Iterated Space-Time Code Constructions from Quaternion Algebras

Nadya Markin, Frédérique Oggier

School of Physical and Mathematical Sciences, Nanyang Technological University

August 26, 2011

Talk Outline

2 Codes from Algebras

Oecoding

Fast Decodability

Iterated Construction

- Diversity Criteria
- Examples of Iterated MIDO Codes
- Performance of Iterated MIDO Codes

MIDO codes

MIMO Channel

Multiple Input Multiple Output

• Space-time codes: used in multiple-antennae systems for higher data rate and reliability over fading channels

MIDO codes

System Model: MIDO codes

Multiple Input Double Output

- Application: Broadcasting to a portable device
- Consider: 4 Transmit, 2 Receive antannae R₁, R₂, perfect CSIR

At each time interval j,

 R₁ receives a superposition of signals (x_{1j}, x_{2j}, x_{3j}, x_{4j}) plus noise

同 ト イ ヨ ト イ ヨ ト

MIDO codes

System Model: MIDO codes

Multiple Input Double Output

- Application: Broadcasting to a portable device
- Consider: 4 Transmit, 2 Receive antannae R_1, R_2 , perfect CSIR

At each time interval j,

 R₁ receives a superposition of signals (x_{1j}, x_{2j}, x_{3j}, x_{4j}) plus noise

 $(h_{11}x_{1j} + \ldots + h_{14}x_{4j}) + n_{1j}$

< ∃> < ∃>

A >

MIDO codes

System Model: MIDO codes

Multiple Input Double Output

- Application: Broadcasting to a portable device
- Consider: 4 Transmit, 2 Receive antannae R_1, R_2 , perfect CSIR

At each time interval j,

 R₁ receives a superposition of signals (x_{1j}, x_{2j}, x_{3j}, x_{4j}) plus noise

 $(h_{11}x_{1j} + \ldots + h_{14}x_{4j}) + n_{1j}$

• R₂ receives

()

MIDO codes

System Model: MIDO codes

Multiple Input Double Output

- Application: Broadcasting to a portable device
- Consider: 4 Transmit, 2 Receive antannae R1, R2, perfect CSIR

At each time interval j,

 R₁ receives a superposition of signals (x_{1j}, x_{2j}, x_{3j}, x_{4j}) plus noise

 $(h_{11}x_{1j} + \ldots + h_{14}x_{4j}) + n_{1j}$

• R₂ receives

 $(h_{21}x_{1j} + \ldots + h_{24}x_{4j}) + n_{2j}$

医下口 医下

MIDO codes

System Model: MIDO codes

Multiple Input Double Output

- Application: Broadcasting to a portable device
- Consider: 4 Transmit, 2 Receive antannae R1, R2, perfect CSIR

At each time interval j,

• R₁ receives a superposition of signals (x_{1j}, x_{2j}, x_{3j}, x_{4j}) plus noise

$$(h_{11}x_{1j} + \ldots + h_{14}x_{4j}) + n_{1j}$$

• R₂ receives

$$(h_{21}x_{1j} + \ldots + h_{24}x_{4j}) + n_{2j}$$

• To transmit 8 complex symbols, need coherence time of at least 4.

Putting this into matrix form we obtain:

$$Y_{2\times 4} = H_{2\times 4}X_{4\times 4} + N_{2\times 4}$$

- H =channel matrix
- X = space-time codeword
- N = noise matrix
- H, N are i.i.d. complex Gaussian

医下口 医下

Algebras: a tool for STC

• Full Diversity: Want a collection of matrices so that

$$\min\{det(X-Y): X, Y \in \mathscr{C}\} \neq 0$$

this bounds pairwise probability of error (Tarokh et al)

- Algebras give rise to space-time codes
 - linearity
 - full diversity (in case algebra is division)
 - nice criteria for diversity

∃→ < ∃→</p>

A >

Algebras: a tool for STC

• Full Diversity: Want a collection of matrices so that

$$\min\{det(X-Y): X, Y \in \mathscr{C}\} \neq 0$$

this bounds pairwise probability of error (Tarokh et al)

- Algebras give rise to space-time codes
 - linearity
 - full diversity (in case algebra is division)
 - nice criteria for diversity
- Many examples of codes with good performance already known.
- Problem: Maximum Likelihood (ML) decoding complexity too high
- Need algebraic codes which are fast decodable

ML Decoding

- A 4 \times 4 MIDO code can transmit up to 8 complex information symbols, so 16 real (say PAM) information symbols.
- Space-time code \mathscr{C} is a vector space generated by matrices B_i .
- In our case $B_i \in Mat_{4 \times 4}$ and $X \in \mathscr{C}$ has the form

$$X=\sum_{i=1}^{16}g_iB_i,$$

where g_i are the information symbols from a real constellation.

ML Decoding

Y = received matrix. Minimize the distance

$$\{d(X) = ||Y - HX||_F^2\}_{X \in \mathscr{C}}$$

(1)

-

- 4 同 ト 4 ヨ ト 4 ヨ ト

QR Decomposition

- Each 4x4 matrix $B_i \mapsto HB_i \mapsto \mathbf{b}_i \in \mathbb{R}^{16} \cong \mathbb{C}^8$
- A 16-dimensional code gives rise the the matrix

$$B = (\mathbf{b}_1, \mathbf{b}_2, \dots, \mathbf{b}_{16}) \in M_{16 \times 16}(\mathbb{R}),$$
(2)

• QR decomposition: B = QR, with $Q^{\dagger}Q = I$,

ML decoding

reduces to minimizing

$$d(X) = ||\mathbf{y} - QR\mathbf{g}||_E^2 = ||Q^{\dagger}\mathbf{y} - R\mathbf{g}||_E^2$$
(3)

- Complexity of exhaustive search is $O(|S|^{16})$, where S = the constellation.
- Fast decodable codes: those which offer improvement on decoding complexity.

・ 同 ト ・ ヨ ト ・ ヨ ト

Fast Decodability

Complexity can be reduced if R is guaranteed to have a nice zero-structure.

Definition (Fast-decodable Codes)

A space-time code is said to be *fast-decodable* if its R matrix has the following form:

$$R = \begin{bmatrix} \Delta & B_1 \\ 0 & R_2 \end{bmatrix},$$

where Δ is a diagonal matrix and R_2 is upper-triangular.

Definition (g-group Decodable Codes)

A space-time code of dimension K is called *g*-group decodable if the matrix R has the form $R = diag(R_1, \ldots, R_g)$, where each R_i is a square upper triangular matrix.

化压力 化压力

Orthogonality Relations on Basis Elements

Matrix R can be tricky to calculate, because it depends on channel matrix H.

- 4 同 ト 4 ヨ ト 4 ヨ ト

Orthogonality Relations on Basis Elements

Matrix R can be tricky to calculate, because it depends on channel matrix H.

Definition

Given an ordering on B_1, \ldots, B_K , let M be a matrix capturing information about orthogonality relations of the basis elements of B_i :

$$M_{k,l} = ||B_k B_l^* + B_l B_k^*||_F.$$
(4)

Orthogonality Relations on Basis Elements

Matrix R can be tricky to calculate, because it depends on channel matrix H.

Definition

Given an ordering on B_1, \ldots, B_K , let M be a matrix capturing information about orthogonality relations of the basis elements of B_i :

$$M_{k,l} = ||B_k B_l^* + B_l B_k^*||_F.$$
(4)

Nice zero structure of $M \implies$ nice zero structure of R. (Rajan et al.)

•
$$M = \begin{bmatrix} \Delta & B_1 \\ B_2 & B_3 \end{bmatrix}$$
, where Δ is diagonal $\implies R = \begin{bmatrix} \Delta & B_1 \\ 0 & R_1 \end{bmatrix}$.
• $M = \begin{bmatrix} M_1 & 0 \\ 0 & M_2 \end{bmatrix} \implies R = \begin{bmatrix} R_1 & 0 \\ 0 & R_2 \end{bmatrix}$.

Summarize Our Objective

- Codes arising from algebras.
- Full Diversity:

$$\min\{det(X-Y): X, Y \in \mathscr{C}\} \neq 0$$

 \Downarrow by linearity

 $\min\{det(X): X \in \mathscr{C}\} \neq 0$

• Fast Decodability: Matrix R must have a nice zero-block structure Sufficient to find an ordering on basis elements of the code, so that M has a nice zero-structure.

글 > - < 글 >

Contribution: Iterated Codes

We propose an iterated construction of space-time codes

- Full-rate 4×4 MIDO codes
- Fast-decodable: complexity reduction from $O(|S|^{16})$ to $O(|S|^{13}), O(|S|^{10}), O(|S|^8).$
- Criteria for full diversity

医下口 医下

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Quaternion Algebras and 2×2 codes

Recall Hamiltonian Quaternions.

 $\bullet~\mathbb{H}{=}\mathsf{vector}$ space of dimension 4 over $\mathbb{R},$ with basis

 $\{1,i,j,k\}.$

A (1) > A (1) > A

3 x 3

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Quaternion Algebras and 2×2 codes

Recall Hamiltonian Quaternions.

• \mathbb{H} =vector space of dimension 4 over \mathbb{R} , with basis

 $\{1,i,j,k\}.$

• Rules: $i^2 = -1$, $j^2 = -1$, k = ij = -ji. An element $x \in \mathbb{H}$ can be written as

x = c + jd, where $c, d \in \mathbb{C}$.

The resulting code \mathscr{C} corresponds to the celebrated Alamouti code [1]

$$\mathscr{C} = \{ egin{bmatrix} c & -d^* \ d & c^* \end{bmatrix} \mid c,d \in \mathbb{Z}[i]. \}$$

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Generalized Quaternion Algebras and 2×2 Codes

Similarly

• $Q = (a, \gamma)_F$

< 回 > < 三 > < 三 >

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Generalized Quaternion Algebras and 2×2 Codes

Similarly

- $Q = (a, \gamma)_F$
- Q=vector space of dimension 4 over F, with basis

 $\{1,i,j,k\}.$

A B > A B >

A .

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Generalized Quaternion Algebras and 2×2 Codes

Similarly

- $Q = (a, \gamma)_F$
- Q=vector space of dimension 4 over F, with basis

 $\{1,i,j,k\}.$

• Rules:
$$i^2 = a$$
, $j^2 = \gamma$, $k = ij = -ji$.

A B > A B >

A .

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Generalized Quaternion Algebras and 2×2 Codes

Similarly

- $Q = (a, \gamma)_F$
- Q=vector space of dimension 4 over F, with basis

 $\{1,i,j,k\}.$

• Rules:
$$i^2 = a, j^2 = \gamma, k = ij = -ji$$
.

So
$$\mathbb{H} = (-1, -1)_{\mathbb{R}}$$

$$c+jd\mapsto egin{bmatrix} c&\gamma\sigma(d)\ d&\sigma(c) \end{bmatrix}.$$

• Code $\mathscr{C} = \{\lambda(x) : x \in \Lambda\}$, where Λ is an order of Q.

A B > A B >

A >

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Codes from Quaternion Algebras

- Quaternion algebras are a special case of a cyclic algebra.
- Quaternion algebra Q = (a, γ)_F is of degree 2 over its maximal subfield K = F(√a)
- $Q \cong K \oplus jK$ with $j^2 = \gamma$. It is a *right* vector space over K
- Left regular representation gives matrices

$$\lambda: Q o M_{2 imes 2}(K)$$
 $c + jd \mapsto egin{bmatrix} c & \gamma \sigma(d) \ d & \sigma(c) \end{bmatrix}.$

• Code $\mathscr{C} = \{\lambda(x) : x \in \Lambda\}$, where Λ is an order of Q.

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Codes from Algebras

In general

• Cyclic algebras are constructed from a number field extension K/F,

$$\mathscr{A} = (K/F, \sigma, \gamma)$$

- If A division, then resulting matrices are full rank, i.e., the code has full diversity
- $\bullet\,$ Easy criterion for full diversity in terms of γ

$$\mathscr{A}$$
 is division $\iff \gamma^i \notin N_{K/F}(K) \quad 1 \leq i < [K:F]$

- Quaternion algebra $Q = (a, \gamma)_F$ is division $\iff \gamma \notin N_{K/F}(K)$
- Quaternion algebras give fast decodable 2×2 codes.

・回り イラト イラト

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Iterated Code Construction

- Start with a generalized quaternion algebra $Q(a, \gamma)_F$. We have $\sigma : \sqrt{a} \mapsto \sqrt{a}$.
- Q gives rise to a 2 \times 2 space-time code.
- $\bullet\,$ Iterated construction maps a pair of 2 \times 2 algebraic space-time codewords to a 4 \times 4 MIDO space-time codeword.
- ${\, \bullet \, }$ Write σ for the map acting componentwise by

$$\sigma: \begin{bmatrix} c & \gamma \sigma(d) \\ d & \sigma(c) \end{bmatrix} \mapsto \begin{bmatrix} \sigma(c) & \gamma d \\ \sigma(d) & c \end{bmatrix}.$$

Iterated Construction

For θ of K, define $\alpha_{\theta} : M_2(K) \times M_2(K) \to M_4(K)$

$$\alpha_{\theta}: (A, B) \mapsto \begin{bmatrix} A & \theta \sigma(B) \\ B & \sigma(A) \end{bmatrix},$$

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Iterated Code Construction

- Start with a generalized quaternion algebra $Q(a, \gamma)_F$. We have $\sigma : \sqrt{a} \mapsto \sqrt{a}$.
- Q gives rise to a 2 \times 2 space-time code.
- $\bullet\,$ Iterated construction maps a pair of 2 \times 2 algebraic space-time codewords to a 4 \times 4 MIDO space-time codeword.
- ${\, \bullet \, }$ Write σ for the map acting componentwise by

$$\sigma: \begin{bmatrix} c & \gamma \sigma(d) \\ d & \sigma(c) \end{bmatrix} \mapsto \begin{bmatrix} \sigma(c) & \gamma d \\ \sigma(d) & c \end{bmatrix}.$$

Iterated Construction

For θ of K, define $\alpha_{\theta}: M_2(K) \times M_2(K) \rightarrow M_4(K)$

$$\alpha_{\theta} : (A, B) \mapsto \begin{bmatrix} A & \theta\sigma(B) \\ B & \sigma(A) \end{bmatrix},$$

$$\alpha_{\theta} : \left(\begin{bmatrix} c & \gamma\sigma(d) \\ d & \sigma(c), \end{bmatrix}, \begin{bmatrix} e & \gamma\sigma(f) \\ f & \sigma(e), \end{bmatrix} \right) \mapsto \begin{bmatrix} c & \gamma\sigma(d) & \theta\sigma(e) & \theta\gamma f \\ d & \sigma(c) & \theta\sigma(f) & \thetae \\ e & \gamma\sigma(f) & \sigma(c) & \gammad \\ f & \sigma(e) & \sigma(d) & c \end{bmatrix}.$$
(5)

Nadya Markin, Frédérique Oggier Iterated Space-Time Code Constructions from Quaternion Algebras

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Full Diversity of the Iterated Construction

Lemma (Division Condition)

Let $K = F(\sqrt{a}), \gamma, \theta \in F$ and $Q = (a, \gamma)_F$. Let \mathscr{A} denote the image of α_{θ} . The algebra \mathscr{A} is division if and only if $\theta \neq z\sigma(z)$ for all $z \in Q$.

A B > A B >

A .

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Full Diversity of the Iterated Construction

Lemma (Division Condition)

Let $K = F(\sqrt{a}), \gamma, \theta \in F$ and $Q = (a, \gamma)_F$. Let \mathscr{A} denote the image of α_{θ} . The algebra \mathscr{A} is division if and only if $\theta \neq z\sigma(z)$ for all $z \in Q$.

Lemma (Concrete Criteria)

Let $K = F(\sqrt{a}), \gamma, \theta \in F$. We have the following equivalence:

•
$$\theta \neq det \begin{bmatrix} u & \gamma \sigma(v) \\ v & \sigma(u) \end{bmatrix}$$
, for any $u, v \in K$ such that $v \in \sqrt{aF}$
and

2
$$\theta \neq \gamma \pmod{K^{\times 2}}$$
, where $K^{\times 2}$ denotes the squares in K

$$\Leftrightarrow$$
 $heta \neq z\sigma(z)$ for any $z \in Q = (a, \gamma)_F.$

The nonnorm condition on θ is easily satisfied when F is real, K is imaginary.

- 4 同 2 4 日 2 4 日 2

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Iterated Generalized Alamouti Code

Lemma

Let $\theta = \gamma = -1$, let $F = \mathbb{Q}(\sqrt{b})$, $Q = (a, \gamma)_F$ for a < 0, b > 0. The complexity of the iterated MIDO code arising from $\alpha_{\theta}(Q, Q)$ is $O(|S|^8)$.

Remarks

医下口 医下

A >

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Iterated Generalized Alamouti Code

Lemma

Let $\theta = \gamma = -1$, let $F = \mathbb{Q}(\sqrt{b})$, $Q = (a, \gamma)_F$ for a < 0, b > 0. The complexity of the iterated MIDO code arising from $\alpha_{\theta}(Q, Q)$ is $O(|S|^8)$.

Remarks

Since $[F : \mathbb{Q}] = 2$, this code carries 16 real information symbols.

글 > - < 글 >

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Iterated Generalized Alamouti Code

Lemma

Let $\theta = \gamma = -1$, let $F = \mathbb{Q}(\sqrt{b})$, $Q = (a, \gamma)_F$ for a < 0, b > 0. The complexity of the iterated MIDO code arising from $\alpha_{\theta}(Q, Q)$ is $O(|S|^8)$.

Remarks

Since $[F : \mathbb{Q}] = 2$, this code carries 16 real information symbols. This code does not have full diversity, however.

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Iterated Generalized Alamouti Code

Lemma

Let $\theta = \gamma = -1$, let $F = \mathbb{Q}(\sqrt{b})$, $Q = (a, \gamma)_F$ for a < 0, b > 0. The complexity of the iterated MIDO code arising from $\alpha_{\theta}(Q, Q)$ is $O(|S|^8)$.

Remarks

Since $[F : \mathbb{Q}] = 2$, this code carries 16 real information symbols. This code does not have full diversity, however. Have full diversity for when $\theta = -k$, where k is any nonsquare.

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Proof.

We show this code is 2-group decodable. Subdivide the basis of the code into two groups $\Gamma_1 \cup \Gamma_2$ so that $AB^* + BA^* = 0$ for all $A \in \Gamma_1$, $B \in \Gamma_2$.

$$\mathsf{F}_1 = \{\alpha_\theta(D, 0), \alpha_\theta(0, J)\}, \mathsf{F}_2 = \{\alpha_\theta(J, 0), \alpha_\theta(0, D)\}$$

where

and

$$D = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} \sqrt{b} & 0 \\ 0 & \sqrt{b} \end{bmatrix}, \begin{bmatrix} \sqrt{a} & 0 \\ 0 & -\sqrt{a} \end{bmatrix}, \begin{bmatrix} \sqrt{a}\sqrt{b} & 0 \\ 0 & -\sqrt{a}\sqrt{b} \end{bmatrix} \right\}$$
$$J = \left\{ \begin{bmatrix} 0 & \gamma \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & \gamma\sqrt{b} \\ \sqrt{b} & 0 \end{bmatrix}, \begin{bmatrix} 0 & -\gamma\sqrt{a} \\ \sqrt{a} & 0 \end{bmatrix}, \begin{bmatrix} 0 & -\gamma\sqrt{a}\sqrt{b} \\ \sqrt{a}\sqrt{b} & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ \sqrt{a}\sqrt{b} & 0 \end{bmatrix} \right\}.$$

In this case iterated code inherits orthogonality properties of generalized Alamouti code.

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Example (Iterated MIDO Alamouti Code)

Pick
$$F = \mathbb{Q}(\sqrt{b})$$
, $b > 0$, and $K = F(i)$, with $\sigma : i \mapsto -i$. Then

$$\alpha_{\theta}: \left(\begin{bmatrix} c & \gamma d^* \\ d & c^* \end{bmatrix}, \begin{bmatrix} e & \gamma f^* \\ f & e^* \end{bmatrix} \right) \mapsto \begin{bmatrix} c & \gamma d^* & \theta e^* & \theta \gamma f \\ d & c^* & \theta f^* & \theta e \\ e & \gamma f^* & c^* & \gamma d \\ f & e^* & d^* & c \end{bmatrix}$$

Since $c \in F(i)$, $c = c_0 + ic_1$, Now $F = \mathbb{Q}(\sqrt{b})$, and thus

$$c = c_0 + ic_1 = (c_{00} + \sqrt{b}c_{01}) + i(c_{10} + \sqrt{b}c_{11}),$$

with $c_{00}, c_{01}, c_{10}, c_{11} \in \mathbb{Q}$. Alternatively

$$c = (c_{00} + ic_{10}) + \sqrt{b}(c_{01} + i\sqrt{b}c_{11}),$$

(日) (同) (三) (三)

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Example (Iterated MIDO Alamouti Code)

Pick
$$F = \mathbb{Q}(\sqrt{b})$$
, $b > 0$, and $K = F(i)$, with $\sigma : i \mapsto -i$. Then

$$\alpha_{\theta}: \left(\begin{bmatrix} c & \gamma d^* \\ d & c^* \end{bmatrix}, \begin{bmatrix} e & \gamma f^* \\ f & e^* \end{bmatrix} \right) \mapsto \begin{bmatrix} c & \gamma d^* & \theta e^* & \theta \gamma f \\ d & c^* & \theta f^* & \theta e \\ e & \gamma f^* & c^* & \gamma d \\ f & e^* & d^* & c \end{bmatrix}$$

Since $c \in F(i)$, $c = c_0 + ic_1$, Now $F = \mathbb{Q}(\sqrt{b})$, and thus

$$c = c_0 + ic_1 = (c_{00} + \sqrt{b}c_{01}) + i(c_{10} + \sqrt{b}c_{11}),$$

with $c_{00}, c_{01}, c_{10}, c_{11} \in \mathbb{Q}$. Alternatively

$$c = (c_{00} + ic_{10}) + \sqrt{b}(c_{01} + i\sqrt{b}c_{11}),$$

c can encode 2 QAM symbols $c_{00} + ic_{10}$ and $c_{01} + i\sqrt{b}c_{11}$. The whole MIDO code contains 8 QAM symbols.

- 4 回 ト - 4 回 ト

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Quasi-orthogonal code proposed by Jafarkhani[4] of the Lemma above with $F = \mathbb{Q}$. Note that it transmits only 8 real symbols.

Example (Iterated Alamouti MIDO Code)

Take $F = \mathbb{Q}$ and $K = \mathbb{Q}(i)$, with $\sigma : i \mapsto -i$ the complex conjugation, and $\gamma = -1$.

$$\begin{bmatrix} c & -d^* \\ d & c^* \end{bmatrix}$$

Now, for $\theta = -1$, we get

$$\alpha_{\theta}: \left(\begin{bmatrix} c & -d^* \\ d & c^* \end{bmatrix}, \begin{bmatrix} e & -f^* \\ f & e^* \end{bmatrix} \right) \mapsto \begin{bmatrix} c & -d^* & -e^* & f \\ d & c^* & -f^* & -e \\ e & -f^* & c^* & -d \\ f & e^* & d^* & c \end{bmatrix}$$

- 4 回 ト - 4 回 ト

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Iterated Silver MIDO code

Silver Code

The Silver code, discovered in [3], and re-discovered in [6], is given by codewords of the form

$$\begin{bmatrix} x_1 & -x_2^* \\ y_2 & x_1^* \end{bmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} z_1 & -z_2^* \\ z_2 & z_1^* \end{bmatrix}$$

where

$$\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = \frac{1}{\sqrt{7}} \begin{bmatrix} 1+i & -1+2i \\ 1+2i & 1-i \end{bmatrix} \begin{bmatrix} x_3 \\ x_4 \end{bmatrix}$$

and $x_1, x_2, x_3, x_4 \in \mathbb{Z}[i]$ are the information symbols.

Alternatively [2], it can be viewed as scaled matrices $\begin{bmatrix} c & -\sigma(d) \\ d & \sigma(c) \end{bmatrix}$, coming from $(-1, -1)_F$, where $F = \mathbb{Q}(\sqrt{-7})$ and K = F(i), with $\sigma : i \mapsto -i$.

くぼう くほう くほう

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

.

(日) (同) (三) (三)

3

Iterated Silver MIDO code

Iterated Silver Code

For $\theta \in F$ we have

$$\alpha_{\theta} : \left(\begin{bmatrix} c & -\sigma(d) \\ d & \sigma(c) \end{bmatrix}, \begin{bmatrix} e & -\sigma(f) \\ f & \sigma(e), \end{bmatrix} \right) \mapsto \begin{bmatrix} c & -\sigma(d) & \theta\sigma(e) & -\thetaf \\ d & \sigma(c) & \theta\sigma(f) & \thetae \\ e & -\sigma(f) & \sigma(c) & -d \\ f & \sigma(e) & \sigma(d) & c \end{bmatrix}$$

Lemma

The complexity of an iterated Silver MIDO code is at most $O(|S|^{13})$, no matter the choice of θ .

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Iterated Silver MIDO code

Lemma (Iterated Silver MIDO Code)

The complexity of the iterated MIDO Silver code with $\theta = -1$ is $O(|S|^{10})$.

It can be verified by direct computation that the R matrix of the iterated MIDO Silver code when $\theta=-1$ has the shape

Г	- t	t	0	0	0	0	0	0	t	t	t	t	t	t	t	t –
I	0	t	0	0	0	0	0	0	t	t	t	t	t	t	t	t
I	0	0	t	t	0	0	0	0	t	t	t	t	t	t	t	t
	0	0	0	t	0	0	0	0	t	t	t	t	t	t	t	t
	0	0	0	0	t	t	0	0	t	t	t	t	t	t	t	t
ł	0	0	0	0	0	t	0	0	t	t	t	t	t	t	t	t
	0	0	0	0	0	0	t	t	t	t	t	t	t	t	t	t
	0	0	0	0	0	0	0	t	t	t	t	t	t	t	t	t
	0	0	0	0	0	0	0	0	t	0	0	0	0	t	t	t
ł	0	0	0	0	0	0	0	0	0	t	0	0	t	0	t	t
	0	0	0	0	0	0	0	0	0	0	t	0	t	t	0	t
	0	0	0	0	0	0	0	0	0	0	0	t	t	t	t	0
ł	0	0	0	0	0	0	0	0	0	0	0	0	t	0	0	0
I	0	0	0	0	0	0	0	0	0	0	0	0	0	t	0	0
1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	t	0
L	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	t

The iterated Silver code is conditionally 4-group decodable.

< 🗇 🕨

法国际 医耳道

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Summary of Complexity

Iterated Code	Parameters	Max Complexity	Complexity
Alamouti	$\gamma=1, heta=1$	$O(S ^{16})$	$O(S ^8)$
Silver	$\gamma = 1, heta \in F$	$O(S ^{16})$	$O(S ^{13})$
Silver	$\gamma=1, heta=-1$	$O(S ^{16})$	$O(S ^{10})$

イロト イポト イヨト イヨト

Compare performance of Iterated Silver code with $\theta = i$ and complexity $O(|S^{13}|)$.

Figure: Comparison among codes with decoding complexity $O(|S|^{12})$ and $O(|S|^{13})$.

< 6 >

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

Silver $\theta = -1$ vs Crossed Product Algebra Codes

Figure: Comparison among codes with decoding complexity $O(|S|^{10})$.

ヨート

3 N

Diversity Criteria Examples of Iterated MIDO Codes Performance of Iterated MIDO Codes

References

