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Upper Bounds on Matching Families in
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Abstract—Matching families are one of the major ingredients in
the construction of locally decodable codes (LDCs) and the best
known constructions of LDCs with a constant number of queries
are based on matching families. The determination of the largest
size of any matching family in , where is the ring of inte-
gers modulo , is an interesting problem. In this paper, we show
an upper bound of for the size of anymatching
family in , where and are two distinct primes. Our bound
is valid when is a constant, , and . Our result
improves an upper bound of Dvir and coworkers.

Index Terms—Locally decodable codes (LDCs), matching fami-
lies, upper bound.

I. INTRODUCTION

L OCALLY decodable codes: A classical error-cor-
recting code allows one to encode any message

of symbols as a codeword of
symbols such that the message can be recovered even if
gets corrupted in a number of coordinates. However, to recover
even a small fraction of the message, one has to consider all or
most of the coordinates of the codeword. In such a scenario,
more efficient schemes are possible. They are known as locally
decodable codes (LDCs). Such codes allow the reconstruction
of any symbol of the message by looking at a small number of
coordinates of the codeword, even if a constant fraction of the
codeword has been corrupted.
Let be positive integers and let be a finite field. For

any , we denote by the Hamming distance
between and .
Definition 1.1 (LDC): A code is said to

be -locally decodable if there is a randomized decoding
algorithm such that
1) for every and such that

, , where
the probability is taken over the random coins of ; and

2) makes at most queries to .
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The efficiency of is measured by its query complexity and
length (as a function of ). Ideally, one would like both and
to be as small as possible.
Implicit discussion of the notion of LDCs dates back to [2],

[30], [34]. Katz and Trevisan [24] were the first to formally
define LDCs and prove (superlinear) lower bounds on their
length. Kerenidis and de Wolf [26] showed a tight (exponential)
lower bound for the length of 2-query LDCs. Woodruff [37]
obtained superlinear lower bounds for the length of -query
LDCs, where . More lower bounds for specific LDCs can
be found in [13], [16], [19], [29], [33], and [36]. On the other
hand, many constructions of LDCs have been proposed in the
past decade. These constructions can be classified into three
generations based on their technical ideas. The first-generation
LDCs [2], [6], [12], [24] are based on (low-degree) multivariate
polynomial interpolation. In such a code, each codeword con-
sists of evaluations of a low-degree polynomial in
at all points of , for some finite field . The decoder recovers
the value of the unknown polynomial at a point by shooting a
line in a random direction and decoding along it using noisy
polynomial interpolation [5], [28], [35]. The second-generation
LDCs [7], [38] are also based on low-degree multivariate
polynomial interpolation but with a clever use of recursion.
The third-generation LDCs, known as matching vector codes
(MV codes), were initiated by Yekhanin [39] and developed
further in [8], [10], [15], [17], [20], [22], [23], [25], and [31].
The constructions involve novel combinatorial and algebraic
ideas, where the key ingredient is the design of large matching
families in . The interested reader may refer to Yekhanin
[40] for a good survey of LDCs.
Matching families: Let and be positive integers.

For any vectors , we denote by
mod their dot product.

Definition 1.2 (Matching family): Let . Two
families of vectors

form an -matching family in if
1) for every ; and
2) for every such that .
The matching family defined above is of size . Dvir et al.

[15] showed that if there is an -matching family of size in
, then there is an -query LDC encoding messages

of length as codewords of length . Hence, large matching
families are interesting because they result in short LDCs. For
any , it is interesting to determine the largest
size of any -matching family in . When ,
this largest size is often denoted by , which is clearly
a universal upper bound for the size of any matching family in
.
Set systems: The study of matching families dates back to

set systems with restricted intersections [3], whose study was
initiated in [18].

0018-9448/$31.00 © 2013 IEEE



5132 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 8, AUGUST 2013

Definition 1.3 (Set system): Let and be two disjoint sub-
sets of . A collection of subsets of is
said to be a - set system over if
1) mod for every ; and
2) mod for every such that .
The set system defined above is of size . When

and , it is easy to show that the -set system
yields an -matching family of size in . To see this,

let be the characteristic vector of for every
, where for every and 0

otherwise. Clearly, and
form an -matching family of size in .
When is a prime power and , Deza et al. [14]

and Babai et al. [4] showed that the largest size of any
-set systems over cannot be greater than
. For any integer , Sgall [32] showed that

the largest size of any -set system over
is bounded by . On the other hand, Grolmusz [21]
constructed a -set system of (superpolynomial)
size over when has

distinct prime divisors. Grolmusz’s set systems result in
superpolynomial-sized matching families in , which have
been the key ingredient for Efremenko’s LDCs [17].
Bounds: Due to the difficulty of determining pre-

cisely, it is interesting to give both lower and upper bounds
for . When , a simple lower bound for
is . To see this, let be the set
of all 0–1 vectors of Hamming weight (i.e., the number of
nonzero components) in . Let for
every , where is the all-one vector. Then, and

form a matching family of size . When
is a composite number with distinct prime factors, the

-set systems of [15], [21], and [27] result in su-
perpolynomial-sized matching families in . In particular, we
have that when
for two distinct primes and . On the other hand, Dvir et al.
[15] obtained upper bounds for for various settings of
the integers and . More precisely, they showed that
1) for any integers and , where

is a term that tends to 0 as approaches infinity;
2) for any prime
and integer ;

3) for any integers , and
such that and .

In particular, the latter two bounds imply that
when for two distinct primes and

such that .
Our results: Dvir et al. [15] conjectured that

for any integers and . A special case where
the conjecture is open is when is a constant, and
for two distinct primes such that and .
In this paper, we show that for
this special case, which improves the best known upper bound
that can be derived from results of Dvir et al. in [15], i.e.,

.
Our techniques: Let

be a matching family of size ,
where for two distinct primes and . We say that

are equivalent (and write ) if there is a
such that for every , where is

the set of units of . Clearly, no two elements of (resp. )
can be equivalent to each other. Let . We say
that is of type if
and . We can partition the set

of pairs according to their types. Let
be the number of pairs of type . Then, we have the

following observations:
1) when (see Lemma 3.9);
2) when (see
Lemma 3.10); and

3) when (see
Lemma 3.11).

These observations in turn imply that
and enable us to reduce the problem of

upper bounding to that of establishing an upper bound for
.

As in [15], we establish an upper bound for by using
an interesting relation between matching families and the ex-
panding properties of the projective graphs (which will be ex-
plained shortly). Let

(1)

We define the projective -space over to be the pair
. We call the elements of points and the ele-

ments of hyperplanes. We say that a point lies on a hy-
perplane if . The projective graph is defined
to be a bipartite graph with classes of vertices ,
where a point and a hyperplane are adjacent if and only if
lies on . Vertices that are adjacent to each other are called

neighbors. A set has the unique neighbor prop-
erty if, for every , there is a hyperplane such that
is adjacent to but to no other points in (see also Def-

inition 3.1). Without loss of generality, let
be the set of pairs of type , where . Let

. It is straightforward to see that
satisfies the unique neighbor property (Lemma 3.8). For any

, we denote by the neighborhood of , i.e., the
collection of vertices in that are adjacent to some vertex
in . Since every point in must have a unique neighbor
in , we have that

(2)

We show that has some kind of expanding property
(see Theorem 3.1), meaning that is large for certain
choices of , which allows us to obtain the expected upper
bound for (see Theorems 3.2 and 3.3). When is
a prime, such an expanding property of was proved by
Alon [1] using the spectral method and it says that

(3)

where is arbitrary.
Let be the adjacency matrix of , where

the rows are labeled by the points, the columns by the hyper-
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planes, and if and only if and are adjacent. Note
that the matrix may take many different forms because the
sets and are not ordered. However, from now on, we
always assume that and are identical to each other
as ordered sets. Hence, is symmetric. Let be the char-
acteristic vector of , where the components of are labeled
by the elements and if and only if .
Alon [1] obtained both an upper bound and a lower bound for

that jointly result in (3), where
with the superscript denoting the transpose of a matrix. More
precisely, Alon [1] determined the eigenvalues of and
represented as a linear combination of the eigenvectors of

. In this paper, we develop their spectral method further
and show a tensor lemma on (see Lemma 2.1), which says
that is a tensor product of and when ,
where and are two distinct primes. As in [1], we determine
the eigenvalues of and represent as a linear combi-
nation of the eigenvectors of . We obtain both an upper
bound and a lower bound for , which are then used
to show that has some kind of expanding property (see
Theorem 3.1).
Subsequent work: Recently, in a follow-up work, Bhowmick

et al. [9] obtained new upper bounds for . They used
different techniques and showed that
for any integers and . In particular, their upper bound trans-
lates into for the special case we con-
sider in this paper.
Organization: In Section II, we study projective graphs over
and matrices associated with such graphs. In Section III,

we establish our upper bound for using the unique
neighbor property in projective graphs. Section IV contains
some concluding remarks.

II. PROJECTIVE GRAPHS AND ASSOCIATED MATRICES

Let be a positive integer. We denote by , and
the all-zero (either row or column) vector of dimension ,

all-one (either row or column) vector of dimension , identity
matrix of order , and all-one matrix of order , respectively.
We denote by an all-zero matrix whose size is clear from the
context. We also define

(4)

Let and be two matrices. We define their tensor
product to be the block matrix . We say that

if can be obtained from by simultaneously per-
muting the rows and columns (i.e., apply the same permutation
to both the rows and columns). Clearly, and have the same
eigenvalues if .
In this section, we study the projective graph defined in

Section I. We also follow the notation there. Let

be the number of points (or hyperplanes) in the projective
-space over . Chee and Ling [11] showed that

(5)

and for every point and hyper-
plane . When is prime, Alon [1] showed that is an
eigenvalue of of multiplicity 1 and is an eigenvalue
of of multiplicity . Furthermore, an eigenvector
of with eigenvalue is and linearly independent
eigenvectors of with eigenvalue can be chosen to
be the columns of , where . However, the eigen-
values of have not been studied when is composite.
Here, we determine the eigenvalues of when for
two distinct primes and .
Lemma 2.1 (Tensor lemma): Let be an integer and

let for two distinct primes and . Then,
.

Proof: Let be the mapping
defined by , where

mod mod (6)

for every . Then, is well defined. To see this, let
and for and . If
and , then there are integers and

such that

mod mod (7)

for every . Let be an integer such that

mod mod (8)

By (6)–(8), we have that mod for every
. Hence, .
Let and , where

and . It is clear that is injective and
(this is clear from (5)). It follows that is bijective

and

(9)

Let and be as above. Then, mod if and
only if mod and mod . Hence,
the -entry of is equal to 1 if and only if the

-entry of and the -entry of are both
equal to 1. Hence, . It follows that

as desired.
In fact, we could have concluded that

and therefore in Lemma 2.1. The sole
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Fig. 1. Ordered point sets.

reason that we did not do so is that those matrices may take dif-
ferent forms, as noted in Section I. To facilitate further analysis,
we make the matrices unique such that .
This can be achieved by making the sets and
unique. To do so, we first make and

unique as ordered sets, where
and .
For example, as shown in Fig. 1, we may set

and

.
Then, both and have been made unique as
ordered sets. (Here, each equivalence class in is
represented by the first element when its elements are arranged
in lexicographical order, and these representatives are
subsequently also arranged in lexicographical order.)
Once and have been made unique as ordered
sets, we can simply set

, where and
. For

example, as shown in Fig. 1, consists of columns
and the th column corresponds to
for every . From now on, we suppose that the point sets

, and have always been made unique, such as
in the way illustrated above. Then, we have

(10)

Let , and .
We define an matrix

(11)

Lemma 2.2: For every , the columns of
are linearly independent eigenvectors of with eigen-

value , where
, and .

Proof: The proof consists of simple verification. For ex-
ample, when , we have that

, where the first equality is due to (10).
Similarly, we can verify for . The linear indepen-
dence of the columns of can be checked using the linear in-
dependence of the columns of and .

Lemma 2.3: We have that

Proof: Note that and
and for every integer . Both equalities follow
from simple calculations.

III. MAIN RESULT

In this section, we present our main result, i.e., a new upper
bound for , where is the product of two dis-
tinct primes and . As noted in Section I, our arguments con-
sist of a series of reductions. First of all, we reduce the problem
of finding an upper bound for to one of establishing an
upper bound for , the number of pairs of type .
The latter problem is in turn reduced to the study of the projec-
tive graph . More precisely, we follow the techniques of
[15] and use the unique neighbor property of . However,
the validity of the technique depends on some expanding prop-
erty of .

A. Expanding Property

We follow the notations of Section II. In this section, we show
that the projective graph has some kind of expanding
property (see Theorem 3.1), in the sense that is large
for certain choices of . Expanding properties of the projec-
tive graph , where is a prime, have been studied by Alon
[1] using the well-known spectral method. In Section II, we
made the observation that the graph is a tensor product
of the graphs and . This observation enables us to
obtain interesting properties (see Lemmas 2.2 and 2.3) which in
turn facilitate our proof that has some kind of expanding
property.
Let be the set of nonnegative integers and let be the

field of real numbers. For any vectors
, we let and

. Furthermore, we define the weight of to be
. For a set , we denote by its char-

acteristic vector whose components are labeled by the elements
and if and 0 otherwise. Due to

Lemmas 2.2 and 2.3, the column vectors of form a basis of
the vector space . Therefore, there is a real vector

where

...
...

...
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such that can be written as a linear combination of the
columns of , say

(12)

Let . The main idea of Alon’s spectral method in
[1] is to establish both a lower bound and an upper bound for
the following number:

(13)

where the second equality is due to Lemma 2.2, and the third
equality follows from the second part of Lemma 2.3. For every

, we set

(14)

Lemma 3.1: The quantities , , and can be written as

(15)

Proof: Lemma 2.3 shows that . Then, we
have

which is the second equality. The first and third equalities can
be proved similarly.
Lemma 3.1 allows us to represent as an explicit function

of , , and . Let

(16)

Lemma 3.2: We have that
.

Proof: From Lemma 2.3, we have that
. It follows that .

Along with (13)–(16), this implies the expected equality.
Although Lemma 3.2 gives us a representation of in

terms of , , , and , it can be more explicit if we
know how the quantities , and are connected to .
Note that according to (12). Let ,

, and . Then

(17)

for every , by Lemma 2.3. As an immediate conse-
quence, we then have that

(18)

On the other hand, recall that , , and have been
made unique as ordered sets in Section II. For every ,
there exists such that . Let

be the mapping defined by

(19)

and let be the mapping defined by

(20)

Lemma 3.3: We have that for
every .

Proof: Suppose that for
. Then, the representation of in Section II shows that

. It is easy to see that and
.

For every and , let be the preimage
of under and let be the preimage of under . Let

and be two real vectors defined by

(21)

where and . Then, we clearly have that
.

Lemma 3.4: We have that and
.

Proof: For every , the th row of is

Let so that

The nonzero components of are labeled by . It follows
that and therefore

Note that and .
Due to (16), we have that

which is the first equality.
For every , the th row of is

Let so that
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The nonzero components of are labeled by . It follows
that and therefore

Note that and .
Due to (16), we have that

which is the second equality.
Lemmas 3.2 and 3.4, together with (18), result in an explicit

representation of in terms of

(22)

For simplicity, we denote by the right-hand side of (22).
We aim to deduce an upper bound for in terms of .
Clearly, this also provides an upper bound for and is cru-
cial for establishing that has some kind of expanding
property. Let

(23)

Dvir et al. [15] showed that and .
Let form a matching family. From now on, we
suppose that and, furthermore, that its cardinality

is fixed. We remark that this assumption
does not affect our proof adversely (see Theorem 3.3).
Lemma 3.5: Let be the real vectors defined by (21).

Then, we have that for every and
for every .

Proof: Suppose that for some . Let
. Then, by the

definition of matching families, there is a subset of , say
, such that and form a matching family.

It follows that
• mod for every ;
• mod whenever and .
On the one hand, we immediately have that

• mod for every .
On the other hand, Lemma 3.3 shows that any two elements
in are equivalent to each other as elements of as
long as they have the same image under . Therefore,
as elements of for any . It follows that

mod . Recall that
mod whenever . It follows that

• mod whenever and .
Therefore, and form a matching family in of size

, which contradicts Dvir et al. [15]. Hence, we must
have that for every .
Similarly, we must have that for every .
Lemma 3.5 shows that the components of and cannot

be too large when . In fact, several conditions must be
satisfied by the real vectors and , which can be summarized
as follows:

Fig. 2. Algorithm.

• for every , due to Lemma 3.5 and
(21);

• for every , due to Lemma 3.5 and
(21);

• , due to (21).
Clearly, when is fixed, the problem of establishing an upper

bound for can be reduced to that of determining the
maximum value of subject to the conditions above. Let

(24)

We show below that is the maximum value of
subject to the conditions above.

Lemma 3.6: Let be such that , , and
. If , then .

Proof: Clearly, we have that

, where the second equality follows
from and the last inequality follows from ,

and .
Lemma 3.7: We have that .
Proof: First, we note that the vectors and satisfy

the three conditions above. In order to show that
, in view of (22), it suffices to show that

and . We only show the first inequality.
The second one can be proved similarly.
Without loss of generality, we can suppose that

. From Lemma 3.5, we have that
for every . We claim that the algorithm in Fig. 2 takes
as input the original vector and produces a sequence of
vectors, say , such that
• and
for every ; and

• , and for every
.

Clearly, if the algorithm does have the above functionality,
then we must have that .
Consider the algorithm in Fig. 2. In order to get the expected

sequence, i.e., , it will be run with an initial input
. In every iteration, the algorithm outputs a and

then checks whether . It halts once the equality holds.
We must show that this algorithm does halt in a finite number

of steps and achieves the promised functionality. The algorithm
starts with and checks whether . If the equality
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holds, it halts. Otherwise, it constructs a new vector such
that ,
and . More concretely, the algorithm finds
the first coordinate (say ) where and differ.
Clearly, we have that , for every

and . Next, the algorithm
affects a carry from to . This is done by setting

. Finally, the algorithm must determine for
every . This is done by rearranging the

numbers such that they are in
descending order. By the description above, it is clear that
•

;
•

;
• for every ;
• , due
to Lemma 3.6.

In each iteration, either becomes greater than it was in the
previous iteration or does not change but the new ob-
tained is strictly greater than . However, since must
be bounded by , in the latter case, will eventually be-
come in a finite number of iterations. Then, in the next
iteration, will be increased by at least 1. Therefore, we can get
a sequence , where is the number of
iterations.
Lemma 3.7 shows that is a valid upper bound for
. This bound is nice because both and depend only

on , which will facilitate our analysis. More precisely, we have
that

(25)

where
.

We proceed to develop an explicit lower bound for in
terms of and . Recall that the components of are
labeled by all the hyperplanes. It is easy to see that

(26)

is the number of neighbors of in for every .
Hence, whenever . It follows that

(27)

where the last equality follows from Chee and Ling [11]. It fol-
lows from the Cauchy–Schwarz inequality that

(28)

where the second equality follows from (27) and the last
equality follows from Lemma 2.2.
Both the upper bound (see (25)) and the lower bound (see

(28)) for involve only and . Together, they

demonstrate that the projective graph has some kind of
expanding property.
Theorem 3.1 (Expanding property): Let

form a matching family and let be of car-
dinality . Then, we have that

B. On the Largest Matching Family in

In this section, we deduce an upper bound on the largest
matching family in . As in [15], our analysis depends on
the unique neighbor property defined in Definition 3.1 and the
fact that the projective graph has some kind of expanding
property (see Theorem 3.1).
Definition 3.1 (Unique neighbor property): We say that
satisfies the unique neighbor property if, for every ,

there is a such that is not adjacent to any
.

As noted by Dvir et al. [15], there is a set of car-
dinality that satisfies the unique neighbor property in if
and only if there is a matching family in of size . As an
analog, the following lemma is true for .
Lemma 3.8: A set satisfies the unique neighbor

property if and only if there is a such that and
form a matching family.

Proof: Suppose that . If it satisfies the
unique neighbor property in , then, for every , there
is a such that for every .
Equivalently, we have that and for
every . Let . Then, and form
a matching family.
Conversely, let be such that

and form a matching family. For every , we have that
and whenever and .

Equivalently, and when .
Hence, satisfies the unique neighbor property.
Theorem 3.2: Let form a matching family and

let be of cardinality . Then, we have that
.

Proof: By Lemma 3.8, satisfies the unique neighbor
property in . Hence, every element in must have
a unique neighbor in . It follows that

, which implies that
. Along with Theorem 3.1, the inequality de-

sired follows.
The following theorem gives an explicit upper bound for the

largest matching family in .
Theorem 3.3: Let form a matching family.

Then, for any constant as
and , where is a constant.

Proof: Suppose that . Then, we
can take a set of points of cardinality

. By Theorem 3.2, we have that
when and

, with a constant. This is a contradiction.

C. On the Largest Matching Family in

Let be a matching
family of size in . In order to establish the
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final upper bound for , we have to classify the pairs
into types and establish an upper bound

for each type.
Definition 3.2 (Type of pairs): For every

, the pair is said to be of type
if and

, where are positive
divisors of .
Let . We define to be the set of pairs

of type and . Clearly, the elements
of the set fall into 16 different classes as
and vary.
Lemma 3.9: If , then .
Proof: Suppose that . Then, we can take two

pairs, say and , from . Clearly, we have
that , which is a contradiction.
Lemma 3.9 covers nine of the 16 classes. More

precisely, we have that when

.
Lemma 3.10: If , then
.
Proof: We prove for . The other cases can

be treated similarly. Without loss of generality, we can suppose
that are the pairs of type , where

. Let
• mod mod and
• mod mod

for every . Then, and
form a matching family of size in . This

implies that , using results of Dvir et al. in [15].

Similarly, we have
Lemma 3.11: If , then
.
Finally, we have the main result of this paper.
Theorem 3.4: Let be a constant and let

for two distinct primes and . Then, we have that
when and .

Proof: Theorem 3.3 gives an upper bound for .
By Theorem 3.3 and Lemmas 3.9–3.11,

, which
is asymptotically bounded by when
and .

IV. CONCLUDING REMARKS

It would be attractive if the method in this paper could be
extended to work for any integer . To this end, we would need
to show that the projective graph , for a general integer
, has some kind of expanding property. In fact, a generalized

version of the tensor lemma (see Lemma 4.1) does exist for the
matrix , and it is also possible to determine the eigenvalues
of for a general integer (see Theorems 4.1 and 4.2).
Lemma 4.1 (Tensor lemma): Let

for distinct primes and positive integers

, where for every . Then, we have
that

(29)

Theorem 4.1 (Eigenvalues of when is a prime
power): Let , where is a prime and is a
positive integer, and let be a positive integer. Then,

is an eigenvalue of of
multiplicity , is an eigenvalue of

of multiplicity , and is
an eigenvalue of of multiplicity
for every .
Theorem 4.2 (Eigenvalues of when is any positive

integer): Let for distinct primes
and positive integers , where for

every . Let be an eigenvalue of of multiplicity
for every . Then, is an eigenvalue of

of multiplicity .
However, the method used in this paper may become weaker

as the number of distinct prime factors of increases. As in
many other classic applications, the performance of our method
depends on the difference between the two largest eigenvalues
of . Roughly speaking, a larger difference corresponds to
better performance. However, Theorems 4.1 and 4.2 show that
this difference becomes less significant as the number of distinct
prime factors of increases. On the other hand, this does not
rule out the possibility of applying Theorems 4.1 and 4.2 in a
different way. Currently, an exponential gap still exists between
the best lower bound and the best upper bound for . We
hope that these general theorems (Theorems 4.1 and 4.2) can be
used in some way to close this gap in the future.
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