Iterated Space-Time Code Constructions from Quaternion Algebras

Nadya Markin, Frédérique Oggier

School of Physical and Mathematical Sciences, Nanyang Technological University

August 26, 2011

Talk Outline

(1) MIMO Channel

- MIDO codes
(2) Codes from Algebras
(3) Decoding
(4) Fast Decodability
(5) Iterated Construction
- Diversity Criteria
- Examples of Iterated MIDO Codes
- Performance of Iterated MIDO Codes

MIMO Channel

Multiple Input Multiple Output

- Space-time codes: used in multiple-antennae systems for higher data rate and reliability over fading channels

System Model: MIDO codes

Multiple Input Double Output

- Application: Broadcasting to a portable device
- Consider: 4 Transmit, 2 Receive antannae R_{1}, R_{2}, perfect CSIR

At each time interval j,

- R_{1} receives a superposition of signals $\left(x_{1 j}, x_{2 j}, x_{3 j}, x_{4 j}\right)$ plus noise

System Model: MIDO codes

Multiple Input Double Output

- Application: Broadcasting to a portable device
- Consider: 4 Transmit, 2 Receive antannae R_{1}, R_{2}, perfect CSIR

At each time interval j,

- R_{1} receives a superposition of signals $\left(x_{1 j}, x_{2 j}, x_{3 j}, x_{4 j}\right)$ plus noise

$$
\left(h_{11} x_{1 j}+\ldots+h_{14 x_{4 j}}\right)+n_{1 j}
$$

System Model: MIDO codes

Multiple Input Double Output

- Application: Broadcasting to a portable device
- Consider: 4 Transmit, 2 Receive antannae R_{1}, R_{2}, perfect CSIR

At each time interval j,

- R_{1} receives a superposition of signals $\left(x_{1 j}, x_{2 j}, x_{3 j}, x_{4 j}\right)$ plus noise

$$
\left(h_{11} x_{1 j}+\ldots+h_{14} x_{4 j}\right)+n_{1 j}
$$

- R_{2} receives

System Model: MIDO codes

Multiple Input Double Output

- Application: Broadcasting to a portable device
- Consider: 4 Transmit, 2 Receive antannae R_{1}, R_{2}, perfect CSIR

At each time interval j,

- R_{1} receives a superposition of signals $\left(x_{1 j}, x_{2 j}, x_{3 j}, x_{4 j}\right)$ plus noise

$$
\left(h_{11} x_{1 j}+\ldots+h_{14} x_{4 j}\right)+n_{1 j}
$$

- R_{2} receives

$$
\left(h_{21} x_{1 j}+\ldots+h_{24} x_{4 j}\right)+n_{2 j}
$$

System Model: MIDO codes

Multiple Input Double Output

- Application: Broadcasting to a portable device
- Consider: 4 Transmit, 2 Receive antannae R_{1}, R_{2}, perfect CSIR

At each time interval j,

- R_{1} receives a superposition of signals $\left(x_{1 j}, x_{2 j}, x_{3 j}, x_{4 j}\right)$ plus noise

$$
\left(h_{11} x_{1 j}+\ldots+h_{14 x_{4 j}}\right)+n_{1 j}
$$

- R_{2} receives

$$
\left(h_{21} x_{1 j}+\ldots+h_{24 x_{4 j}}\right)+n_{2 j}
$$

- To transmit 8 complex symbols, need coherence time of at least 4.

Putting this into matrix form we obtain:

$$
Y_{2 \times 4}=H_{2 \times 4} X_{4 \times 4}+N_{2 \times 4}
$$

$H=$ channel matrix
$X=$ space-time codeword
$N=$ noise matrix
H, N are i.i.d. complex Gaussian

Algebras: a tool for STC

- Full Diversity: Want a collection of matrices so that

$$
\min \{\operatorname{det}(X-Y): X, Y \in \mathscr{C}\} \neq 0
$$

this bounds pairwise probability of error (Tarokh et al)

- Algebras give rise to space-time codes
- linearity
- full diversity (in case algebra is division)
- nice criteria for diversity

Algebras: a tool for STC

- Full Diversity: Want a collection of matrices so that

$$
\min \{\operatorname{det}(X-Y): X, Y \in \mathscr{C}\} \neq 0
$$

this bounds pairwise probability of error (Tarokh et al)

- Algebras give rise to space-time codes
- linearity
- full diversity (in case algebra is division)
- nice criteria for diversity
- Many examples of codes with good performance already known.
- Problem: Maximum Likelihood (ML) decoding complexity too high
- Need algebraic codes which are fast decodable

ML Decoding

- A 4×4 MIDO code can transmit up to 8 complex information symbols, so 16 real (say PAM) information symbols.
- Space-time code \mathscr{C} is a vector space generated by matrices B_{i}.
- In our case $B_{i} \in M_{4 \times 4}$ and $X \in \mathscr{C}$ has the form

$$
X=\sum_{i=1}^{16} g_{i} B_{i}
$$

where g_{i} are the information symbols from a real constellation.

ML Decoding

$Y=$ received matrix. Minimize the distance

$$
\begin{equation*}
\left\{d(X)=\|Y-H X\|_{F}^{2}\right\}_{X \in \mathscr{C}} \tag{1}
\end{equation*}
$$

QR Decomposition

- Each 4×4 matrix $B_{i} \mapsto H B_{i} \mapsto \mathbf{b}_{i} \in \mathbb{R}^{16} \cong \mathbb{C}^{8}$
- A 16-dimensional code gives rise the the matrix

$$
\begin{equation*}
B=\left(\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{16}\right) \in M_{16 \times 16}(\mathbb{R}), \tag{2}
\end{equation*}
$$

- QR decomposition: $B=Q R$, with $Q^{\dagger} Q=I$,

ML decoding

reduces to minimizing

$$
\begin{equation*}
d(X)=\|\mathbf{y}-Q R \mathbf{g}\|_{E}^{2}=\left\|Q^{\dagger} \mathbf{y}-R \mathbf{g}\right\|_{E}^{2} \tag{3}
\end{equation*}
$$

- Complexity of exhaustive search is $O\left(|S|^{16}\right)$, where $S=$ the constellation.
- Fast decodable codes: those which offer improvement on decoding complexity.

Fast Decodability

Complexity can be reduced if R is guaranteed to have a nice zero-structure.

Definition (Fast-decodable Codes)

A space-time code is said to be fast-decodable if its R matrix has the following form:

$$
R=\left[\begin{array}{cc}
\Delta & B_{1} \\
0 & R_{2}
\end{array}\right]
$$

where Δ is a diagonal matrix and R_{2} is upper-triangular.

Definition (g-group Decodable Codes)

A space-time code of dimension K is called g-group decodable if the matrix R has the form $R=\operatorname{diag}\left(R_{1}, \ldots, R_{g}\right)$, where each R_{i} is a square upper triangular matrix.

Orthogonality Relations on Basis Elements

Matrix R can be tricky to calculate, because it depends on channel matrix H.

Orthogonality Relations on Basis Elements

Matrix R can be tricky to calculate, because it depends on channel matrix H.

Definition

Given an ordering on B_{1}, \ldots, B_{K}, let M be a matrix capturing information about orthogonality relations of the basis elements of B_{i} :

$$
\begin{equation*}
M_{k, I}=\left\|B_{k} B_{l}^{*}+B_{l} B_{k}^{*}\right\|_{F} \tag{4}
\end{equation*}
$$

Orthogonality Relations on Basis Elements

Matrix R can be tricky to calculate, because it depends on channel matrix H.

Definition

Given an ordering on B_{1}, \ldots, B_{K}, let M be a matrix capturing information about orthogonality relations of the basis elements of B_{i} :

$$
\begin{equation*}
M_{k, l}=\left\|B_{k} B_{l}^{*}+B_{l} B_{k}^{*}\right\|_{F} \tag{4}
\end{equation*}
$$

Nice zero structure of $M \Longrightarrow$ nice zero structure of R. (Rajan et al.)

- $M=\left[\begin{array}{cc}\Delta & B_{1} \\ B_{2} & B_{3}\end{array}\right]$, where Δ is diagonal $\Longrightarrow R=\left[\begin{array}{cc}\Delta & B_{1} \\ 0 & R_{1}\end{array}\right]$.
- $M=\left[\begin{array}{cc}M_{1} & 0 \\ 0 & M_{2}\end{array}\right] \Longrightarrow R=\left[\begin{array}{cc}R_{1} & 0 \\ 0 & R_{2}\end{array}\right]$.

Summarize Our Objective

- Codes arising from algebras.
- Full Diversity:

$$
\begin{gathered}
\min \{\operatorname{det}(X-Y): X, Y \in \mathscr{C}\} \neq 0 \\
\Downarrow \text { by linearity } \\
\min \{\operatorname{det}(X): X \in \mathscr{C}\} \neq 0
\end{gathered}
$$

- Fast Decodability: Matrix R must have a nice zero-block structure

Sufficient to find an ordering on basis elements of the code, so that M has a nice zero-structure.

Contribution: Iterated Codes

We propose an iterated construction of space-time codes

- Full-rate 4×4 MIDO codes
- Fast-decodable: complexity reduction from $O\left(|S|{ }^{16}\right)$ to $O\left(|S|^{13}\right), O\left(|S|^{10}\right), O\left(|S|^{8}\right)$.
- Criteria for full diversity

Quaternion Algebras and 2×2 codes

Recall Hamiltonian Quaternions.

- $\mathbb{H}=$ vector space of dimension 4 over \mathbb{R}, with basis

$$
\{1, i, j, k\} .
$$

Quaternion Algebras and 2×2 codes

Recall Hamiltonian Quaternions.

- $\mathbb{H}=$ vector space of dimension 4 over \mathbb{R}, with basis

$$
\{1, i, j, k\} .
$$

- Rules: $i^{2}=-1, j^{2}=-1, k=i j=-j i$.

An element $x \in \mathbb{H}$ can be written as

$$
x=c+j d, \text { where } c, d \in \mathbb{C} .
$$

The resulting code \mathscr{C} corresponds to the celebrated Alamouti code [1]

$$
\mathscr{C}=\left\{\left.\left[\begin{array}{cc}
c & -d^{*} \\
d & c^{*}
\end{array}\right] \right\rvert\, c, d \in \mathbb{Z}[i] .\right\}
$$

Generalized Quaternion Algebras and 2×2 Codes

Similarly

- $Q=(a, \gamma)_{F}$

Generalized Quaternion Algebras and 2×2 Codes

Similarly

- $Q=(a, \gamma)_{F}$
- $Q=$ vector space of dimension 4 over F, with basis

$$
\{1, i, j, k\} .
$$

Generalized Quaternion Algebras and 2×2 Codes

Similarly

- $Q=(a, \gamma)_{F}$
- $Q=$ vector space of dimension 4 over F, with basis

$$
\{1, i, j, k\} .
$$

- Rules: $i^{2}=a, j^{2}=\gamma, k=i j=-j i$.

Generalized Quaternion Algebras and 2×2 Codes

Similarly

- $Q=(a, \gamma)_{F}$
- $Q=$ vector space of dimension 4 over F, with basis

$$
\{1, i, j, k\} .
$$

- Rules: $i^{2}=a, j^{2}=\gamma, k=i j=-j i$.

$$
\begin{gathered}
\text { So } \mathbb{H}=(-1,-1)_{\mathbb{R}} \\
c+j d \mapsto\left[\begin{array}{cc}
c & \gamma \sigma(d) \\
d & \sigma(c)
\end{array}\right] .
\end{gathered}
$$

- Code $\mathscr{C}=\{\lambda(x): x \in \Lambda\}$, where Λ is an order of Q.

Codes from Quaternion Algebras

- Quaternion algebras are a special case of a cyclic algebra.
- Quaternion algebra $Q=(a, \gamma)_{F}$ is of degree 2 over its maximal subfield $K=F(\sqrt{a})$
- $Q \cong K \oplus j K$ with $j^{2}=\gamma$. It is a right vector space over K
- Left regular representation gives matrices

$$
\begin{gathered}
\lambda: Q \rightarrow M_{2 \times 2}(K) \\
c+j d \mapsto\left[\begin{array}{cc}
c & \gamma \sigma(d) \\
d & \sigma(c)
\end{array}\right] .
\end{gathered}
$$

$$
Q=(a, \gamma)_{F} \supset \wedge
$$

$$
K=F(\sqrt{a})
$$

$$
2 \nmid\langle\sigma: \sqrt{a} \longmapsto-\sqrt{a}\rangle
$$

$$
F \ni \gamma
$$

- Code $\mathscr{C}=\{\lambda(x): x \in \Lambda\}$, where Λ is an order of Q.

Codes from Algebras

In general

- Cyclic algebras are constructed from a number field extension K / F,

$$
\mathscr{A}=(K / F, \sigma, \gamma)
$$

- If \mathscr{A} division, then resulting matrices are full rank, i.e., the code has full diversity
- Easy criterion for full diversity in terms of γ

$$
\mathscr{A} \text { is division } \Longleftrightarrow \gamma^{i} \notin N_{K / F}(K) \quad 1 \leq i<[K: F]
$$

- Quaternion algebra $Q=(a, \gamma)_{F}$ is division $\Longleftrightarrow \gamma \notin N_{K / F}(K)$
- Quaternion algebras give fast decodable 2×2 codes.

Iterated Code Construction

- Start with a generalized quaternion algebra $Q(a, \gamma)_{F}$. We have $\sigma: \sqrt{a} \mapsto \sqrt{a}$.
- Q gives rise to a 2×2 space-time code.
- Iterated construction maps a pair of 2×2 algebraic space-time codewords to a 4×4 MIDO space-time codeword.
- Write σ for the map acting componentwise by

$$
\sigma:\left[\begin{array}{cc}
c & \gamma \sigma(d) \\
d & \sigma(c)
\end{array}\right] \mapsto\left[\begin{array}{cc}
\sigma(c) & \gamma d \\
\sigma(d) & c
\end{array}\right] .
$$

Iterated Construction

For θ of K, define $\alpha_{\theta}: M_{2}(K) \times M_{2}(K) \rightarrow M_{4}(K)$

$$
\alpha_{\theta}:(A, B) \mapsto\left[\begin{array}{cc}
A & \theta \sigma(B) \\
B & \sigma(A)
\end{array}\right],
$$

Iterated Code Construction

- Start with a generalized quaternion algebra $Q(a, \gamma)_{F}$. We have $\sigma: \sqrt{a} \mapsto \sqrt{a}$.
- Q gives rise to a 2×2 space-time code.
- Iterated construction maps a pair of 2×2 algebraic space-time codewords to a 4×4 MIDO space-time codeword.
- Write σ for the map acting componentwise by

$$
\sigma:\left[\begin{array}{cc}
c & \gamma \sigma(d) \\
d & \sigma(c)
\end{array}\right] \mapsto\left[\begin{array}{cc}
\sigma(c) & \gamma d \\
\sigma(d) & c
\end{array}\right] .
$$

Iterated Construction

For θ of K, define $\alpha_{\theta}: M_{2}(K) \times M_{2}(K) \rightarrow M_{4}(K)$

$$
\begin{gather*}
\alpha_{\theta}:(A, B) \mapsto\left[\begin{array}{cc}
A & \theta \sigma(B) \\
B & \sigma(A)
\end{array}\right], \\
\alpha_{\theta}:\left(\left[\begin{array}{cc}
c & \gamma \sigma(d) \\
d & \sigma(c),
\end{array}\right],\left[\begin{array}{cc}
e & \gamma \sigma(f) \\
f & \sigma(e),
\end{array}\right]\right) \mapsto\left[\begin{array}{cccc}
c & \gamma \sigma(d) & \theta \sigma(e) & \theta \gamma f \\
d & \sigma(c) & \theta \sigma(f) & \theta e \\
e & \gamma \sigma(f) & \sigma(c) & \gamma d \\
f & \sigma(e) & \sigma(d) & c
\end{array}\right] . \tag{5}
\end{gather*}
$$

Full Diversity of the Iterated Construction

Lemma (Division Condition)

Let $K=F(\sqrt{a}), \gamma, \theta \in F$ and $Q=(a, \gamma)_{F}$. Let \mathscr{A} denote the image of α_{θ}. The algebra \mathscr{A} is division if and only if $\theta \neq z \sigma(z)$ for all $z \in Q$.

Full Diversity of the Iterated Construction

Lemma (Division Condition)

Let $K=F(\sqrt{a}), \gamma, \theta \in F$ and $Q=(a, \gamma)_{F}$. Let \mathscr{A} denote the image of α_{θ}. The algebra \mathscr{A} is division if and only if $\theta \neq z \sigma(z)$ for all $z \in Q$.

Lemma (Concrete Criteria)

Let $K=F(\sqrt{a}), \gamma, \theta \in F$. We have the following equivalence:
(1) $\theta \neq \operatorname{det}\left[\begin{array}{cc}u & \gamma \sigma(v) \\ v & \sigma(u)\end{array}\right]$, for any $u, v \in K$ such that $v \in \sqrt{a} F$, and
(2) $\theta \neq \gamma\left(\bmod K^{\times 2}\right)$, where $K^{\times 2}$ denotes the squares in K

$$
\theta \neq z \sigma(z) \text { for any } z \in Q=(a, \gamma)_{F} .
$$

The nonnorm condition on θ is easily satisfied when F is real, K is imaginary.

Iterated Generalized Alamouti Code

Lemma

Let $\theta=\gamma=-1$, let $F=\mathbb{Q}(\sqrt{b}), Q=(a, \gamma)_{F}$ for $a<0, b>0$.
The complexity of the iterated MIDO code arising from $\alpha_{\theta}(Q, Q)$ is $O\left(|S|^{8}\right)$.

Remarks

Iterated Generalized Alamouti Code

Lemma

Let $\theta=\gamma=-1$, let $F=\mathbb{Q}(\sqrt{b}), Q=(a, \gamma)_{F}$ for $a<0, b>0$.
The complexity of the iterated MIDO code arising from $\alpha_{\theta}(Q, Q)$ is $O\left(|S|^{8}\right)$.

Remarks

Since $[F: \mathbb{Q}]=2$, this code carries 16 real information symbols.

Iterated Generalized Alamouti Code

Lemma

Let $\theta=\gamma=-1$, let $F=\mathbb{Q}(\sqrt{b}), Q=(a, \gamma)_{F}$ for $a<0, b>0$.
The complexity of the iterated MIDO code arising from $\alpha_{\theta}(Q, Q)$ is $O\left(|S|^{8}\right)$.

Remarks

Since $[F: \mathbb{Q}]=2$, this code carries 16 real information symbols.
This code does not have full diversity, however.

Iterated Generalized Alamouti Code

Lemma

Let $\theta=\gamma=-1$, let $F=\mathbb{Q}(\sqrt{b}), Q=(a, \gamma)_{F}$ for $a<0, b>0$.
The complexity of the iterated MIDO code arising from $\alpha_{\theta}(Q, Q)$ is $O\left(|S|^{8}\right)$.

Remarks

Since $[F: \mathbb{Q}]=2$, this code carries 16 real information symbols.
This code does not have full diversity, however. Have full diversity for when $\theta=-k$, where k is any nonsquare.

Proof.

We show this code is 2-group decodable. Subdivide the basis of the code into two groups $\Gamma_{1} \cup \Gamma_{2}$ so that $A B^{*}+B A^{*}=0$ for all $A \in \Gamma_{1}, B \in \Gamma_{2}$.

$$
\Gamma_{1}=\left\{\alpha_{\theta}(D, 0), \alpha_{\theta}(0, J)\right\}, \Gamma_{2}=\left\{\alpha_{\theta}(J, 0), \alpha_{\theta}(0, D)\right\}
$$

where

$$
D=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{cc}
\sqrt{b} & 0 \\
0 & \sqrt{b}
\end{array}\right],\left[\begin{array}{cc}
\sqrt{a} & 0 \\
0 & -\sqrt{a}
\end{array}\right],\left[\begin{array}{cc}
\sqrt{a} \sqrt{b} & 0 \\
0 & -\sqrt{a} \sqrt{b}
\end{array}\right]\right\}
$$

and

$$
J=\left\{\left[\begin{array}{ll}
0 & \gamma \\
1 & 0
\end{array}\right],\left[\begin{array}{cc}
0 & \gamma \sqrt{b} \\
\sqrt{b} & 0
\end{array}\right],\left[\begin{array}{cc}
0 & -\gamma \sqrt{a} \\
\sqrt{a} & 0
\end{array}\right],\left[\begin{array}{cc}
0 & -\gamma \sqrt{a} \sqrt{b} \\
\sqrt{a} \sqrt{b} & 0
\end{array}\right]\right\} .
$$

In this case iterated code inherits orthogonality properties of generalized Alamouti code.

Example (Iterated MIDO Alamouti Code)

Pick $F=\mathbb{Q}(\sqrt{b}), b>0$, and $K=F(i)$, with $\sigma: i \mapsto-i$. Then

$$
\alpha_{\theta}:\left(\left[\begin{array}{cc}
c & \gamma d^{*} \\
d & c^{*}
\end{array}\right],\left[\begin{array}{cc}
e & \gamma f^{*} \\
f & e^{*}
\end{array}\right]\right) \mapsto\left[\begin{array}{cccc}
c & \gamma d^{*} & \theta e^{*} & \theta \gamma f \\
d & c^{*} & \theta f^{*} & \theta e \\
e & \gamma f^{*} & c^{*} & \gamma d \\
f & e^{*} & d^{*} & c
\end{array}\right] .
$$

Since $c \in F(i), c=c_{0}+i c_{1}$, Now $F=\mathbb{Q}(\sqrt{b})$, and thus

$$
c=c_{0}+i c_{1}=\left(c_{00}+\sqrt{b} c_{01}\right)+i\left(c_{10}+\sqrt{b} c_{11}\right)
$$

with $c_{00}, c_{01}, c_{10}, c_{11} \in \mathbb{Q}$. Alternatively

$$
c=\left(c_{00}+i c_{10}\right)+\sqrt{b}\left(c_{01}+i \sqrt{b} c_{11}\right)
$$

Example (Iterated MIDO Alamouti Code)

Pick $F=\mathbb{Q}(\sqrt{b}), b>0$, and $K=F(i)$, with $\sigma: i \mapsto-i$. Then

$$
\alpha_{\theta}:\left(\left[\begin{array}{cc}
c & \gamma d^{*} \\
d & c^{*}
\end{array}\right],\left[\begin{array}{cc}
e & \gamma f^{*} \\
f & e^{*}
\end{array}\right]\right) \mapsto\left[\begin{array}{cccc}
c & \gamma d^{*} & \theta e^{*} & \theta \gamma f \\
d & c^{*} & \theta f^{*} & \theta e \\
e & \gamma f^{*} & c^{*} & \gamma d \\
f & e^{*} & d^{*} & c
\end{array}\right] .
$$

Since $c \in F(i), c=c_{0}+i c_{1}$, Now $F=\mathbb{Q}(\sqrt{b})$, and thus

$$
c=c_{0}+i c_{1}=\left(c_{00}+\sqrt{b} c_{01}\right)+i\left(c_{10}+\sqrt{b} c_{11}\right)
$$

with $c_{00}, c_{01}, c_{10}, c_{11} \in \mathbb{Q}$. Alternatively

$$
c=\left(c_{00}+i c_{10}\right)+\sqrt{b}\left(c_{01}+i \sqrt{b} c_{11}\right)
$$

c can encode 2 QAM symbols $c_{00}+i c_{10}$ and $c_{01}+i \sqrt{b} c_{11}$.
The whole MIDO code contains 8 QAM symbols.

Quasi-orthogonal code proposed by Jafarkhani[4] of the Lemma above with $F=\mathbb{Q}$. Note that it transmits only 8 real symbols.

Example (Iterated Alamouti MIDO Code)

Take $F=\mathbb{Q}$ and $K=\mathbb{Q}(i)$, with $\sigma: i \mapsto-i$ the complex conjugation, and $\gamma=-1$.

$$
\left[\begin{array}{cc}
c & -d^{*} \\
d & c^{*}
\end{array}\right]
$$

Now, for $\theta=-1$, we get

$$
\alpha_{\theta}:\left(\left[\begin{array}{cc}
c & -d^{*} \\
d & c^{*},
\end{array}\right],\left[\begin{array}{cc}
e & -f^{*} \\
f & e^{*},
\end{array}\right]\right) \mapsto\left[\begin{array}{cccc}
c & -d^{*} & -e^{*} & f \\
d & c^{*} & -f^{*} & -e \\
e & -f^{*} & c^{*} & -d \\
f & e^{*} & d^{*} & c
\end{array}\right] .
$$

Iterated Silver MIDO code

Silver Code

The Silver code, discovered in [3], and re-discovered in [6], is given by codewords of the form

$$
\left[\begin{array}{cc}
x_{1} & -x_{2}^{*} \\
x_{2} & x_{1}^{*}
\end{array}\right]+\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
z_{1} & -z_{2}^{*} \\
z_{2} & z_{1}^{*}
\end{array}\right]
$$

where

$$
\left[\begin{array}{l}
z_{1} \\
z_{2}
\end{array}\right]=\frac{1}{\sqrt{7}}\left[\begin{array}{cc}
1+i & -1+2 i \\
1+2 i & 1-i
\end{array}\right]\left[\begin{array}{l}
x_{3} \\
x_{4}
\end{array}\right]
$$

and $x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{Z}[i]$ are the information symbols.
Alternatively [2], it can be viewed as scaled matrices $\left[\begin{array}{cc}c & -\sigma(d) \\ d & \sigma(c)\end{array}\right]$, coming from $(-1,-1)_{F}$, where $F=\mathbb{Q}(\sqrt{-7})$ and $K=F(i)$, with $\sigma: i \mapsto-i$.

Iterated Silver MIDO code

Iterated Silver Code

For $\theta \in F$ we have

$$
\alpha_{\theta}:\left(\left[\begin{array}{cc}
c & -\sigma(d) \\
d & \sigma(c)
\end{array}\right],\left[\begin{array}{cc}
e & -\sigma(f) \\
f & \sigma(e),
\end{array}\right]\right) \mapsto\left[\begin{array}{cccc}
c & -\sigma(d) & \theta \sigma(e) & -\theta f \\
d & \sigma(c) & \theta \sigma(f) & \theta e \\
e & -\sigma(f) & \sigma(c) & -d \\
f & \sigma(e) & \sigma(d) & c
\end{array}\right]
$$

Lemma

The complexity of an iterated Silver MIDO code is at most $O\left(|S|{ }^{13}\right)$, no matter the choice of θ.

Iterated Silver MIDO code

Lemma (Iterated Silver MIDO Code)

The complexity of the iterated MIDO Silver code with $\theta=-1$ is $O\left(|S|^{10}\right)$.
It can be verified by direct computation that the R matrix of the iterated MIDO Silver code when $\theta=-1$ has the shape

$$
\left[\begin{array}{llllllllllllllll}
t & t & 0 & 0 & 0 & 0 & 0 & 0 & t & t & t & t & t & t & t & t \\
0 & t & 0 & 0 & 0 & 0 & 0 & 0 & t & t & t & t & t & t & t & t \\
0 & 0 & t & t & 0 & 0 & 0 & 0 & t & t & t & t & t & t & t & t \\
0 & 0 & 0 & t & 0 & 0 & 0 & 0 & t & t & t & t & t & t & t & t \\
0 & 0 & 0 & 0 & t & t & 0 & 0 & t & t & t & t & t & t & t & t \\
0 & 0 & 0 & 0 & 0 & t & 0 & 0 & t & t & t & t & t & t & t & t \\
0 & 0 & 0 & 0 & 0 & 0 & t & t & t & t & t & t & t & t & t & t \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & t & t & t & t & t & t & t & t & t \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & t & 0 & 0 & 0 & 0 & t & t & t \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & t & 0 & 0 & t & 0 & t & t \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & t & 0 & t & t & 0 & t \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & t & t & t & t & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & t & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & t & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & t & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & t
\end{array}\right]
$$

The iterated Silver code is conditionally 4-group decodable.

Summary of Complexity

Iterated Code	Parameters	Max Complexity	Complexity
Alamouti	$\gamma=1, \theta=1$	$O\left(\|S\|^{16}\right)$	$O\left(\|S\|^{8}\right)$
Silver	$\gamma=1, \theta \in F$	$O\left(\|S\|^{16}\right)$	$O\left(\|S\|^{13}\right)$
Silver	$\gamma=1, \theta=-1$	$O\left(\|S\|^{16}\right)$	$O\left(\|S\|^{10}\right)$

Performance

Compare performance of Iterated Silver code with $\theta=i$ and complexity $O\left(\left|S^{13}\right|\right)$.

Figure: Comparison among codes with decoding complexity $O\left(|S|^{12}\right)$ and $O\left(|S|^{13}\right)$.

Silver $\theta=-1$ vs Crossed Product Algebra Codes

Figure: Comparison among codes with decoding complexity $O\left(|S|^{10}\right)$.

References

S.M. Alamouti, "A simple transmit diversity technique for wireless communications", IEEE Journal on Selected Areas in Communications, vol. 16, no 8, October 1998.
C. Hollanti, J. Lahtonen, K. Ranto, R. Vehkalahti, and E. Viterbo, "On the Algebraic Structure of the Silver Code," IEEE Information Theory Workshop, Portugal, 2008.
A. Hottinen and O. Tirkkonen, "Precoder designs for high rate space-time block codes," Proc. Conference on Information Sciences and Systems, 2004.
H. Jafarkhani, "A Quasi-Orthogonal Space-Time Block Code", IEEE Transactions on Communications, vol. 49, no. 1, January 2001.
G. R. Jithamitra, B. Sundar Rajan, "A quadratic form approach to ML decoding complexity," submitted, http://arxiv.org/abs/1004.2844
J. Paredes, A.B. Gershman, and M. G. Alkhanari, "A 2×2 space-time code with non-vanishing determinants and fast maximum likelihood decoding," IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP2007), Hawaii, USA, 2007.

