Multi-key Hierarchical Identity-Based Signatures

Hoon Wei Lim

Nanyang Technological University

9 June 2010

Outline

1 Introduction

Preliminaries

- 3 Multi-key HIBS
- **4** Security Analysis
- Oiscussion
- **6** Open Problems

Role-based access control:

- *Role signatures* based on hierarchical identity-based signatures (HIBS):
 - using signing keys associated with role identifiers;
 - hierarchical namespace.
- Let Alice have roles $r_1 {=} {\tt lecturer}, \, r_2 {=} \, {\tt professor} \, {\tt and} \, r_3 {=} \, {\tt IEEE}$ member.
- If Alice wants to access some restricted documents using roles r_1 and r_3 :
 - principle of least privilege;
 - then she signs a request using the corresponding private keys.

Mobile ad hoc networks (MANETs):

- Use of identity-based cryptography is attractive:
 - avoids certificate management;
 - meets low bandwidth requirement.
- Nodes may be compromised or unavailable:
 - so it is desirable to distribute the function of a trusted authority (TA) across multiple nodes.
- Nodes can obtain multiple private keys from multiple TAs:
 - private keys are then aggregated when used for signing.

Question to be answered:

How do we *efficiently* and *securely* aggregate a set of private keys when signing a message?

- The essence of our new primitive, i.e. *multi-key signatures*:
 - based on hierarchical identity-based cryptography;
 - user owns multiple identifiers and thus possesses a set of corresponding private keys;
 - a single signature is produced using a combination of multiple private keys on a selected message;
 - identifiers may be located at arbitrary positions in the hierarchy.

- Identity-based multi-signatures [Gentry-Ramzan'06, Bellare-Neven'07]:
 - a set of users all sign the same message;
 - non-interactive and interactive.
- Identity-based aggregate signatures [Gentry-Ramzan'06]:
 - a set of users each signs a different message;
 - non-interactive (but requires coordination of state).
- Identity-based threshold signatures [Baek-Zheng'04]:
 - t (threshold) out of n parties first compute individual shares, which are then combined into a single signature;
 - interactive.
- Differences from multi-key HIBS: efficiency, security, flexibility.

Preliminaries

Pairings

- Let G and G_T be two cyclic groups where |G| = |G_T| = q, a large prime, then an admissible pairing e : G × G → G_T has properties:
 - Bilinear. Given $P, Q, R \in \mathbb{G}_1$, we have

$$\hat{e}(P, Q+R) = \hat{e}(P, Q) \cdot \hat{e}(P, R)$$
 and
 $\hat{e}(P+Q, R) = \hat{e}(P, R) \cdot \hat{e}(Q, R).$

Hence, for any $a, b \in \mathbb{Z}_q^*$, we have

$$\begin{aligned} \hat{e}(aP, bQ) &= \hat{e}(abP, Q) = \hat{e}(P, abQ) \\ &= \hat{e}(aP, Q)^b = \hat{e}(P, Q)^{ab}. \end{aligned}$$

- non-degeneracy: $e(P, P) \neq 1$ for some $P \in \mathbb{G}$.
- computability: e(P, Q) can be efficiently computed.

Assumption

Computational Diffie-Hellman (CDH) problem in \mathbb{G} :

Given $\langle P, aP, bP \rangle \in \mathbb{G}$ for some random $P \in \mathbb{G}$ and randomly chosen $a, b \in \mathbb{Z}_a^*$, compute $abP \in \mathbb{G}$.

- ROOT SETUP: It generates the system parameters and a master secret on input a security parameter λ.
- LOWER-LEVEL SETUP: It picks a secret value to be used to issue private keys to lower-level children.
- EXTRACT: An entity with identifier $ID_t = id_1, \ldots, id_t$ computes a private key S_{t+1} for any of its children with identifier $ID_{t+1} = id_1, \ldots, id_t, id_{t+1}$.

- SIGN: Given a set SK = {S^j_{tj} : 1 ≤ j ≤ n} of private keys, a message M, and the system parameters, this algorithm outputs a signature σ.
- VERIFY: Given a signature $\sigma \in S$, a set $ID = \{ID_{t_j}^j : 1 \le j \le n\}$ of identifiers, a message M, and the system parameters, this algorithm outputs valid or invalid.
- Consistency: VERIFY(SIGN(SK, M), ID, M) = valid.

Extend the normal HIBS security game [Gentry-Silverberg'02]:

- Challenger runs $\rm ROOT~Setup$ and adversary ${\cal A}$ is given the system parameters.
- ${\mathcal A}$ is given access to extract and sign oracles.
- ${\mathcal A}$ outputs a forgery $\sigma^*,$ a set of target identifiers ID*, and a message $M^*.$
- \mathcal{A} wins the game if the following are *all* true:
 - VERIFY(σ^* , ID^{*}, M^*) = valid;
 - The adversary has not made a sign query on input ID*, M^* ;
 - There exists an identifier $ID' \in ID^*$ for which the adversary has not made an extract query on ID' or any of its ancestors.

Multi-key HIBS

Security model

Main idea:

- Adaptation of the Gentry-Silverberg HIBS scheme:
 - re-use of the ROOT SETUP, LOWER-LEVEL SETUP and EXTRACT algorithms.
- When signing:
 - arrange identifiers in lexicographic order;
 - private key components are summed before generating a normal HIBS.
- For verification:
 - extend the VERIFY algorithm of the Gentry-Silverberg scheme.

- ROOT SETUP: The root Private Key Generator (PKG)
 - generates \mathbb{G} and $\mathbb{G}_{\mathcal{T}}$ of prime order q and an admissible pairing $e: \mathbb{G} \times \mathbb{G} \to \mathbb{G}_{\mathcal{T}}$ on input λ ;
 - chooses a generator $P_0 \in \mathbb{G}$;
 - picks a random value $s_0 \in \mathbb{Z}_a^*$ and sets $Q_0 = s_0 P_0$;
 - selects cryptographic hash functions $H_1: \{0,1\}^* \to \mathbb{G}$ and $H_2: \{0,1\}^* \to \mathbb{G};$
 - sets the master secret to be s_0 and the system parameters $\langle \mathbb{G}, \mathbb{G}_T, e, q, P_0, Q_0, H_1, H_2 \rangle$.
- LOWER-LEVEL SETUP: A lower-level entity (lower-level PKG or user) at level $t \ge 1$ picks a random secret $s_t \in \mathbb{Z}_q^*$.

- EXTRACT: For an entity with identifier $ID_t = id_1, \ldots, id_t$, the entity's parent:
 - computes $P_t = H_1(\mathsf{ID}_t) \in \mathbb{G};$
 - sets $S_t = \sum_{i=1}^t s_{i-1} P_i = S_{t-1} + s_{t-1} P_t$;
 - defines $Q_i = s_i P_0$ for $1 \le i \le t 1$;
 - private key $\langle S_t, Q_1, \dots, Q_{t-1} \rangle$ is given to the entity by its parent.
- Note that up to this point, our scheme is identical to the Gentry-Silverberg HIBS scheme.

- SIGN: Given any $n \ge 1$ and a set $SK = \{\langle S_{t_j}^j, Q_1^j, \dots, Q_{t_j-1}^j \rangle : 1 \le j \le n\}$ of n private keys associated with a set $ID = \{ID_{t_j}^j : 1 \le j \le n\}$ of identifiers, and a message M, the signer:
 - chooses a secret value $s_{\varphi} \in \mathbb{Z}_q^*$;
 - computes $P_M = H_2(ID_{t_1}^1, \ldots, ID_{t_n}^n, M);$
 - calculates

$$arphi = \sum_{j=1}^n S^j_{t_j} + s_arphi P_M$$
 and $Q_arphi = s_arphi P_0;$

- outputs the signature $\sigma = \langle \varphi, Q, Q_{\varphi} \rangle$, where $Q = \{Q_i^j : 1 \le i \le t_j - 1, 1 \le j \le n\}.$

- VERIFY: Given $\sigma = \langle \varphi, Q, Q_{\varphi} \rangle$, a set of identifiers $ID = \{ID_{t_1}^1, \dots, ID_{t_n}^n\}$ and a message M, the verifier:
 - computes $P_i^j = H_1(\mathsf{ID}_i^j)$ for $1 \le i \le t_j$ and $1 \le j \le n$;
 - computes $P_M = H_2(\mathsf{ID}^1_{t_1}, \ldots, \mathsf{ID}^n_{t_n}, M);$
 - checks if $e(P_0, \varphi)$ is equal to

$$\left(\prod_{j=1}^n\prod_{i=1}^{t_j}e(Q_{i-1}^j,P_i^j)\right)\cdot e(Q_{\varphi},P_M),$$

outputting valid if this equation holds, and invalid otherwise.

- We first look at the security of our multi-key IBS (1-level multi-key HIBS) scheme.
- Our security proof is in the Random Oracle Model.
- We extend proof techniques used for the Boneh-Franklin IBE scheme.

Theorem

Suppose that A is a forger against our multi-key IBS scheme that has success probability ϵ . Then there is an algorithm B which solves the CDH problem in groups \mathbb{G} equipped with a pairing, with advantage at least

 $\epsilon/(\mathbf{e}\cdot q_{H_1}\cdot q_{H_2}).$

Proof techniques:

- Based on interactions between algorithms ${\cal A}$ (forger) and ${\cal B}$ (simulator);
- *B* generates the system parameters and embeds an instance of the CDH problem;
- \mathcal{A} submits queries to \mathcal{B} ;
- \mathcal{B} injects an instance of the CDH problem in one randomly chosen response to a H_1 query:
 - so that $\mathcal{A}\text{'s}$ forgery may help $\mathcal B$ solve the CDH problem;
- $\ensuremath{\mathcal{B}}$ controls the relevant oracles and must either respond correctly or abort.

Proof techniques for the more complicated multi-key HIBS scheme:

- Borrow Gentry-Silverberg's simulation techniques for handling *H*₁ and extract queries in the hierarchical setting:
 - \mathcal{B} randomly injects an instance of the CDH problem into responses to H_1 queries.
- Combine the above techniques with our approach to handling sign queries, and obtain a security reduction.
- However, so far we have only obtained a security proof for some special cases:
 - constructing a proof for the general case remains an open problem.

	ADD	eMUL	PAI	HASH	mMUL	EXP
Bellare-Neven IBMS						
signing	-	-	-	n(n + 1)	$n^2 + n - 1$	2 <i>n</i>
verification	-	-	-	n-1	п	2
Gentry-Ramzan IBMS						
signing	3 <i>n</i> – 2	2 <i>n</i>	0	п	-	-
verification	n-1	0	3	n+1	-	-
Multi-key IBS						
signing	n	2	0	1	-	-
verification	n-1	0	3	n+1	-	-

• Main saving - signing cost!

Reducing verification cost

- Our verification algorithm can be optimised in special cases, when identifiers are:
 - at the same level, and have a common parent;
 - at the same level, but have different parents;
 - at different levels, but have a common ancestor;
- Having common ancestors indicate common *Q*-values and public keys, thus certain pairing computations can be eliminated.

$$e(P_0,\varphi) = \left(\prod_{j=1}^n \prod_{i=1}^{t_j} e(\mathbf{Q}_{i-1}^j, \mathbf{P}_i^j)\right) \cdot e(\mathbf{Q}_{\varphi}, \mathbf{P}_M)$$

- From hierarchical to workflow signatures:
 - reflecting workflow logical relationships, such as AND-join and AND-split.
 - providing proofs of workflow compliance, reflecting the sequence of task execution and the relevant logical relationships.
- Modification to the multi-key HIBS scheme:
 - the EXTRACT algorithm may now take as input multiple private keys.

Discussion

Extension

- Constant size signatures potentially more efficient verification.
- Instantiation in the standard model.
- Generalisation of multi-key HIBS to the threshold setting:
 - demonstrate knowledge of a subset of size t of a set of private keys of size n.
- Construction in the normal (non-identity-based) public key setting:
 - perhaps by adapting the BGLS aggregate signature scheme.

- Joint work with Professor Kenny Paterson, Royal Holloway, University of London.
- Research was funded by the UK EPSRC under grant EP/D051878/1.