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Abstract—Frameproof codes are used to preserve the security
in the context of coalition when fingerprinting digital data. Let

be the largest cardinality of a -ary -frameproof code
of length and . It has been deter-
mined by Blackburn that when
when and is even, and . In this paper, we give a
recursive construction for -frameproof codes of length with re-
spect to the alphabet size . As applications of this construction,
we establish the existence results for -ary -frameproof codes of
length and size for all odd when and
for all when . Furthermore, we show that

meeting the upper bound given by Blackburn,
for all integers such that is a prime power.

Index Terms—Fingerprinting, frameproof codes, orthogonal
array
.

I. INTRODUCTION

F RAMEPROOF codes were first introduced by Boneh and
Shaw [7] in 1998 to protect copyrighted materials. When a

distributor wants to sell copies of a digital product, he randomly
chooses fixed positions in the digital data. For each copy, he
marks each position with one of different states. Such a collec-
tion of marked positions in each copy is known as a fingerprint,
which can be thought as a codeword of length over an alphabet
of size . The users don’t know the positions and states em-

bedded in the data, so they cannot remove them. However, in
the context of collusion, some users can share and compare their
copies, and they can easily discover some or perhaps all marked
positions and create illegal copies. A set of fingerprints is called
to be -frameproof if any coalition of at most users can not
frame another user not in the coalition.

A. Related Objects

The study of related objects to frameproof codes in the lit-
erature goes back to 1960s, as Rényi first introduced the con-
cept of a separating system in his papers concerning certain in-
formation-theoretic problems [17]–[20]. After that, the concept
was defined again in cryptography several decades later, under
different scenarios and purposes. Besides the frameproof codes
suggested by Boneh and Shaw [7], variants of such codes have
become objects of study by many researchers. For instance:
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• secure frameproof codes (SFP) [14] are defined to demand
that no coalition of at most users can frame another dis-
joint coalition of at most users;

• Codes with identifiable parent property (IPP) [1], [4], [12],
[21] require that no coalition of at most users can produce
a copy that cannot be traced back to at least one member
of the coalition;

• Traceability codes (TA) [8], [11], [13], [15] have much
stronger identifiable parent property which allows an ef-
ficient (i.e., linear-time in the size of the code) algorithm
to determine one member of the coalition.

The intimate relations among such kinds of codes and con-
nections with other combinatorial objects, such as certain types
of separating hash families, cover-free families and combinato-
rial group testings were described in [8], [10], [11], [13], [15].
These have motivated much research investigating the construc-
tions and bounds of these codes, and of related objects, see for
example [1]–[6], [9], [12], [16], [21]–[23].

B. Preliminaries

In this paper, we mainly investigate the upper bounds and
constructions of frameproof codes. The definition we use was
explicitly given by Fiat and Tassa [11], who credited Chor, Fiat,
and Naor [8] with its first use.
Let be a finite set of cardinality and be a positive integer.

The set is denoted by . For a -ary word
and an integer we write for the th component of .
Let be a set of words of length . The set of descendants
of , is the set of all words such that for all

, there exists satisfying , i.e.,

Let be an integer such that . A -frameproof code is a
subset such that for all with , we have
that .
Let be the largest cardinality of a -ary -frameproof

code of length . Staddon, Stinson andWei [13] proved an upper
bound for , which is given as follows:

The exact value of is not known except for the trivial
case, i.e., when and shown
by Blackburn [3]. So the more interesting and difficult case is
when . In [3], Blackburn also established an asymptotic
upper bound for , which is restated as follows.

Theorem 1.1: [3] Let and be positive integers greater
than 1. Let be an integer such that . Then
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Let and .
Then it is easy to show the following result by Theorem 1.1.

Corollary 1.1: Let and be positive integers greater than 1.
Let be an integer such that . Then

When , Blackburn [3] showed that when
, and when and is even. The

next most tempting case is when , i.e., .
Blackburn asked in [3, Section 8] the following question: Is
there a -ary -frameproof code of length with cardinality ap-
proximately when ? In fact,
the answer is yes when and , which was proved
in [3, Construction 4] by constructing a 3-frameproof code of
length 5 of sufficiently large cardinality.
Inspired by this question, we pursue the exact values for
with in the following sections by constructing

-frameproof codes with cardinality asymptotically meeting the
upper bound in Theorem 1.1. The paper is organized as follows.
In Section II, we present a general recursive construction for
-frameproof codes of length with respect to the alphabet
size by introducing the definition of Property for a
frameproof code. As applications of this method, we establish
the existence results of -ary -frameproof codes of length
and size for all odd when and for all

when in Section III. In Section IV,
we apply the method to the frameproof codes obtained from
orthogonal arrays to prove that the upper bound for in
Corollary 1.1 can be achieved for all and
when is a prime power. Finally, we conclude our paper
in Section V.

II. A GENERAL RECURSIVE CONSTRUCTION

This section serves to describe a general recursive construc-
tion for -frameproof codes. First, we introduce the definition
of Property for a code, where is a positive integer.

Definition 2.1: Let be an -ary -frameproof code of length
over an alphabet of size . is said to satisfy Property
if there exists a special element say , such that each
codeword contains at most ’s and is uniquely determined
by specifying of its components that are not equal to .
Now suppose is an -ary -frameproof code of length

over satisfying Property with a special element
. For convenience, let . Suppose has

cardinality . Denote the codewords of by with .
By Definition 2.1, there are at most components with of
for each . Furthermore, a codeword is uniquely

determined by specifying of its components that are not equal
to .
Let be a prime power such that and be the

finite field of size . Let be a set of distinct
elements in the alphabet . For each polynomial

, let denote the coefficient of in . For each
, denote . Let be a set of words of

length over , such that each word
is defined by

with , where runs over with .
So each word is uniquely determined by specifying
components that are not equal to . Moreover, since ,
i.e., , all the words of are distinct. Hence each
set has cardinality .
Now for each , define a set of words of length

over by

Let . It is clear that all are disjoint, thus
. The following lemma proves that is also a -frame-

proof code.

Lemma 2.1: Let be a prime power and be positive
integers such that and . Define

. Suppose that is an integer such that
for some . If there exists an -ary

length -frameproof code of cardinality satisfying Property
, then there exists a -ary length -frameproof code of

cardinality .
Proof: Using the same notation and construction as above,

it remains to show that is a -frameproof code of
length over .
For each word , let

be the word by mapping each element to its th coor-
dinate, , i.e., and

. Suppose and let be such that
and . We will show that . Since
and , there exists that agrees with in

or more components that are not equal to . We aim to
show .
Since , there exists such that . Then
. Since and agree in or more components that

are not equal to . That is . Thus
and are both in . Since and agree in

or more components that are not equal to .
Hence as required.

Let be the ring of integers modulo . Here are two exam-
ples as applications of Lemma 2.1.

Example 2.1: Let . Define four sets
and of words of length 4 over as follows:

It is clear that the sets are pairwise disjoint and have car-
dinality 2. Let , it is not difficult to check that
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is a 3-ary 2-frameproof code of length 4 over with cardi-
nality 8. Furthermore, satisfies Property . Let be
any prime power and . By applying Lemma 2.1,
there exists a -ary 2-frameproof code of length 4 of cardinality

.
Note: Example 2.1 shows that for each

with a prime power. In [3, Construction 3],
Blackburn constructed a -ary 2-frameproof code of length 4 of
cardinality , where and

is a prime power. In this case, Example 2.1 constructs
2-frameproof codes of length 4 with bigger size for a denser
family of parameters .

Example 2.2: This is from [3, Construction 4]. Let
. Define five sets and of words

of length 5 over as follows:

It is easy to see that the sets are pairwise disjoint and have
cardinality 3. Let , which forms a 4-ary 3-frame-
proof code of length 5 over with cardinality 15. Clearly
satisfies Property . Let be a prime power and

. By applying Lemma 2.1, there exists a -ary
3-frameproof code of length 5 of cardinality .
Before the end of this section, we show that the resultant

codes obtained from Lemma 2.1 also satisfy Property ,
which means that Lemma 2.1 can be applied recursively.

Lemma 2.2: Any frameproof code obtained from Lemma 2.1
satisfies Property with the same of the previous code.
Furthermore, the code is still -frameproof after joining the all

codeword.
Proof: We use the same notation as in Lemma 2.1. The

proof that satisfies Property with the special element
is a straightforward verification by the construction and

omitted.
Let be the all codeword. First, we prove that

is not in the descendant of any set with . In fact,
each codeword in contains at most components with

. Hence there are at most ’s contained in
any set with , but there are

’s in . Second, suppose and let
be such that and .

We will show that . Since has at least
components that are not equal to , there exists
that agrees with in or more components that are not equal to

. By the Property of as required. This
completes the proof.

III. AND 3

In this section, we establish the existence of two infinite fam-
ilies of -frameproof codes of length with cardinality

with and 3.

A. and

Lemma 3.1: There exists a 5-ary 2-frameproof code with
length 4 of cardinality 32 satisfying Property .

Proof: We will construct the 2-frameproof code
of length 4 over . For each polynomial

, let denote the coefficient of in . First,
define four sets of words as follows:

It is clear that the sets are pairwise disjoint and have car-
dinality 8. Let , then is easily seen to be a
5-ary 2-frameproof code of length 4 with cardinality 32 satis-
fying Property .

By applying Lemma 2.1, we establish the following existence
result for 2-frameproof codes.

Theorem 3.1: There exists a -ary 2-frameproof code with
length 4 of cardinality for any odd .

Proof: By Lemma 2.2, it is sufficient to prove that for each
odd , there exists a -ary 2-frameproof code with length 4
of cardinality satisfying Property .
For , the conclusion is true by Example 2.1 and

Lemma 3.1. Assume it is true for all odd integers less than
, i.e., there exists a -ary 2-frameproof code

with length 4 of cardinality satisfying Property
for any odd . The proof proceeds by induction. If
is a prime power, then by Lemma 2.1 and Example 2.1, such

a code exists for . If is not a prime power, write
as . There exists at least one , such that

is odd. Since is odd, the code
exists for by assumption. Then by Lemma 2.1,
the code exists for
as required.

B. and

Lemma 3.2: There exists a 10-ary 3-frameproof code with
length 5 of cardinality 135 satisfying Property .

Proof: For each polynomial , let denote
the coefficient of in . Now we define consisting of the
following five types of codewords over with

and :
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It is easy to check that is a 10-ary 3-frameproof code of length
5 with cardinality 135 satisfying Property .

Similar to the proof of Theorem 3.1, we obtain the following
existence result for 3-frameproof codes by induction.

Theorem 3.2: There exists a -ary 3-frameproof code with
length 5 of cardinality for any integer

.
Proof: By Lemma 2.2, it is sufficient to prove that for each

, there exists a -ary 3-frameproof code with
length 5 of cardinality satisfying Property .
For , the above statement is true by Example 2.2 and

Lemma 3.2. Assume it is true for all integers
less than , i.e., there exists a
-ary 3-frameproof code with length 5 of cardinality
satisfying Property for any integer less
than . If is a prime power, then by Lemma
2.1 and Example 2.2, such a code exists when .
If is not a prime power, assume .
Since is odd, there exists at least one , such that

is odd. Since is less
than , the code exists for
by assumption. Then by Lemma 2.1, the conclusion is true for

as
required.

IV. DETERMINATION OF

Having demonstrated in Section III, that when
, we now pursue the determination of for general

. We begin by introducing the definition of orthogonal arrays.
An orthogonal array of size , with constraints (or of

degree ), levels (or of order ), and strength , denoted by
, is a array with entries from a set of

symbols, having the property that in every submatrix,
every column vector appears the same number of
times. The parameter is the index of the orthogonal array. An

is also denoted by . If is omitted,
it is understood to be 2. If is omitted, it is understood to be 1.
Orthogonal arrays are well known used to give codes of high

minimum distance. It was proved in [8], [13] that codes with
high minimum distance are frameproof codes with some param-
eters. To make the paper self-contained, we prove the following
result from orthogonal arrays.

Lemma 4.1: If there exists an , then there exists
an -ary length -frameproof code of cardinality , where is
any integer such that .

Proof: Suppose the given is an array with
entries from set of size . Let be the collection of words
formed by all the columns of the array. Now we prove is
-frameproof for any such that . Let be any
subset of with . For any vector , each
component of must agree with the corresponding component
of one of the codewords in . Since , there is a codeword

that agrees in at least positions. Thus from the
definition of orthogonal array.

Let be a frameproof code of length over . Denote
the symmetric group on by . For each

and for each codeword ,
define . Finally,
define . It is natural to obtain the
following result.

Lemma 4.2: If is a -frameproof code of length over
, then is a -frameproof code for each and

.
Proof: The proof proceeds by contradiction. Assume

that is not -frameproof, i.e., there exists a code-
word and a set of cardinality , such that

but . By the definition
of descendant, for each , there exists
such that . For , there exists such that

, hence because is a permutation. Thus
but , which is a contradiction with the

fact that is -frameproof.

Let be a set of size containing . Suppose there exists an
over which is an array. Denote the column

vectors by . By the definition of or-
thogonal array and Lemma 4.2, we can assume that is the
all vector. For each contains at most
components with . Furthermore, a vector is uniquely de-
termined by specifying of its components. By Lemma 4.1,

, form an -ary length -frameproof code of car-
dinality satisfying Property , where is any integer
such that for some . Hence, we have the
following construction by Lemma 2.1.

Lemma 4.3: Let be a prime power and be positive
integers such that and . Define

. If there exists an , then there exists a
-ary length -frameproof code of cardinality ,
where is any integer such that for some

.
Applying Lemma 4.3 with the existence of

for any prime power , we show the following result.

Corollary 4.1: Let be an integer such that is a
prime power, and let be any prime power. Then there
exists a -ary -frameproof code of length with cardinality

, where .
Proof: Let and , then

there exists an . By Lemma 4.3, there exists a -ary
-frameproof code of length with cardinality

.

Corollaries 1.1 and 4.1 combine to determine the values for
.

Theorem 4.1: Let be an integer such that is a
prime power, then .

Proof: By Corollary 1.1, we have . It
remains to show that . For a given value
of , let be the largest prime power such that ,
and let be the smallest integer such that . That
is is the largest prime power such that . By the prime
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number theorem, . By Corollary 4.1, we have
. Hence

which shows . This completes the proof.

V. CONCLUSION

Determining the largest cardinality of a -ary -frameproof
code of length is a difficult problem for general .
In this paper, we show that the leading term of the upper bound
for in Theorem 1.1, proposed by Blackburn [3], is tight
when is a prime power and , by constructing cor-
responding frameproof codes of sufficiently large cardinality.
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