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Abstract—The min-rank of a digraph was shown by Bar-
Yossef et al. (2006) to represent the length of an optimal scalar
linear solution of the corresponding instance of the Index Coding
with Side Information (ICSI) problem. In this work, the graphs
and digraphs of near-extreme min-ranks are characterized. Those
graphs and digraphs correspond to the ICSI instances having
near-extreme transmission rates when using optimal scalar linear
index codes. It is also shown that the decision problem of whether
a digraph has min-rank two is NP-complete. By contrast, the same
question for graphs can be answered in polynomial time.

I. INTRODUCTION

Index Coding with Side Information (ICSI) [1] is a com-

munication scheme dealing with broadcast channels in which

receivers have prior side information about the messages to be

broadcast. By using coding and by exploiting the knowledge

about the side information, the sender may significantly reduce

the number of required transmissions compared with the

straightforward approach. Apart from being a special case

of the well-known (non-multicast) Network Coding problem

([2], [3]), the ICSI problem has also found various potential

applications on its owns, such as audio- and video-on-demand,

daily newspaper delivery, data pushing, and oppoturnistic

wireless networks ([1], [4], [5], [6]).

In the work of Bar-Yossef et al. [4], the optimal transmission

rate of scalar linear index codes for an ICSI instance was

neatly characterized by the so-called min-rank of the side in-

formation digraph corresponding to that instance. The concept

of min-rank of a graph goes back to Haemers [7]. Min-rank

serves as an upper bound for the celebrated Shannon capacity

of a graph [8]. It was shown by Peeters [9] that computing the

min-rank of a general graph (that is, the Min-Rank problem)

is a hard task. More specifically, Peeters showed that deciding

whether the min-rank of a graph is smaller than or equal to

three is an NP-complete problem. The interest in the Min-Rank

problem has grown after the work of Bar-Yossef et al. [4].

Exact and heuristic algorithms for finding min-rank over the

binary field of a digraph were developed in [10]. The min-

rank of a random digraph was investigated in [11]. A dynamic

programming approach was proposed in [12] to compute min-

ranks of outerplanar graphs in polynomial time.

1The work of this author was done in part while he was with the
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign,
Urbana, IL 61801, USA.

In this paper, we study graphs and digraphs that have near-

extreme min-ranks. In other words, we study ICSI instances

with n receivers for which optimal scalar linear index codes

have transmission rates 2, n − 2, n − 1, or n. Consequently,

we show that the problem of deciding whether a digraph

has min-rank two over F2 is NP-complete. By contrast, the

same decision problem for graphs can be solved in polynomial

time. The characterizations of graphs and digraphs with near-

extreme min-ranks are summarized in the table below. The

star mark indicates that the result is established in this paper.

Min-Rank Graph G Digraph D

1 G is complete (trivial) D is complete (trivial)

2
G is not complete and G is 2-
colorable ([9])

D is not complete
and D is fairly 3-
colorable∗

n− 2

G (connected) has a maximum
matching of size two and does not
contain F (Fig. 4) as a subgraph∗

unknown

n− 1 G (connected) is a star graph∗ unknown

n G has no edges (trivial) D has no circuits∗

The paper is organized as follows. Basic notations and def-

initions are presented in Section II. In Section III, we present

characterization of graphs and digraphs of near-extreme min-

ranks. In Section IV, we prove the hardness of the decision

problem of whether a digraph has min-rank two. The full

version of this paper is available at web.spms.ntu.edu.sg/
∼daus0001/ExtremeIC.pdf.

II. NOTATIONS AND DEFINITIONS

Let [n]
△

= {1, 2, . . . , n}. Let Fq denote the finite field of q
elements. The support of a vector u ∈ Fn

q is defined to be the

set supp(u) = {i ∈ [n] : ui 6= 0}. For an n × k matrix M ,

let M i denote the ith row of M . For a set E ⊆ [n], let ME

denote the |E| × k sub-matrix of M formed by rows of M

which are indexed by the elements of E. For any matrix M

over Fq , we denote by rankq(M) the rank of M over Fq . We

use ei to denote the unit vector, which has a one at the ith
position, and zeros elsewhere.

A graph is a pair G = (V(G), E(G)) where V(G) is the set

of vertices of G, and E(G), the edge set, is a set of unordered

pairs of distinct vertices of G. A typical edge of G is of the

form {i, j} where i, j ∈ V(G), and i 6= j. For a graph with

n vertices, we often take [n] as the vertex set. A digraph
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D = (V(D), E(D)) is defined similarly, except that E(D) is

called the arc set, which is a set of ordered pairs of distinct

vertices of D. A typical arc of D is of the form e = (i, j)
where i, j ∈ V(D), and i 6= j. We note that any graph can be

viewed as a digraph with the same set of vertices, where each

edge in E(G) is replaced with two antiparallel arcs in E(D).

If (i, j) ∈ E(D) then j is called an out-neighbor of i. The set

of out-neighbors of a vertex i in the digraph D is denoted by

ND
O (i). We simply use NO(i) whenever there is no potential

confusion. For a graph G, we denote by NG(i) the set of

neighbors of i, namely, the set of vertices adjacent to i. The

order of a digraph is its number of vertices. The complement

of a digraph D, denoted D, is a digraph with vertex set V(D)
and arc set {(i, j) : i, j ∈ V(D), i 6= j, (i, j) /∈ E(D)}. The

complement of a graph is defined analogously.

A circuit in a digraph D = (V(D), E(D)) is a sequence

of pairwise distinct vertices C = (i1, i2, . . . , ir), where

(is, is+1) ∈ E(D) for all s ∈ [r − 1] and (ir, i1) ∈ E(D)
as well. A digraph is called acyclic if it contains no circuits.

The ICSI problem is formulated as follows. Suppose a

sender S wants to send a vector x = (x1, x2, . . . , xn), where

xi ∈ Ft
q for all i ∈ [n], to n receivers R1, R2, . . . , Rn. Each Ri

possesses some prior side information, consisting of the blocks

xj , j ∈ Xi ( [n], and is interested in receiving a single block

xi. The sender S broadcasts a codeword E(x) ∈ Fκ
q , κ ∈ N,

that enables each receiver Ri to recover xi based on its side

information. Such a mapping E is called an index code. We

refer to t as the block length and κ as the length of the index

code. The ratio κ/t is called the transmission rate of the index

code. The objective of S is to find an optimal index code, that

is, an index code which has the minimum transmission rate.

The index code is called linear if E is an Fq-linear mapping,

and nonlinear otherwise. The index code is called scalar if

t = 1 and vector if t > 1. The length and the transmission

rate of a scalar index code (t = 1) are identical.

Example II.1. Consider the following ICSI instance in which

n = 5 and X1 = {2}, X2 = {3}, X3 = {1, 4}, X4 = {5},

X5 = {2, 4}. Assume that xi ∈ F2 (i ∈ [5]).

S

R1

R2 R3
R4

R5

requests x1
owns x2

requests x2
owns x3

requests x3
owns x1, x4

requests x4
owns x5

requests x5
owns x2, x4

x1 + x2
x2 + x3

x4 + x5

Fig. 1: Example of an ICSI instance and an index code

The sender broadcasts three packets x1 + x2, x2 + x3, and

x4 + x5. This index code is of length three. The decoding

process goes as follows. As R1 knows x2 and receives x1+x2,

it obtains x1 = x2 + (x1 + x2); Similarly, R2 obtains x2 =
x3+(x2+x3); R3 obtains x3 = x1+(x1+x2)+(x2+x3); R4

obtains x4 = x5+(x4+x5); R5 obtains x5 = x4+(x4+x5).

This index code saves two transmissions compared with the

naı̈ve approach when S broadcasts all five messages.

Each instance of the ICSI problem can be described by

the so-called side information digraph [4]. Given n and Xi,

i ∈ [n], the side information digraph D is defined as follows.

The vertex set V(D) = [n]. The arc set E(D) = ∪i∈[n]{(i, j) :
j ∈ Xi}. The side information digraph corresponding to the

ICSI instance in Example II.1 is depicted in Fig. 2a.

Definition II.2 ([7], [4]). Let D = (V(D), E(D)) be a digraph

of order n. A matrix M = (mi,j) ∈ Fn×n
q is said to fit D if

mi,i 6= 0 and mi,j = 0 whenever i 6= j and (i, j) /∈ E(D).
The min-rank of D over Fq , denoted minrkq(D), is defined to

be the minimum rank of a matrix in Fn×n
q that fits D. Since a

graph can be viewed as a special case of a digraph, the above

definitions also apply to a graph.

1

2

34

5

(a) Side information digraph D

1 1 0 0 0

0 1 1 0 0

1 0 1 0 0

0 0 0 1 1

0 0 0 1 1

(b) A rank-three matrix that fits D

Fig. 2: Corresponding side information digraph (Example II.1)

Bar-Yossef et al. [4] showed that the length (transmission

rate) of an optimal scalar linear index code for the ICSI

instance described by D is precisely the min-rank of D. Let

βq(t,D) denotes the length of an optimal vector index code of

block length t over Fq for an ICSI instance described by a di-

graph D. Lubetzky et al. [13] defined the broadcast rate βq(D)
of the corresponding ICSI instance to be limt→∞ βq(t,D)/t
(see also [14]). Then minrkq(D) is an upper bound on βq(D).

Theorem II.3 ([7], [4], [14]). For any digraph D we have

α(D) ≤ βq(D) ≤ minrkq(D), where α(D) denotes the size

of a maximum acyclic induced subgraph of D. The same

inequalities hold for a graph G, where α(G) denotes the size

of a maximum independent set of G.

III. DIGRAPHS OF NEAR-EXTREME MIN-RANKS

A. Digraphs of Min-Rank One

Proposition III.1. A digraph has min-rank one over Fq if and

only if it is a complete digraph.

Due to Theorem II.3, it is also trivial to see that βq(D) = 1
if and only if D is a complete digraph.

B. Digraphs of Min-Rank Two

It was observed by Peeters [9] that a graph has min-rank two

if and only if it is not a complete graph and its complement is

a bipartite graph. We now focus only on digraphs of min-rank

two. In this section, only the binary alphabet is considered.

We first introduce the following concept of a fair coloring

of a digraph. Recall that a k-coloring of a graph G =
(V(G), E(G)) is a mapping φ : V(G) → [k] which satisfies
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the condition that φ(i) 6= φ(j) whenever {i, j} ∈ E(G). We

often refer to φ(i) as the color of i. If there exists a k-coloring

of G, then we say that G is k-colorable.

Definition III.2. Let D = (V(D), E(D)) be a digraph. A fair

k-coloring of D is a mapping φ : V(D) → [k] that satisfies

the following conditions

(C1) If (i, j) ∈ E(D) then φ(i) 6= φ(j);
(C2) For each vertex i of D, it holds that φ(j) = φ(h) for all

out-neighbors j and h of i.

If there exists a fair k-coloring of D, we say that we can color

D fairly by k colors, or, D is fairly k-colorable.

Lemma III.3. A digraph D = (V(D), E(D)) is fairly 3-

colorable if and only if there exists a partition of V(D) into

three subsets A, B, and C that satisfy the following conditions

1) For every i ∈ A: either NO(i) ⊆ B or NO(i) ⊆ C;

2) For every i ∈ B: either NO(i) ⊆ A or NO(i) ⊆ C;

3) For every i ∈ C: either NO(i) ⊆ A or NO(i) ⊆ B.

Theorem III.4. Let D = (V(D), E(D)) be a digraph. Then

minrk2(D) ≤ 2 if and only if D, the complement of D, is

fairly 3-colorable.

Proof: Suppose V(D) = [n].
The ONLY IF direction:

By the definition of min-rank, minrk2(D) ≤ 2 implies the

existence of an n × n binary matrix M of rank at most two

that fits D. There must be some two rows of M that span its

entire row space. Without loss of generality, suppose that they

are the first two rows of M , namely, M1 and M2 (these

two rows might be linearly dependent if minrk2(D) < 2).

Let B = supp(M1) ∩ supp(M2), A = supp(M1) \ B, and

C = supp(M2) \ B. Since the binary alphabet is considered

and the matrix M has no zero rows, for every i ∈ [n], one of

the following must hold: (1) M i = M1; (2) M i = M2; (3)

M i = M1 + M2. Hence i ∈ supp(M i) ⊆ A ∪ B ∪ C for

every i ∈ [n]. This implies that A ∪B ∪ C = [n].
Suppose that i ∈ A. Then either M i = M1 or M i =

M1 + M2. The former condition holds if and only if

supp(M i) = A∪B, which in turns implies that (i, j) ∈ E(D)
for all j ∈ A ∪ B \ {i}. In other words, (i, j) /∈ E(D) for all

j ∈ A∪B. Here D = (V(D), E(D)) is the complement of D.

The latter condition holds if and only if supp(M i) = A ∪C,

which implies that (i, j) /∈ E(D) for all j ∈ A ∪ C. In

summary, for every i ∈ A we have

1) (i, j) /∈ E(D), for all j ∈ A;

2) Either (i, j) /∈ E(D), for all j ∈ B, or (i, j) /∈ E(D),
for all j ∈ C;

In other words, for every i ∈ A, either ND
O (i) ⊆ B or

ND
O (i) ⊆ C. Analogous conditions hold for every i ∈ B

and for every i ∈ C as well. Therefore, by Lemma III.3, D is

fairly 3-colorable.

The IF direction:

Suppose now that D is fairly 3-colorable. It suffices to find

an n× n binary matrix M of rank at most two which fits D.

By Lemma III.3, there exists a partition of V(D) into three

subsets A, B, and C that satisfy the following three conditions

1) For every i ∈ A: either ND
O (i) ⊆ B or ND

O (i) ⊆ C;

2) For every i ∈ B: either ND
O (i) ⊆ A or ND

O (i) ⊆ C;

3) For every i ∈ C: either ND
O (i) ⊆ A or ND

O (i) ⊆ B.

We construct an n × n matrix M = (mi,j) as follows. For

each i ∈ A, if ND
O (i) ⊆ B then let mi,j = 1 for j ∈ A ∪ C,

and mi,j = 0 for j ∈ B. Otherwise, if ND
O (i) ⊆ C then let

mi,j = 1 for j ∈ A ∪ B, and mi,j = 0 for j ∈ C. For i ∈ B
and i ∈ C, M i can be constructed analogously. It is obvious

that M fits D. Moreover, each row of M can be written as a

linear combinations of the two binary vectors whose supports

are A∪B and B∪C, respectively. Therefore, rankq(M) ≤ 2.

We complete the proof.

The following corollary characterizes the digraphs of min-

rank two.

Corollary III.5. A digraph D has min-rank two over F2 if

and only if D is fairly 3-colorable and D is not a complete

digraph.

For a graph G, it was proved by Blasiak et al. [15] that

β2(G) = 2 if and only if G is bipartite and G is not a complete

graph. A characterization (by forbidden subgraphs) of digraphs

D with β2(D) = 2 was also obtained therein.

C. Digraphs of Min-Ranks Equal to Their Orders

Proposition III.6. Let G be a graph of order n. Then

minrkq(G) = n if and only if G has no edges.

Proposition III.7. Let D be a digraph of order n. Then

minrkq(D) = n if and only if D is acyclic.

Proof: Equivalently, we show that minrkq(D) ≤ n− 1 if

and only if D has a circuit. Let V(D) = [n].
Suppose D has a circuit C = (i1, i2, . . . , ir). We construct a

matrix M fitting D as follows. Let V(C) = {i1, . . . , ir}. For

j /∈ V(C), let M j = ej . For s ∈ [r−1], let M is = eis−eis+1
.

Finally, let M ir = ei1 −eir . Clearly, M fits D. Moreover, as

M ir =
∑r−1

s=1 M is , we have rankq(MV(C)) ≤ r − 1. Hence

rankq(M) = rankq
(

MV(C)

)

+ rankq
(

M [n]\V(C)

)

≤ (r − 1) + (n− r) = n− 1.

Therefore, minrkq(D) ≤ n− 1.

Conversely, suppose that minrkq(D) ≤ n − 1. By Theo-

rem II.3, α(D) ≤ n− 1. Therefore, D contains a circuit.
By Theorem II.3, it is not hard to see that Proposition III.6

and III.7 also hold if we replace minrkq(·) by βq(·).

D. Graphs of Min-Ranks One Less Than Their Orders

Definition III.8. A graph G = (V(G), E(G)) is called a star

graph if |V(G)| ≥ 2 and there exists a vertex i ∈ V(G) such

that E(G) =
{

{i, j} : j ∈ V(G) \ {i}
}

.

Fig. 3: A star graph

Theorem III.9. Let G be a connected graph of order n ≥ 2.

Then minrkq(G) = n− 1 if and only if G is a star graph.
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Proof: We first suppose that minrkq(G) = n−1. If n = 2
then G must be a complete graph, which is a star graph. We

assume that n ≥ 3. As G is connected, there exists a vertex i of

degree at least two. Let i1 and i2 be any two distinct vertices

adjacent to i. Our goal is to show that for every vertex j 6= i,
we have {i, j} ∈ E(G), and those are all possible edges.

Firstly, suppose for a contradiction that {i, j} /∈ E(G) for

some j 6= i. Since G is connected, there exists k such that

{j, k} ∈ E(G). Then either k 6= i1 or k 6= i2. Suppose that

k 6= i2. We create a matrix M as follows. Let M j = Mk =
ej + ek, M i = M i2 = ei + ei2 , and Mh = eh for h /∈
{i, j, i2, k}. Then M fits G and rankq(M) ≤ n−2. Therefore,

minrkq(G) < n−1. We obtain a contradiction. Thus, all other

vertices are adjacent to i.
Secondly, suppose for a contradiction that there exist two

adjacent vertices, namely j and k, both are different from i.
As we just proved, both j and k must be adjacent to i. We

create a matrix M as follows. We take M i = M j = Mk =
ei + ej + ek, and Mh = eh for h /∈ {i, j, k}. Clearly M

fits G and moreover, rankq(M) ≤ n − 2, which implies that

minrkq(G) < n− 1. We obtain a contradiction.

Conversely, assume that G is a star graph, where E(G) =
{

{i, js} : s ∈ [n − 1]
}

, js ∈ V(G) \ {i} for all s ∈ [n − 1].
We create a matrix M fitting G by taking M js = ei+ejs for

s ∈ [n−1], and M i = ei+ej1 . Since M i ≡ M j1 , we deduce

that rankq(M) ≤ n − 1. Hence minrkq(G) ≤ n − 1. On the

other hand, since {js : s ∈ [n−1]} is a maximum independent

set in G, we obtain that α(G) = n − 1. By Theorem II.3,

minrkq(G) ≥ α(G) = n− 1. Thus, minrkq(G) = n− 1.

It is not hard to see that Theorem III.9 still holds with

minrkq(·) being replaced by βq(·).

E. Graphs of Min-Ranks Two Less Than Their Orders

A matching in a graph is a set of edges without common

vertices. A maximum matching is a matching that contains the

largest possible number of edges. The number of edges in a

maximum matching in G is denoted by mm(G).

Theorem III.10. Suppose G is a connected graph of order

n ≥ 6. Then minrkq(G) = n − 2 if and only if mm(G) = 2
and G does not contain a subgraph isomorphic to the graph

F depicted in Fig. 4.

Fig. 4: The forbidden subgraph F

Sketch of the proof: For the ONLY IF direction, suppose

that minrkq(G) = n−2. It is not hard to see that minrkq(G) ≤
n − mm(G). Hence mm(G) ≤ 2. As mm(G) ∈ {0, 1} and

|V(G)| ≥ 6 imply that either G has no edges (minrkq(G) =
n > n− 2) or G is a star graph (minrkq(G) = n− 1 > n− 2),

we deduce that mm(G) = 2. Moreover, as the graph F has

min-rank three less than its order, G should not contain any

subgraph isomorphic to F .

We now turn to the IF direction. Suppose that mm(G) = 2
and G does not contain any subgraph isomorphic to F . Then

minrkq(G) ≤ n − mm(G) = n − 2. As α(G) ≤ minrkq(G),
it suffices to show that α(G) = n − 2. Let {a, b} and {c, d}
be the two edges in a maximum matching in G. Let U =
{a, b, c, d} and V = V(G) \U . The main idea is to show that

we can always find two nonadjacent vertices in U which are

not adjacent to any vertex in V . Such two vertices can be

added to V to obtain an independent set of size n− 2, which

establishes the proof.

It is also not hard to see that Theorem III.10 still holds with

minrkq(·) being replaced by βq(·).

IV. THE HARDNESS OF THE MIN-RANK PROBLEM FOR

DIGRAPHS

In this section, we first prove that the decision problem

of whether a given digraph is fairly k-colorable (see Defini-

tion III.2) is NP-complete, for any given k ≥ 3. The hardness

of this problem, by Proposition III.1 and Corollary III.5, leads

to the hardness of the decision problem of whether a given

digraph has min-rank two over F2. The fair k-coloring problem

is defined formally as follows.

Problem: FAIR k-COLORING

Instance: A digraph D, an integer k
Output: True if D is fairly k-colorable, False otherwise

Theorem IV.1. The fair k-coloring problem is NP-complete

for k ≥ 3.

Proof: This problem is obviously in NP. For NP-hardness,

we reduce the k-coloring problem to the fair k-coloring

problem. Suppose that G = (V(G), E(G)) is an arbitrary graph.

We aim to build a digraph D = (V(D), E(D)) so that G is k-

colorable if and only if D is fairly k-colorable. Suppose that

V(G) = [n]. For each i ∈ [n], we build the following gadget,

which is a digraph Di = (Vi, Ei). The vertex set of Di is

Vi = {i} ∪
{

ωi,ij : ij ∈ NG(i)
}

,

where ωi,ij are newly introduced vertices. We refer to ωi,ij as

a clone (in Di) of the vertex ij ∈ [n]. The arc set of Di is

Ei =
{

(ωi,ij , i) : ij ∈ NG(i)
}

.

Let NG(i) = {i1, i2, . . . , ini
}. Then Di is depicted in Fig. 5.

i

ωi,i1 ωi,i2
ωi,ini

Fig. 5: Gadget Di for each vertex i of G

Additionally, we also introduce n new vertices

p1, p2, . . . , pn. The digraph D = (V(D), E(D)) is built

as follows. The vertex set of D is

V(D) =
(

∪n
i=1 Vi

)

∪ {p1, p2, . . . , pn}.

Let

Qi =
{

(pi, i)
}

∪
{

(pi, ωi′,i′
j
) : i′ ∈ [n], j ∈ [ni′ ], i′j = i

}

,
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be the set consisting of (pi, i) and the arcs that connect pi and

all the clones of i. The arc set of D is then defined to be

E(D) =
(

∪n
i=1 Ei

)

∪
(

∪n
i=1 Qi

)

.

For example, if G is the graph in Fig. 6, then D is the digraph

in Fig. 7.

1

2

3

Fig. 6: An example of the graph G

1

ω1,2 ω2,1ω1,3 ω3,1

p1 p2 p3

2 3

Fig. 7: The digraph D built from the graph G in Fig. 6

Our goal now is to show that G is k-colorable if and only

if D is fairly k-colorable.

Suppose that G is k-colorable and φG : [n] → [k] is a k-

coloring of G. We define φD : V(D) → [k] as follows

1) For every i ∈ [n], φD(i)
△

= φG(i);

2) If i′j = i, then φD(ωi′,i′
j
)

△

= φD(i) = φG(i), in other

words, clones of i have the same color as i;
3) For every i ∈ [n], φD(pi) is chosen arbitrarily, as long

as it is different from φD(i).

We claim that φD is a fair k-coloring for D. We first verify

the condition (C1) (see Definition III.2). It is straightforward

from the definition of φD that the endpoints of each of the

arcs of the forms (pi, i) for i ∈ [n], and (pi, ωi′,i′
j
) for i′j = i,

have different colors. It remains to verify that i and ωi,ij have

different colors. On the one hand, ωi,ij is a clone of ij , and

hence has the same color as ij . In other words,

φD(ωi,ij ) = φD(ij) = φG(ij).

On the other hand, since ij ∈ NG(i), we obtain that

φG(ij) 6= φG(i) = φD(i).

Hence, φD(ωi,ij ) 6= φD(i) (i ∈ [n]). Thus, (C1) is satisfied.

We now check if (C2) (see Definition III.2) is also satisfied.

The out-neighbors of pi are i and its clones, namely, ωi′,i′
j

with i′j = i. These vertices have the same color in D by the

definition of φD. Thus (C2) is also satisfied. Therefore φD is

a fair k-coloring of D.

Conversely, suppose that φD : V(D) → [k] is a fair k-

coloring of D. Condition (C2) guarantees that all clones of i

have the same color as i, namely, φD(ωi′,i′
j
) = φD(i) if i′j = i.

Therefore, by (C1), if {i, j} ∈ E(G), that is, j ∈ NG(i), then

φD(i) 6= φD(ωi,j) = φD(j).

Hence, if we define φG : [n] → [k] by φG(i) = φD(i) for all

i ∈ [n], then it is a k-coloring of G. Thus G is k-colorable.

Finally, notice that the order of D is a polynomial with

respect to the order of G. More specifically, |V(D)| =
2|V(G)|+2|E(G)| and |E(D)| = |V(G)|+4|E(G)|. Moreover,

building D from G, and also obtaining a coloring of G from

a coloring of D, can be done in polynomial time in |V(G)|.
Since the k-coloring problem (k ≥ 3) is NP-hard [16], we

conclude that the fair k-coloring problem is also NP-hard.

Corollary IV.2. Given an arbitrary digraph D, the decision

problem of whether minrk2(D) = 2 is NP-complete.

Recall that for a graph G, it was observed by Peeters [9]

that G has min-rank two if and only if G is a bipartite graph

and G is not a complete graph, which can be verified in

polynomial time. Another related result, presented by Blasiak

et al. [15], stated that there is a polynomial time algorithm to

verify whether β2(D) = 2 for a general digraph D.
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