1}, \ldots, u_{m-1}\right)$ sequence generated by (1) from $u_{0}, \ldots, u_{m-1}$.

The smallest period $\operatorname{per}(u)$ is smallest $M \geq 1$ for which $u_{M+k}=u_{k} \forall k$.

The order $\operatorname{ord}(f)$ is smallest $N \geq 1$ for which $f(x) \mid x^{N}-1$.
Fact 1: $\operatorname{per}(u) \mid \operatorname{ord}(f)$
Fact 2: $f$ irreducible over $\mathbf{F}_{q}$ with zeroes $\xi, \xi^{q} \ldots, \xi^{q^{m-1}} \in \mathbf{F}_{q^{m}}$, then

- $\operatorname{per}(u)=\operatorname{ord}(f)$ iff $\left(u_{0}, \ldots, u_{m-1}\right) \neq 0$;
- $u_{k}=L_{0} \xi^{k}+L_{1} \xi^{q k} \cdots+L_{m-1} \xi^{q^{m-1} k}=L\left(\xi^{k}\right)$ for all $k$
$L(x)=L_{0} x+L_{1} x^{q} \cdots+L_{m-1} x^{q^{m-1}}, \quad L_{1}, \ldots, L_{m-1} \in \mathbf{F}_{q^{m}}$
 (linearized polynomial).

Fact: 1-1 with $\mathbf{F}_{q^{-}}$-linear maps on $\mathbf{F}_{q^{m}}$.

Brison, Nogueira (2003)
A multiplicative subgroup $\mathbf{K} \subseteq \mathbf{F}^{*}$, with $\mathbf{F}_{q} \subseteq \mathbf{F}$, is called $f$-subgroup if $\exists u_{0}, \ldots, u_{m-1}$ such that

$$
\mathbf{K}=\left\{u_{0}, u_{1}, \ldots, u_{n-1}\right\}, \quad|K|=n=\operatorname{ord}(u)
$$

- wlog $u_{0}=1$
- $\mathbf{F}^{*}$ cyclic, so $\mathbf{K}$ uniquely determined by $|\mathbf{K}|$
- $\xi$ zero of $f$, then $\langle\xi\rangle$ is $f$-subgroup (take $u_{i}=\xi^{i}$ )
- $f$ irreducible over $\mathbf{F}_{q}$ with zero $\xi$, then $\langle\xi\rangle$ is only $f$-subgroup (since $\operatorname{ord}(u)=\operatorname{ord}(f)=\operatorname{ord}(\xi)$ ).
$f$ not mentioned: $\mathbf{K}$ is linear recurring sequence subgroup
Question: Is an $f$-subgroup always of the form $\langle\xi\rangle$, for a zero $\xi$ of $f$ ?

From now on, $f$ is irreducible over $\mathbf{F}_{q}$, of degree $m$, with zero $\xi \in \mathbf{F}_{q^{m}}$
$\langle\xi\rangle$ is called non-standard $f$-subgroup if

$$
\langle\xi\rangle=\left\{u_{0}=1, u_{1}, \ldots, u_{n-1}\right\}, \quad n=|\langle\xi\rangle|=\operatorname{ord}(\xi)
$$

with $\left(u_{0}, \ldots, u_{m-1}\right) \neq\left(1, \xi^{q^{j}}, \xi^{2 q^{j}}, \ldots, \xi^{(m-1) q^{j}}\right)$ for all $j$
(Brison and Nogueira)

- $\xi$ is called non-standard, of degree $m$ over $\mathbf{F}_{q}$ and order $n$, if its minimal polynomial $f$ over $\mathbf{F}_{q}$ has degree $m$, with $\langle\xi\rangle$ non-standard $f$-subgroup, of order (size) $n$
- A q-polynomial $L(x)=L_{0} x+L_{1} x^{q} \cdots+L_{m-1} x^{q^{m-1}}$ is called
 and $L(x) \neq c x^{q^{j}}$ for all $c \in \mathbf{F}_{q^{m}}$ and all $j=0, \ldots, m-1$.

Consequence: $\xi$ is non-standard of degree $m$ over $\mathbf{F}_{q}$ if and only if there exists a non-standard $q$-polynomial $L$ of $q$-degree $m$ over $\mathbf{F}_{q^{m}}$ such that

$$
L(\langle\xi\rangle)=\langle\xi\rangle .
$$

$\xi$ is called non-standard of degree $m$ over $\mathbf{F}_{q}$ if

- $\mathbf{F}_{q^{m}}$ is smallest extension of $\mathbf{F}_{q}$ containing $\xi$, and
- if $\exists \mathbf{F}_{q^{-}}$-linear map $L$ on $\mathbf{F}_{q^{m}}$, not of the form $L(x)=c x^{q^{j}}$, for which $L(\langle\xi\rangle)=\langle\xi\rangle$.


## 2. Two basic non-standard examples

$\xi \in \mathbf{F}_{q^{m}}$, degree $m$ over $\mathbf{F}_{q}$, order $n=\operatorname{ord}(\xi)$

Obviously no non-standard examples for $m=1$. ( $u_{k}=\sigma_{0} u_{k-1}$, $u_{0}=1 \Longrightarrow u_{k}=\sigma_{0}{ }^{k}$ )

No non-standard examples with $n \leq 4$ : If $m>1$, then $n \geq 3$; if $n=3$, then $\langle\xi\rangle=\left\{1, \xi, \xi^{q}\right\}$; if $n=4$, then $\xi^{2}=-1$ and $\xi^{q}=-\xi$.

Example 1: $n=q^{m}-1$, that is, $\xi$ primitive in $\mathbf{F}_{q^{m}}$, i.e., $\langle\xi\rangle=\mathbf{F}_{q^{m}}^{*}$. Then $\xi$ non-standard iff $m \geq 2$ and $q^{m}>4$ (i.e., $n>4$ ).

## Proof:

$m \times m \mathbf{F}_{q}$-matrix $\mathcal{L} \leftrightarrow q$-polynomial $L$ of $q$-degree $m$ over $\mathbf{F}_{q^{m}}$.
Straightforward counting of non-singular matrices $\Longrightarrow$
not all from standard $q$-polynomials $c x^{q^{j}}$ if $m \geq 2$ and $q^{m}>4$.

Example 2: $\xi$ has minimal polynomial $f(x)=x^{m}-\eta$ over $\mathbf{F}_{q}$. Then $\xi$ non-standard over $\mathbf{F}_{q}$ iff $m>1$ and $n>4$.
Proof: $\langle\xi\rangle=\langle\eta\rangle .\left\{1, \xi, \ldots, \xi^{m-1}\right\}$.
Hence for $i=0, \ldots, m-1$ :
$L\left(\xi^{i}\right)=\eta_{i} \xi^{\tau(i)}$,
with $\eta_{i} \in\langle\eta\rangle$, and $\tau$ permutation on $\{0, \ldots, m-1\}$.
$L(1)=1$ iff $\eta_{0}=1$ and $\tau(0)=0$.
Extend by $\mathbf{F}_{q^{-}}$-linearity $\Longrightarrow L(\langle\xi\rangle) \subseteq\langle\xi\rangle$ and non-singular on $\mathbf{F}_{q^{m}}$.
$e=\operatorname{ord}(\eta)$, then $e>1\left(\right.$ since $x^{m}-1$ not irreducible for $\left.m>1\right)$.
\# choices $e^{m-1}(m-1)!>m(=\#$ "forbidden" choices
$\left.L(x)=x^{q^{j}}\right)$
iff $(e=2$ and $m \geq 3)$ or $(e \geq 3$ and $m \geq 2)$, that is [ $m, e>1$ ], iff $n=m e>4$.
$\Longrightarrow$ Examples with $m=2, n=2 e \geq 6$, if both $q,(q-1) / e$ odd.

## 3. Permutation automorphisms of (linear) cyclic codes

$$
(n, q)=1
$$

Cyclic code of length $n$ over $\mathbf{F}_{q}$ is $\mathbf{F}_{q}$-subspace $C \subseteq \mathbf{F}_{q}^{n}$ such that $c=\left(c_{0}, c_{1}, \ldots, c_{n-1}\right) \in C \Longrightarrow c^{\sigma}:=\left(c_{n-1}, c_{0}, c_{1}, \ldots, c_{n-2}\right) \in C$. Ideal in $\mathcal{R}=\mathbf{F}_{q}[x] \bmod x^{n}-1$, hence if $n \mid q^{m}-1(m>0)$, then $\exists Z \subseteq \mathbf{F}_{q^{m}}^{*}$, all $n$-th roots of 1 , such that $C=\{c(x) \in \mathcal{R} \mid c(\beta)=0 \quad \forall \beta \in Z\}$.

Definition: $\pi \in S_{n}$ (permutations on $\{0,1, \ldots, n-1\}$ ), then

$$
c^{\pi}=\left(c_{\pi(0)}, c_{\pi(1)}, \ldots, c_{\pi(n-1)}\right) .
$$

Permutation automorphisms PermAut( $C$ ):
All $\pi \in S_{n}$ such that $c \in C \Longrightarrow c^{\pi} \in C$.

- $\sigma \in \operatorname{PermAut}(C)$
- $\psi: i \mapsto q i \bmod n$, then $\psi \in \operatorname{PermAut}(C)$ Frobenius automorphism, $c^{\psi}(x)=c\left(x^{q}\right)$.

So $<\sigma, \psi>\subseteq \operatorname{PermAut}(C)$.
Question: When is there more?

## Theorem

$C$ cyclic code, length $n$, over $\mathbf{F}_{q}$, with defining zero $\xi$, of degree $m$ over $\mathbf{F}_{q}$, and of order $n$. Then $C$ has more permutation automorphisms if and only if $\xi$ non-standard over $\mathbf{F}_{q}$.

## Proof:

a) Suppose $L q$-polynomial of $q$-degree $m$ and

$$
L\left(\xi^{i}\right)=\xi^{\pi(i)}, \quad \pi \in S_{n}
$$

If $c \in C$, then

$$
\begin{aligned}
0=L(0) & =L\left(\sum_{i=0}^{n-1} c_{i} \xi^{i}\right) \\
& =\sum_{i=0}^{n-1} c_{i} L\left(\xi^{i}\right) \\
& =\sum_{i=0}^{n-1} c_{i} \xi^{\pi(i)}=\sum_{j=0}^{n-1} c_{\pi^{-1}(j)} \xi^{j}
\end{aligned}
$$

hence $c^{\pi^{-1}(i)} \in C$. So $\pi^{-1} \in \operatorname{PermAut}(C)$.
b) Let $\pi^{-1} \in \operatorname{PermAut}(C)$. Define a $q$-polynomial $L$ on $\mathbf{F}_{q^{m}}$ by

$$
\begin{equation*}
L\left(\xi^{j}\right)=\xi^{\pi(j)}, \quad j=0, \ldots, m-1 \tag{3}
\end{equation*}
$$

and extend by $\mathbf{F}_{q}$-linearity.
For $j \geq m$, let

$$
\xi^{j}=a_{0}+a_{1} \xi+\cdots+a_{m-1} \xi^{m-1}
$$

Then

$$
c=\left(a_{0}, a_{1}, \ldots, a_{m-1}, 0, \ldots, 0,-1,0, \ldots, 0\right) \in C
$$

( -1 in position $j$ ), hence also $c^{\pi^{-1}} \in C$, so that

$$
\begin{aligned}
0 & =\sum_{i=0}^{n-1} c_{i}^{\pi^{-1}} \xi^{i}=\sum_{i=0}^{n-1} c_{\pi^{-1}}(i) \xi^{i}=\sum_{k=0}^{n-1} c_{k} \xi^{\pi(k)} \\
& =a_{0} \xi^{\pi(0)}+a_{1} \xi^{\pi(1)}+\cdots a_{m-1} \xi^{\pi(m-1)}-\xi^{\pi(j)} \\
& =L\left(\xi^{j}\right)-\xi^{\pi(j)}
\end{aligned}
$$

So (3) holds for all $j$, that is, $L\left(\xi^{i}\right)=\xi^{\pi(i)}, \quad \pi \in S_{n}$.

Fact: $\sigma \leftrightarrow L(x)=\xi x$ and $\psi^{-1} \leftrightarrow L(x)=x^{q}$.

So PermAut( $C$ ) is bigger than $\langle\sigma, \psi\rangle$ iff there are non-standard $L$ fixing $\langle\xi\rangle$.

Conclusion: full classification is a difficult problem!
New examples:
Example 3: (Binary Golay code) Let $q=2, n=23$, and $m=11$; let $\alpha$ primitive in $\mathbf{F}_{2^{11}}$ and $\xi=\alpha^{\left(2^{11}-1\right) / 23}$.
$\xi$ is defining zero for the length-23 binary Golay code, and is non-standard of order $n=23$ and degree $m=11$ over $\mathbf{F}_{2}$.

Example 4: (Ternary Golay) Let $q=3, n=11$, and $m=5$; let $\alpha$ primitive in $\mathbf{F}_{3^{5}}$ and $\xi=\alpha^{\left(2^{5}-1\right) / 11}$.
$\xi$ is defining zero for the length-11 ternary Golay code, and is non-standard of order $n=1$ and degree $m=5$ over $\mathbf{F}_{3}$.

Further examples rare: only "non-standard" binary QR- codes of length $<4000$ are the $(7,4,3)$ Hamming and the binary Golay.

## 4. Extening and lifting

Important definition: $q$-order $\operatorname{ord}_{q}(\xi)$ : smallest $d \geq 1$ for which


## Lemma

(i) $d=\operatorname{ord}_{q}(\xi)=n /(n, q-1)$
(ii) $n=d e$, with $e=(n, q-1)$ and $\left(d, \frac{q-1}{e}\right)=1$

Proof: $e=(n, q-1)$, then
$\xi^{d} \in \mathbf{F}_{q}$ iff $\xi^{d(q-1)}=1$ iff $n \mid d(q-1)$ iff $\left.\frac{n}{e} \right\rvert\, d$.


Theorem
$d=\operatorname{ord}_{q}(\xi)$, then $m \leq d, d \left\lvert\, \frac{q^{m}-1}{q-1}\right.$, and $m=d$ iff $f(x)=x^{d}-\xi^{d}$.
Proof: $\xi \in \mathbf{F}_{q^{m}} \Longrightarrow \xi^{\frac{q^{m}-1}{q-1}} \in \mathbf{F}_{q}$;
$f(x)$ minimal polynomial of $\xi$ over $\mathbf{F}_{q} \Longrightarrow f(x) \mid x^{d}-\xi^{d}$.

## Theorem (Extension)

Let $\phi$ non-standard of degree $m$ over $\mathbf{F}_{q}$, with order $\operatorname{ord}(\phi)=n$ and $q$-order $d=\operatorname{ord}_{q}(\phi)$. If $\xi$ in $\mathbf{F}_{q}^{*}\langle\phi\rangle$ with $\langle\phi\rangle \subseteq\langle\xi\rangle$, then $\xi$ also non-standard of degree $m$ over $\mathbf{F}_{q}$, with same $q$-order and same non-standard q-polynomials.

## Proof:

Let $\langle\phi\rangle \subseteq\langle\xi\rangle \subseteq \mathbf{F}_{q}^{*}\langle\phi\rangle$.

- Obviously, $\xi$ and $\phi$ have the same degree over $\mathbf{F}_{q}$.
- $\operatorname{ord}_{q}(\xi)=\operatorname{ord}_{q}(\phi)=d:$

Let $e=(n, q-1)$ and write $f=(q-1) / e$.
Then $n=d e,(d, f)=1$, and
$\left|\mathbf{F}_{q}^{*}\langle\phi\rangle\right|=\left|\mathbf{F}_{q}^{*}\left\{1, \phi, \ldots, \phi^{d-1}\right\}\right|=(q-1) d=n f$.
So $N=\operatorname{ord}(\langle\xi\rangle)=n k$ with $k \mid f$.
Then $(N, q-1)=(d e k, e f)=e k(d, f / k)=e k$, hence $\operatorname{ord}_{q}(\xi)=N / e k=d$.

- $L$-polynomial of $q$-degree $m$ over $\mathbf{F}_{q^{m}}, L$ bijection on $\langle\phi\rangle$, then $L$ also bijection on $\mathbf{F}_{q}^{*}\langle\phi\rangle$ :
$\alpha, \beta \in \mathbf{F}_{q}$ and $L\left(\alpha \phi^{i}\right)=L\left(\beta \phi^{j}\right) \Longrightarrow$
$\alpha \beta^{-1}=L\left(\phi^{j}\right) / L\left(\phi^{i}\right) \in\langle\phi\rangle$ and $L\left(\alpha \beta^{-1} \phi^{i}\right)=L\left(\phi^{j}\right) \Longrightarrow$ $\alpha \beta^{-1} \phi^{i}=\phi^{j}$, or $\alpha \phi^{i}=\beta \phi^{j}$.

Finally, $\langle\phi\rangle \subseteq\langle\xi\rangle \Longleftrightarrow\langle\xi\rangle=H\langle\phi\rangle$ with $H$ subgroup of $\mathbf{F}_{q}^{*} \Longrightarrow$ $L(\langle\xi\rangle) \subseteq\langle\xi\rangle$, so $L$ bijection on $\langle\xi\rangle$.
In fact, $H=\mathbf{F}_{q} \cap\langle\xi\rangle=\left\langle\xi^{d}\right\rangle$, of size ke since $\phi^{d} \in H$.

Remark1: $\langle\phi\rangle \subseteq\langle\xi\rangle$ iff $n=\operatorname{ord}(\phi) \mid \operatorname{ord}(\xi)$.
Remark2: $\phi$ non-standard of degree $m$ over $\mathbf{F}_{q}$, $\xi \in\langle\phi\rangle$, and $\langle\xi\rangle=\langle\phi\rangle$, then $\xi$ also non-standard.

Remark 3: Apllies to ternary Golay $\Longrightarrow$ non-standard element in $\mathbf{F}_{3^{5}}$, of of order 22 and degree 5 over $\mathbf{F}_{3}$.

Let $q_{0}=p^{s}$ and $q=q_{0}^{t}$.
Theorem (Lifting)
$\xi$ non-standard of degree $m$ over $\mathbf{F}_{q_{0}}$ and $(m, t)=1$, then $\xi$ also non-standard of degree $m$ over $\mathbf{F}_{q}$, with $\operatorname{ord}_{q}(\xi)=\operatorname{ord}_{q_{0}}(\xi)$.

## Proof:

- $q$-order: $n \mid q_{0}^{m}-1$, hence

$$
(n, q-1)=\left(n, q_{0}^{m}-1, q_{0}^{t}-1\right)=\left(n, q_{0}-1\right)
$$

- degree and non-standard:

$$
\xi, \xi^{q_{0}}, \ldots, \xi^{q_{0}^{m-1}} \text { distinct, } \quad \xi^{q_{0}^{m}}=\xi
$$

Now $\xi^{q_{0}^{k}}=\xi^{q_{0}^{k \bmod m}}$ and $\{0, t, 2 t, \ldots,(m-1) t\} \equiv\{0,1, \ldots, m-1\} \bmod m$, so $\left\{\xi, \xi^{q}, \ldots, \xi^{q^{m-1}}\right\}=\left\{\xi, \xi^{q_{0}}, \ldots, \xi^{q_{0}^{m-1}}\right\}$, and same minimal polynomial \& same recursion.

## Conclusion: If

- $\phi$ non-standard of degree $m$ over $\mathbf{F}_{q_{0}}$, with order $n_{0}=d e_{0}$ and $q_{0}$-order $d$, so $e_{0} \mid q_{0}-1$ and $\left(d, \frac{q_{0}-1}{e_{0}}\right)=1$;
- $q=q_{0}^{t}$ with $(t, m)=1$, then (first lift, then extend)
$\exists \xi$ non-standard of degree $m$ over $\mathbf{F}_{q}$, with order $n=d e$ and $q$-order $d$ whenever

$$
e_{0}|e| q-1
$$

Example 1 (primitive element) $\longrightarrow$ Example 1*, with

$$
d=\frac{q_{0}^{m}-1}{q_{0}-1}, \quad n=\frac{q_{0}^{m}-1}{q_{0}-1} e, \quad \text { with } \quad q_{0}-1|e| q-1,
$$

for $m \geq 2$ and $q_{0}^{m}>4$.
"Classical" examples for $m=2, f(x)=x^{2}-\sigma_{1} x-\sigma_{0}$ over $\mathbf{F}_{q}$ :

- $\sigma_{1}=0 ; \quad q$-order $d=m=2$, well understood
- $\sigma_{1} \neq 0$;
- $d=3$ not possible
- $d=q_{0}+1, q=q_{0}^{t}$ with $t$ odd, $q_{0}>2$, $n=\left(q_{0}+1\right) e$ with $q_{0}-1|e| q-1$ by extension and lifting a primitive element.

Aim: Show that we can reverse this construction.
So $\xi$ non-standard of degree $m$ and $q$-order $d$ over $\mathbf{F}_{q}$, then

- First task: $d=q_{0}+1$, where $q=q_{0}^{t}$ with $t$ odd;
- Then: $\xi$ obtained from $\phi$, with $\langle\phi\rangle=\langle\xi\rangle \cap \mathbf{F}_{q_{0}^{2}}$, by extension and lifting.
- Finally: show that $\phi$ primitive.


## 5. A subgroup in $\operatorname{PGL}(m, q)$

- $\xi \in \mathbf{F}_{q^{m}}$ non-standard of degree $m$ over $\mathbf{F}_{q}$; order $n, q$-order $d$; put $\eta=\xi^{d}$.
- characteristic polynomial of $\xi$ over $\mathbf{F}_{q}$ is

$$
f(x)=x^{m}-\sigma_{m-1} x^{m-1}-\cdots-\sigma_{1} x-\sigma_{0}
$$

$T: \xi^{i} \mapsto \xi^{i+1} ;$
$L: \xi^{i} \mapsto \xi^{\pi(i)},\left(\pi \in S_{n}\right)$.
Both $\mathbf{F}_{q^{-}}$-linear maps on $\mathbf{F}_{q^{m}}$ fixing set $\langle\xi\rangle$.
Note that $T^{d}=\xi^{d} I=\eta I$,

Consider $T$ and $L$ as maps on $\operatorname{PG}(m-1, q) \rightarrow \tilde{T}$ and $\tilde{L}$
So identify $\xi$ and $\lambda \xi \forall \lambda i n \mathbf{F}_{q}^{*}$.
Consequence: $\tilde{T}$ has order $d$.
$\tilde{G}=\langle\tilde{T}, \tilde{L}\rangle$ subgroup of $\operatorname{PGL}(m, q)$ fixing set $C=\left\{1, \xi, \ldots, \xi^{d-1}\right\}$ of size $d$ in $\operatorname{PG}(m-1, q)$.
6. The case $m=2$ : subgroups of $\operatorname{PGL}(2, q)$

From now on, $m=2, \quad f(x)=x^{2}-\sigma_{1} x-\sigma_{0}$.

$$
\begin{gathered}
L(1)=1, \quad L(\xi)=\omega+\nu \xi . \\
L=\left(\begin{array}{cc}
1 & \omega \\
0 & \nu
\end{array}\right), \quad T=\left(\begin{array}{cc}
0 & \sigma_{0} \\
1 & \sigma_{1}
\end{array}\right) .
\end{gathered}
$$

normalisation: $\lambda=\sigma_{0} / \sigma_{1}^{2}, \quad \tilde{\xi}=\xi / \sigma_{1}$ zero of $x^{2}-x-\lambda$;

$$
\tilde{\omega}=\omega / \sigma_{1}, L(\tilde{\xi})=\tilde{\omega}+\nu \tilde{\xi}
$$

$$
L \rightarrow \Gamma=\left(\begin{array}{cc}
1 & \tilde{\omega} \\
0 & \nu
\end{array}\right) \quad T \rightarrow \Lambda=\left(\begin{array}{cc}
0 & \lambda \\
1 & 1
\end{array}\right)
$$

w.r.t. basis $\langle 1, \tilde{\xi}\rangle$.
$\left.\mathcal{O}=\left\{1, \Lambda(1)=\tilde{\xi}, \ldots, \Lambda^{d-1}(1)\right\}=\tilde{\xi}^{d-1}\right\} \subseteq \operatorname{PG}(1, q)$ is an orbit of subgroup $G=\langle\Lambda, \Gamma\rangle$ of $\operatorname{PGL}(2, q)$, of size $d$.

Theorem (Dickson, around 1900)
Let $q=p^{r}$ with $p$ prime.
(i) If $g \neq$ id in $\operatorname{PGL}(2, q)$ has order $k$, with $f$ fixed points, then all orbits of size $>1$ have size $k$, and one of:

$$
f=0, k|q+1 ; \quad f=1, k=p ; \quad f=2, k| q-1 .
$$

## Theorem (continued)

(ii) The subgroups of $\operatorname{PGL}(2, q)$ are as follows:

1. Cyclic subgroups $C_{k}$, of order $k=2$ (if $p$ is odd), or of order $k>2$ with $k \mid q \pm 1$.
2. Dihedral subgroups $D_{2 k}$ of order $2 k$, with $k=2$ (if $p$ is odd), or with $k>2$ and $k \mid q \pm 1$.
3. Elementary abelian subgroups $E_{p^{k}}$, of order $p^{k}(0 \leq k \leq r)$.
4. A semidirect product $E_{p^{k}} \rtimes C_{\ell}$ of an elementary subgroup $E_{p^{k}}$, $1 \leq k \leq r$, and a cyclic group $C_{\ell}$, where $\ell \mid q-1$ and $\ell \mid p^{k}-1$.
5. Subgroups isomorphic to $A_{4} \cong \operatorname{PSL}(2,3), S_{4} \cong \operatorname{PGL}(2,3)$, or $A_{5} \cong \operatorname{PSL}(2,4)$.
6. One conjugacy class of subgroups isomorphic to $\operatorname{PSL}\left(2, p^{k}\right)$, where $k \mid r$.
7. One conjugacy class of subgroups isomorphic to PGL( $2, p^{k}$ ), where $k \mid r$.

Analysis of $\Lambda$ and $\Gamma$ :
$\Lambda: \tilde{\xi}^{i} \mapsto \tilde{\xi}^{i+1}$ has order $d$ and no fixed points, so $d \mid q+1$.

$$
\begin{array}{lll}
L(x)=x & \Leftrightarrow & \Gamma=I, \quad \nu=1, \quad \tilde{\omega}=0 ; \\
L(x)=x^{q} & \Leftrightarrow \quad \nu=-1, \quad \tilde{\omega}=1 .
\end{array}
$$

Theorem
The group $G=\langle\Lambda, \Gamma\rangle$ is one of the following.

- A cyclic group, when $L(x)=x$;
- a dihedral group, when $L(x)=x^{q}$;
- a conjugate of $\operatorname{PSL}\left(2, q_{0}\right)$ or $\operatorname{PGL}\left(2, q_{0}\right)$, in the nonstandard case, with $d=q_{0}+1>3$ and $q=q_{0}^{t}$, with $t$ odd.


## Proof:

1. $G$ cyclic $\Longrightarrow \Gamma \Lambda=\Lambda \Gamma \Longrightarrow \Lambda=I$ (case $L(x)=x)$;
2. $G$ dihedral $\Longrightarrow \Lambda^{2}=(\Lambda \Gamma)^{2} \Longrightarrow \nu=-1, \tilde{\omega}=1, L(x)=x^{q}$;
3. $G \neq E_{p^{k}}$ with $k \geq 2$ : note $d \mid q+1$, so $(p, d)=1$;
4. $G \neq E_{p^{k}} \rtimes C_{\ell}, \ell|q-1, \ell| p^{k}-1$; note $(d, p)=1$, so $d \mid \ell$; then $d|q+1 \Longrightarrow d| 2($ no, $d \geq 3)$.
5. If $G \simeq A_{4}, S_{4}, A_{5}$, then $d \in\{3,4,5\}$.

Separate argument:
$d=3$ impossible;
$d=4 \Longrightarrow p=3, \quad d=5 \Longrightarrow p=2$
$6,7 \quad G \simeq \operatorname{PSL}\left(2, q_{0}\right), \operatorname{PGL}\left(2, q_{0}\right)$, with $q_{0}=p^{s}, q=p^{r}, s \mid r$. Orbitsizes $q_{0}+1, q_{0}^{2}-q_{0}, q_{0}\left(q_{0}^{2}-1\right)$ and $(d, p)=1$, so $d=q_{0}+1 \mid q+1$, hence $t=r / s$ odd.

Theorem
$\lambda, \nu, \tilde{\omega} \in \mathbf{F}_{q_{0}}$, hence $G=\operatorname{PSL}\left(2, q_{0}\right)$ or $G=\operatorname{PGL}\left(2, q_{0}\right)$.
Proof:
$\underline{\text { Step 1: }} M \in \operatorname{PGL}(2, q), q=q_{0}^{t}$,
then $M \in \operatorname{PGL}\left(2, q_{0}\right)$ iff $M^{\left(q_{0}\right)}=\phi M \exists_{\phi \in \mathbf{F}_{q}^{*}}$, where

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{\left(q_{0}\right)}=\left(\begin{array}{ll}
a^{\left(q_{0}\right)} & b^{\left(q_{0}\right)} \\
c^{\left(q_{0}\right)} & d^{\left(q_{0}\right)}
\end{array}\right) .
$$

[Idea: iff $x \mapsto \frac{a x+b}{c x+d}$ fixes $\mathbf{F}_{q_{0}}^{+}:=\mathbf{F}_{q_{0}} \cup\{\infty\}$ setwise, so iff $\left(\frac{a x+b}{c x+d}\right)^{\left(q_{0}\right)}=\frac{a x+b}{c x+d} \forall x$
So second-degree polynomial in $x$ is zero, so all coefficients are zero.]

Consequence: If $A M A^{-1} \in \operatorname{PGL}\left(2, q_{0}\right)$, then $\left(A M A^{-1}\right)^{\left(q_{0}\right)}=\phi A M A^{-1}$, so

$$
\operatorname{det}(M)^{q_{0}-1}=\phi^{2}, \quad \operatorname{Tr}(M)=0 \text { or } \phi=\operatorname{Tr}(M)^{q_{0}-1}
$$

Now $\operatorname{det}(\Lambda)=-\lambda, \quad \operatorname{Tr}(\Lambda)=1$, so
$\phi=1, \quad(-\lambda)^{q_{0}-1}=1$, hence $\lambda \in \mathbf{F}_{q_{0}}^{*}$.
Step 2: $d=q_{0}+1$, so $\langle\Lambda\rangle(1)=\left\{1, \tilde{\xi}, \ldots, \tilde{\xi}^{q_{0}}\right\}=\operatorname{PG}\left(1, q_{0}\right)$, hence $\Gamma$ fixes $\operatorname{PG}\left(1, q_{0}\right)$, so $\nu, \tilde{\omega} \in \mathbf{F}_{q_{0}}$.

## 7. Reversing the construction

Theorem
If $d=q_{0}+1 \geq 4$, then $\xi \in \mathbf{F}_{q^{2}} \backslash \mathbf{F}_{q}$ obtained from some
$\phi \in \mathbf{F}_{q_{0}^{2}} \backslash \mathbf{F}_{q_{0}}$, with $q_{0}$-order $q_{0}+1$ again, by lifting and extension.
Proof:
We want $\langle\phi\rangle \subseteq\langle\xi\rangle \subseteq \mathbf{F}_{q}^{*}\langle\phi\rangle$ and $\langle\phi\rangle \subseteq \mathbf{F}_{q_{0}^{2}}^{*}$.
So consider

$$
\langle\phi\rangle:=\mathbf{F}_{q_{0}^{2}}^{*} \cap\langle\xi\rangle \quad \text { (cyclic). }
$$

$L(1)=1, \quad L(\tilde{\xi})=\nu \tilde{\xi}+\tilde{\omega}, \quad \nu, \tilde{\omega} \in \mathbf{F}_{q_{0}} ;$
$\tilde{\xi} \in \mathbf{F}_{q_{0}^{2}} \backslash \mathbf{F}_{q_{0}}$ since zero of $x^{2}-x-\lambda$ (irreducible), $\lambda \in \mathbf{F}_{q_{0}}^{*}$;
hence $L\left(\mathbf{F}_{q_{0}^{2}}\right) \subseteq \mathbf{F}_{q_{0}^{2}}$, so that
$L$ bijection on $\langle\phi\rangle$.
$n=\operatorname{ord}(\xi)=\left(q_{0}+1\right) e, \quad e=(n, q-1), \quad q=q_{0}^{t}(t$ odd $)$.
By "definition", $\phi=\xi^{\delta_{0}}$, where

$$
\delta_{0}=n /\left(n, q_{0}^{2}-1\right)
$$

is $q_{0}^{2}$-order of $\xi$.
Put $e_{0}=\left(e, q_{0}-1\right)$; now $\delta_{0}=e / e_{0}$, so
$n_{0}=\operatorname{ord}(\phi)=\left(q_{0}+1\right) e_{0}$.
$d=q_{0}+1: \quad\left(d, \frac{q-1}{e}\right)=1 \Leftrightarrow(q-1) / e$ odd $\Longrightarrow\left(q_{0}-1\right) / e_{0}$ odd.
Hence $q_{0}$-order

$$
\begin{aligned}
d_{0} & =n_{0} /\left(n_{0}, q_{0}-1\right) \\
& =\left(q_{0}+1\right) /\left(q_{0}+1, \frac{q_{0}-1}{e_{0}}\right)
\end{aligned}
$$

so $d_{0}=\operatorname{ord}_{q_{0}}(\phi)=q_{0}+1$.

Last step: Done if

$$
\xi \in \mathbf{F}_{q}^{*}\langle\phi\rangle \text {. }
$$

Now $\eta=\xi^{q_{0}+1} \in \mathbf{F}_{q}, \quad \phi=\xi^{e / e_{0}} \quad$, so

$$
\mathbb{F}_{q}^{*}\langle\phi\rangle \geq\langle\eta\rangle\langle\phi\rangle
$$

contains all $\xi^{k}$ with

$$
k=i\left(q_{0}+1\right)+j e / e_{0} \bmod n=\left(q_{0}+1\right) e .
$$

So ok if $\left(q_{0}+1, e / e_{0}\right)=1$.
Follows from $e / e_{0}$ odd. (Details...)

## 8. Conclusions

$\xi$ non-standard of degree 2 over $\mathbf{F}_{q}$, with $n=\operatorname{ord}(\xi)$ and $q$-order $d=\operatorname{ord}_{q}(\xi)$ : either $d=2$ (well-understood) or $d \geq 4$ of form $d=q_{0}+1$, where $q=q_{0}^{t}, t$ odd, and obtainable from non-standard $\phi$ of degree 2 over $\mathbf{F}_{q_{0}}$ with $q_{0}$-order $q_{0}+1$ again, by first lifting $\phi$ to $\mathbf{F}_{q}$, nad then extension to $\xi$.

Now use theorem (Brison, Nogueira):
If $\phi$ non-standard of degree 2 over $\mathbf{F}_{q_{0}}$ with $q_{0}$-order $q_{0}+1$, then $\phi$ primitive.

## 9. Further problems

- $m \geq 3$ ? Subgroups of $\operatorname{PGL}(3, q)$ ?
- Other cyclic codes?

