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Abstract—The study of codes for powerline communications
has garnered much interest over the past decade. Various types of
codes such as permutation codes, frequency permutation arrays,
and constant composition codes have been proposed over the
years. In this paper, we study a type of code called bounded
symbol weight codes which was first introduced by Versfeld et
al. in 2005, and a related family of codes that we term constant
symbol weight codes. We provide new upper and lower bounds
on the size of bounded symbol weight and constant symbol weight
codes. We also give direct and recursive constructions of codes for
certain parameters.

Index Terms—Asymptotic bounds, constant composition codes
(CCCs), powerline communications, Reed–Solomon codes, symbol
weight codes.

I. INTRODUCTION

T HE notion of transmitting data over powerlines has posed
an interesting challenge for information and coding

theory. The noise characteristics of such a communication
channel include permanent narrowband noise, impulse noise,
and white Gaussian noise. Communication over this channel
also has an additional requirement that the power envelope be
as close to constant as possible. Vinck [31] studied this channel
and showed that -ary frequency shift keying ( -FSK)
modulation, in conjunction with the use of permutation codes,
provides a constant power envelope, frequency spreading,
and redundancy to correct errors resulting from the harsh
noise pattern. This has since resulted in research on frequency
permutation arrays (FPAs) and constant composition codes
(CCCs) which retain the property of a constant power envelope
(see [5]–[16], and [14] for a survey). Every codeword of an
FPA or a CCC has the requirement that the frequency of each
symbol is fixed by the parameters of the code. Versfeld et al.
[29] introduced the notion of the “same-symbol weight” of
a code by relaxing the requirement that every symbol must
occur a fixed number of times in any codeword. In every
codeword of a same-symbol weight code, the frequency of any
symbol is bounded. Even with this relaxation, it is possible
to detect permanent narrowband noise. Versfeld et al. [29],
[30] used Reed–Solomon codes to design codes with specified
same-symbol weight.
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In this paper, we mostly study the asymptotic behavior of
codes in the symbol weight space. We use the term bounded
symbol weight (as opposed to same-symbol weight [29]) to
denote all words in the Hamming space with bounded symbol
weight, that is, any symbol in a codeword does not occur
more than a fixed number of times, say . This terminology
is adopted in order to distinguish this space from the constant
symbol weight space, in which every symbol in a word in the
Hamming space occurs at most times and there exists one
symbol which occurs exactly times. The constant symbol
weight space is clearly a subset of the bounded symbol weight
space. We also use the term symbol weight space to refer to
either the bounded symbol weight or constant symbol weight
space. The actual space being referred to is made clear from
the context and notation.
As described in [29] and [30], the symbol weight determines

whether the code can detect and correct narrowband noise in the
powerline channel. An FPA or a CCC belongs to some constant
symbol weight space. The constant symbol weight space also
contains other compositions all of which have the same max-
imal part, that is, all such codes have the same fixed symbol
weight. Thus, a code in the constant symbol weight space is
larger than a CCC of a fixed composition, and is still relevant for
correcting narrowband noise. The asymptotic behavior of FPAs
have been studied in [4], [8], and [14]. In contrast, there are rel-
atively fewer results on the asymptotic behavior of CCCs (see
[23] and [28]). We consider familiar techniques used to derive
classical bounds such as the Gilbert-Varshamov (GV) bound,
the Johnson bound, and the Singleton bound, on codes in the
symbol weight space. However, the derivation of these results
is not immediate because of the lack of any reasonable struc-
ture in the symbol weight spaces. In particular, even the Ham-
ming balls of a fixed radius in these spaces depend on the center
of the ball. In Section V, we also study nonasymptotic bounds
on codes in the symbol weight spaces by expressing them in
terms of different CCCs. This also raises related combinatorial
questions regarding the size and construction of optimal codes,
which can be an interesting avenue of future research. In later
sections, we show that there exists codes, which are subsets
of Reed–Solomon codes, with high rate and relative distance,
which are a subset of the constant symbol weight space.
Throughout this paper, we are mostly concerned with codes

that have positive rate and positive relative distance. Hence,
we do not study codes with very large distances, in the Plotkin
region. We start with some basic definitions and notations in
Section II. We devote Section III to deriving the exact and
asymptotic size of the symbol weight spaces. The results in
Section III allow us to determine which constant composition
space contained within the symbol weight space contributes
the most to the rate of a symbol weight space. These estimates
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are used in Section IV to determine upper and lower bounds
on bounded symbol weight and constant symbol weight codes.
In particular, it is clear that asymptotically some CCCs de-
termine the rate of a symbol weight code. An upper bound
is readily obtained from either the Singleton bound or the
Linear Programming (LP) bound in the Hamming space. In
Section IV, we also provide a Johnson-type bound on codes in
the constant symbol weight space and use this bound to derive
an asymptotic improvement of the Singleton bound and the
LP bound for certain ranges of the minimum distances and the
symbol weight. In Section V, we provide nonasymptotic lower
bounds on symbol weight codes. We introduce a new metric on
the space of compositions of an integer and use this metric to
lower bound the size of symbol weight codes by a sum of sizes
of CCCs. Finally, in Section VI, we provide other constructions
of constant symbol weight codes and, in particular, show that
the asymptotic lower bound presented in Section III is tight for
certain parameters, for subcodes of Reed–Solomon codes.

II. PRELIMINARIES

Let denote an alphabet set of ele-
ments. We consider symbol weight codes in the Hamming space

. The symbol weight of a word is de-
fined as the maximum of the frequencies of occurrences of sym-
bols in the word. For instance, the all-0 word has a symbol
weight of . The bounded symbol weight space with symbol
weight is the set of all words with symbol weight at most .
This space is denoted by . The bounded symbol
weight space is termed as “same-symbol weight space” in the
works of Versfeld et al. [29], [30]. We adopt this terminology
to distinguish this space from the constant symbol weight space
that we define next. In the constant symbol weight space, every
word has a symbol weight of exactly . This space is denoted as

. If every symbol occurs in each codeword we can
use the Pigeonhole principle to get the lower bound .
Since any word with this lowest value of symbol weight con-
tains the least repetition of any symbol, these words are consid-
ered as ones with the optimal symbol weight.
In this paper, we study codes in the bounded and constant

symbol weight spaces. A bounded (respectively, constant)
symbol weight code is a subset of the bounded (respec-
tively, constant) symbol weight space. Let
(respectively, ) denote the maximum size of a
bounded (respectively, constant) symbol weight code with
distance in (respectively, ).
We denote a composition of into nonnegative parts by

. The constant composition space with
composition is a subset of in every
word of which the th symbol occurs exactly times. A CCC
is a subset of a constant composition space. We use the notation

to denote the maximum size of a code in the constant
composition space given by the composition and minimum
distance at least . We use the notation to denote the
maximum size of a code with minimum distance at least in
the Hamming space. A code of length , size , distance ,
over is denoted by . If has a constant symbol

weight , it is denoted by . If is a linear code of
dimension over a finite field , it is denoted as .
An FPA consists of vectors in which every symbol occurs a

fixed number, say , of times. Hence, an FPA is a CCC with
composition . Thus, the FPA is a subset of the
constant symbol weight space with symbol weight . Similarly,
it can be seen that a CCC with composition
is a subset of the constant symbol weight space with symbol
weight .
The coded modulation scheme introduced by Vinck [31]

for the powerline channel considered -FSK modulation
along with the use of permutation codes. The demodulator
considered is a hard-decision demodulator consisting of an
envelope detector with a threshold. At every time instance, the
demodulator provides a multivalued output consisting of all
the symbols that correspond to frequencies at which the output
of the envelope detector exceeds the threshold. A narrowband
noise in this context results in the same symbol appearing at all
time instances. As explained in [29], a linear code is less effec-
tive in this channel. For instance, the all-zero codeword cannot
be distinguished from a narrowband noise. Hence, permutation
codes, FPAs and CCCs are more suitable for communication in
this channel. To understand why we study the constant symbol
weight space, consider the following example.

Example 2.1: Consider a CCC in with composition
and minimum distance , that is suitable for

correcting narrowband noise in a powerline channel. Let (0, 1,
2, 2, 2, 3, 3, 3) be a codeword in this CCC. Then, the vector (0,
0, 0, 1, 1, 1, 2, 3) is also a suitable vector for correcting narrow-
band noise. However, this vector belongs to a different constant
composition space that contains vectors with composition

. Both these constant composition spaces are a subset
of the constant symbol weight space with symbol weight three.
In Section V, we prove that since the compositions
and have distance four in a specific metric that we
define later, any vector from the constant composition space
with composition will be at a distance at least four
from any vector of the other space with composition .
Hence, we can increase the size of the code by including all the
codewords from a CCC in the latter space.
It is clear that any constant symbol weight space with symbol

weight can be written as the union of different constant com-
position spaces, each of which contains vectors with the same
symbol weight . This relation to the constant composition
space is used throughout this paper.
In Section III, we first determine the size of the constant

symbol weight space and the bounded symbol weight space.
This size is then used to determine a Gilbert-Varshamov-type
(GV-type) bound on the symbol weight spaces. Unfortunately,
the expression for the size of the symbol weight spaces is un-
wieldy and gives little insight into the behavior of the lower
bounds. The symbol weight spaces are also not ball-homoge-
neous, that is, the size of a Hamming ball in the space depends
on the center of the ball. For example, the bounded symbol
weight space in with symbol weight at most two has 24
vectors. The ball of radius one around the vector (1, 0, 0) con-
tains six vectors, namely, (1, 0, 0), (2, 0, 0), (1, 1, 0), (1, 2, 0),
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(1, 0, 1), and (1, 0, 2). In contrast, the ball of radius one around
(2, 1, 0) contains seven vectors, namely, (2, 0, 0), (0, 1, 0), (1, 1,
0), (2, 1, 0), (2, 2, 0), (2, 1, 1), and (2, 1, 2). This fact makes it
difficult to state decent lower bounds. Similar comments apply
to the computation of the Hamming bound. Hence, in the fol-
lowing two sections, we instead study the asymptotic behavior
of the symbol weight spaces and the rate of the corresponding
symbol weight codes.
In Section III, we determine the asymptotic size of the symbol

weight space. This enables us to determine which constant com-
position space, contained within the symbol weight space, has
the largest size.

III. ASYMPTOTIC SIZE OF THE SYMBOL WEIGHT SPACE

To determine the asymptotic size of the symbol weight space,
we first state the expression for the nonasymptotic case. Each
vector in the symbol weight space corresponds to a vector in
some constant composition space. Hence, we introduce some
basic definitions below to describe the size of the symbol weight
space. Let us denote the set of all compositions of into non-
negative parts by , i.e.,

and define

Let denote the compositions of into parts,
each part bounded between 0 and . An expression for the size
of is given by [13, p. 1037]

(1)

Define to be . The quantity
corresponds to the smallest number of symbols that can occur
with frequency exactly in any vector with symbol weight .
The size of the set is given by the following lemma.

Lemma 3.1:

and

otherwise

for some such that .
Proof: If a vector has a composition such that

exactly of the symbols in have composition in , then
the rest of the symbols must satisfy the inequality

This inequality, in conjunction with the requirement that at least
one symbol must have composition , determines the value of
. If a composition has exactly symbols with the value ,

then these symbols can be chosen in ways. The rest of the
elements of must correspond to a composition of into

parts, each part bounded between 0 and .
Note that must satisfy . We have

There is exactly one integer which satisfies
. This value of is given by , for

some such that .

The size of the constant symbol weight space
can now be determined to be

(2)

where , and is repeated times in the
multinomial coefficient . The size of the bounded
symbol weight space is a sum of the sizes of the different con-
stant symbol weight spaces, as shown below

(3)

where , , and
.

The expressions in the equations above can be used to pro-
vide GV-type existence bounds on symbol weight codes. A GV
bound on the size of a code with minimum distance in a
space is given as

where is the volume of a ball of radius in
the space . Although the sizes of the constant and bounded
symbol weight spaces are given by the above (2) and (3), re-
spectively, there are several hurdles in applying the GV-type
bound directly. First, the space itself lacks any suitable struc-
ture and is not even ball-homogeneous. Even for the special case
of an FPA in which all the symbols occur equally often in every
vector, the expression for the GV (and also the Hamming bound)
is quite unwieldy because the size of the ball does not have a
nice form; see Huczynska [15, Th. 2.7]. Second, the expressions
for the sizes of the spaces are not suitable for expressing the
bound in a simple form. We instead study the asymptotic form
of this bound in the next section. To determine the asymptotic
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results, we first need to understand the behavior of the sizes of
the symbol weight spaces for large block length .
The expression for the asymptotic size of the constant symbol

weight space is given by the following theorem. A similar ex-
pression for the bounded symbol weight space can be readily
derived from this theorem and is mentioned at the end of this
section. The following theorem holds for any such that grows
at most proportional to . Note that all the asymptotics are with
respect to and so the term below goes to zero as goes
to .

Theorem 3.2: For any , such that , where is a
positive constant and

We first give a brief outline of the proof of this theorem. As
mentioned earlier, a constant symbol weight space with symbol
weight is a union of several constant composition spaces, each
of which contains vectors of symbol weight . We first show
in Lemma 3.3 that the number of constant composition spaces
does not contribute to the rate of the constant symbol weight
space. This is not surprising and it is true even for the Ham-
ming space, when considered as a union of constant composi-
tion spaces. Because of this Lemma, we now know that there is
a constant composition space which dominates the expression
for the rate. Lemmas 3.4 and 3.5 below help us determine this
dominant term. It turns out that this dominant term comes from
the constant composition space which has exactly symbols
that occur exactly times in any vector.
We continue with the proof of the theorem, by first estab-

lishing a sequence of lemmas presented below. Let be
the -ary entropy function defined in the range , as

Lemma 3.3:

Proof: The number of terms in the summation over the
range is at most . Hence, only one of the
terms in the summation dominates in the asymptotics. We note
that . Also, (see
[27, pp. 415]). For a constant , it shows that

grows at most polynomially in and hence

for some positive constant . For , , and
positive constant , we get

and hence

By the above lemma, we can conclude that in the asymp-
totics of (2) only one term from the inner summa-
tion dominates in the asymptotics, and similarly only one term
from is present in the asymptotics. The dom-
inant multinomial terms are given by an optimal choice of .
First, we determine the dominating multinomial term from the
inner summation in (2). We use the following lemma. Let
denote the Gamma function

In particular, for an integer , .

Lemma 3.4 [25, p. 109]: Let be nonnegative real
numbers. Then

This lemma immediately implies that

. Hence, the dominating term in the inner sum-

mation in (2) is given by , where .1

For large , we obtain the following asymptotic expression for
:

(4)

Neglecting the term, the maximum of the expression in (4)
over yields the rate of the constant symbol weight space. Un-
fortunately, a closed-form expression for the optimizing value
of seems difficult to achieve, even if is considered over reals
instead of integers. We instead look at how the expression be-
haves for large . The lemma below asserts that the maximum
is achieved at as .

Lemma 3.5: Let be a family of bounded,
strictly monotonic decreasing functions in , defined over
the domain , such that .
Let be a family of nonnegative functions such

1We ignore the fact that the ratios may not be integers. This argument can
be made more rigorous, but cumbersome, by taking the composition to be

for times and for

times, where denotes the fractional part of a real number .
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that , where depends only on and
. Then

Proof: The strict monotonicity for any ,
, , implies that for all

. Now

We also get

This lemma implies that we can determine the asymptotic op-
timum of by simply taking the limit of the se-
quence of numbers , which converges to .

Proof of Theorem 3.2: We apply Lemma 3.5 as follows.
Let

be defined over integer . can be upper
bounded by a term independent of

and . We now note that for every
, is strictly monotonically decreasing. To establish

this, we relax to reals and consider the derivative . We
get

where the last line follows because of the fact that
, and that for , with equality

at . We also note that if and only
if . Hence, is strictly monotonic decreasing for

. For , is a constant independent of and
, and hence, the optimal value of is at . Since

Lemma 3.5 is applicable to , we concentrate only
on determining the asymptotics of . For we
get and

For , we have
, and

This proves Theorem 3.2.

The exponent of the asymptotic size of the bounded symbol
weight space is always since it con-
tains .

IV. ASYMPTOTIC SIZE OF SYMBOL WEIGHT CODES

In this section, we provide estimates on the rate of symbol
weight codes for all , for any positive constant , and
for . We considered the asymptotic behavior of the
symbol weight spaces because of the difficulty in determining
reasonable expressions for fixed . Below, we determine upper
and lower bounds on the rate of a symbol weight code. First, we
determine a GV-type bound in Theorem 4.3 below. The Sin-
gleton and LP upper bounds on codes in the Hamming space
are applicable to the symbol weight codes too. In Theorem 4.4,
we show that for constant symbol weight codes, the Singleton
and LP upper bounds can be improved substantially for a spe-
cific range of the symbol weight.
The following lemma is immediate and it shows that the rate

of symbol weight codes can be given in terms of the rate of a
CCC.

Lemma 4.1:

(5)

Proof: Note that we clearly have the following upper and
lower bounds on :

(6)
The lemma now follows from an application of Lemma 3.3. The
second expression in (5) can be determined similarly.

We state the LP upper bound on codes in the Hamming space
from Aaltonen [2].
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Theorem 4.2 [2]:

where , .

An upper bound on symbol weight codes is readily obtained
by an upper bound on codes in the Hamming space, since

Thus for constant the LP bound is also an upper bound on
symbol weight codes. For growing with , the Singleton
bound is an upper bound on symbol weight codes. Below, we
provide asymptotic estimates of symbol weight codes.

Theorem 4.3: Let , where is a constant, and
. Let and as , where
. Then, for constant, i.e.,

(7)

For increasing with , one can use the Singleton bound. Thus,
for , we get

(8)

Remark: Note that for increasing with the following
limits can be inferred:

Proof: We use the following lower bound on the constant
symbol weight space, which is actually an Elias-type bound on
the Hamming space (see [19]). This is followed by using the GV
bound in the Hamming space

where is the -ary entropy function and is
the volume of the ball of radius in the Hamming space.
Similarly, for the bounded symbol weight space, we obtain

For a constant , the asymptotics of these expressions are as
given in (7).
For growing with , the upper bound on the symbol weight

codes is provided by the Singleton bound

Using the fact that in the limit as , we get
the results as stated in the theorem. In particular for ,

and . Since
is greater than , it gives the

result stated in (8).

The lower bound (7) in the theorem may be interpreted as a
GV-type bound in the symbol weight space that can be obtained
if the volume of a ball of radius in the symbol weight
space is upper bounded by the volume of a ball of radius
in the Hamming space. Since the symbol weight space is not
ball-homogeneous, that is, the size of the balls of radius
depends on the center, we adopt the above method to derive the
GV-type lower bound.2

In the following theorem, we provide an improvement on the
upper bound for a constant symbol weight code with symbol
weight .

Theorem 4.4: Let , with
. Let satisfy . For , let , and .
Then, for constant

For growing with , we get

The proof of this theorem relies on a Johnson-type upper bound,
and a lemma given below. We follow some elements of the
derivation of the Singleton bound in [26]. However, our pur-
pose is to improve the Singleton bound by using the parameters
of the constant symbol weight space. The improvement mainly
stems from the following lemma.

Lemma 4.5: Let . Then, .
Proof: We claim that if there are two codewords , both

with symbol weight , then the symbol which repeats times
must be different in the two codewords. Suppose not. Then, the
two codewords , must have at least coordinates
which contain the same symbol. Thus, the distance between the
codewords is at most which implies ,

2For certain parameters, better lower bounds on , for instance from
algebraic geometry codes, can improve on this GV bound on .
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since . This is a contradiction. We get
. To show the opposite inequality, let be a word with symbol
weight , . Then, , , where is the
all-one codeword, are also codewords with symbol weight .
This establishes that .

We next give the Johnson-type bound.

Lemma 4.6:

Proof: Consider the code-matrix of the constant symbol
weight code with parameters . Any row of the
code-matrix has at least one symbol of frequency . Fix one
symbol of frequency in each row. There are a total
symbols in the code-matrix which do not contribute to the
symbol weight in any codeword. The average number of sym-
bols, averaged over the columns, with frequency at most is
then . The average number per symbol, averaged
over columns and symbols is . Thus, there
exists at least one symbol and at least one column such that
the subcode consisting of the symbol in column has size at
least . Discarding the coordinate corresponding
to gives us the bound as stated in the Lemma.

Proof of Theorem 4.4: We now proceed to prove the the-
orem. Apply Lemma 4.6 recursively times to get

The recursion stops for such that and
for . For this value of and , , by
Lemma 4.5. The condition implies . Constraints
on are obtained from the inequalities

This gives us the upper bound

In the asymptotics as , we get . This
gives us the upper bounds as stated in the theorem.

In the case of growing with , this theorem improves on
the Singleton bound for . The upper bound in
Theorem 4.4 for constant improves on the LP bound for certain
range of parameters. The improvements are possible only for
large and for . For , 3, the restrictions and

do not leave room for improvement. For constant ,
the upper bound is in fact concave in shape. This can be verified
by taking the second derivative with respect to , which results
in the negative expression . Since this bound

Fig. 1. Plots for and for , respectively, under .

does not depend on , it seems that further improvements might
be possible.
An example plot of all the bounds are provided in Figs. 1 and

2. Since the improvements are for larger , we show the bounds
for . In Fig. 1, the first plot is obtained at a particular value
of and the second plot is obtained at a particular value of . The
improvements (over LP) are obtained in the regions

and , respectively. Fig. 2 shows
the plots when is increasing with . In this case, we compare
against the Singleton upper bound. It shows improvements in
the region . Construction of codes which meet this
upper bound for any parameters is an open problem.

Remarks:
1) For and , Dukes [12] provides a Singleton
bound, . Not
surprisingly, for , this reduces to in
the asymptotics.

2) Missing from the list of bounds above is a Hamming-type
bound on the symbol weight codes. The lack of a simple
expression for the size of the ball is the main reason behind
this omission.
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Fig. 2. Plots for and for , respectively.

V. LOWER BOUND ON SYMBOL WEIGHT CODES

As mentioned in the previous sections, the traditional means
of determining the GV-type bounds is not very useful for
nonasymptotic block lengths . In this section, we adopt a
different approach to determine lower bounds on the size
of symbol weight codes. The lower bounds are obtained by
using corresponding constructions and lower bounds on CCCs.
There is a wide body of literature on CCCs that can be used
to determine these lower bounds (see [5]–[16]). To the best of
our knowledge, most of the work in the literature on CCCs has
focused on determining constructions and bounds for either
very large distances (in the region where the Johnson bound
or Plotkin bound is applicable) or for very small distances
such as , 3, 4. For FPA and permutation codes, there do
exist constructions with distances in the ranges in between (see
[4], [8], and [15]). We note three papers in this connection.
Sidorenko [28] provides an asymptotic upper bound on CCCs;
this is not useful for this section since we look at lower bounds.
In a very recent work, Luo and Helleseth [23] construct CCCs
of almost uniform composition and with relative distances very
close to the Plotkin limit . The bound that
we provide below requires a relatively large alphabet size so
that codes from different constant composition spaces can be

combined. Hence, the CCCs from [23] are not useful in this
context. Chu et al. [8] provide some lower bounds for CCCs
for large distances. We use some of the constructions from this
latter work in this section to provide examples of lower bounds
on symbol weight codes.
We first describe a method to determine the size of a symbol

weight code in terms of CCCs. This method may be viewed as a
generalization of an elementary bound in [3, Eq. (2)] on binary
bounded weight codes to -ary spaces.
Let and denote two

different compositions of . The aim here is to lower bound the
size of a symbol weight code by the sum of all possible different
CCCs which have the same symbol weight. Thus, we first need
to determine the condition on two different compositions and
such that any vector with composition is at least distance
away from a vector with composition . It can be seen that

is the maximum number of coordinates in and
where the th symbol is common to both. Thus, the Hamming
distance satisfies

A sufficient condition for to hold is

(9)

Let

(10)

Then, we obtain

Lemma 5.1: is a distance function on .
Proof: is clearly symmetric. To show the tri-

angle inequality, we note that we can rewrite

where . Also, for any nonnegative real num-
bers , , , it can be readily verified that

Thus, we get
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Since , we get that if and only if
for all .

Let (respectively, )
be such that for any distinct , (respectively,

) we have . We can now readily give a
lower bound on the size of symbol weight codes in terms of the
CCCs

(11)

For large and , the size of the set becomes very large.
Hence, finding all the compositions in which are separated
by distance at least is difficult. We instead seek lower bounds
on so that the size of the symbol weight codes can be
more easily expressed in terms of the sizes of either one or a few
CCCs.

Remark: Note that is a metric on a “simplex” which
intersects each axis at (Euclidean) distance from the origin. In
particular, the components of need not be restricted to integers
for to become a metric. Also, need not be restricted
to be an integer.

A. Lower Bounds on

In this section, we determine lower bounds to the size of
. To get these lower bounds, we first obtain a relation

between the Hamming distance between two compositions and
the distance between two compositions as given by (10).

Lemma 5.2: For any two compositions , , if
, then .

Proof: Define two sets and
. Clearly, in the rest of the coordinates, . Then,

we get the following set of equalities:

(12)

Note that the LHS and RHS of the last equation are both equal
to . Let , then since , we get

. Using the fact that the difference ,
for and for , we get

This lemma immediately allows us to use existing GV bounds
in various spaces (under Hamming distance) to derive lower
bounds on .
1) Lower Bound From a Permutation Code on : Let the

alphabet set be , that is, . In every word of
length , let all the symbols occur such that
the frequencies of the symbols are in the set and all
the frequencies occur. Because of this construction, given the
values of , are restricted as given above. Using the GV lower
bound on the permutation code with Hamming distance at least
between two codewords gives us the lower bound

(13)

where is the volume of the ball of radius
in .
2) Lower Bound for General : As explained in the proof of

Theorem 4.3, a lower bound on constant symbol weight codes is
provided by an Elias-type bound in the Hamming space. We can
obtain another lower bound on constant symbol weight codes
by considering lower bounds on . A lower bound on

is obtained by letting of the symbols
repeat times in every codeword of the constant symbol weight
code and the remaining symbols satisfy the condition
that there are symbols with composition

and symbols with composition
. Denote this composition by ,

that is

Because of the above choice of the repetitions of each symbol
we seek a “binary constant weight code” in where
coordinates have the value or and the rest coordinates
have the value . We also want the Hamming distance between
distinct codewords to be at least . Denote the maximum size
of a binary constant weight code of length , weight and
minimum distance by .
The GV bound under the above constraints is

Note that we get in the denominator (instead of )
since the binary constant weight space affords only even dis-
tances. From [18], we know that the lower bound is signifi-
cant and grows exponentially as , for some constant

only when the following conditions are satisfied:

The above lower bounds on give lower bounds on
symbol weight codes as follows.
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B. Lower Bounds on Codes

The lower bound on can be stated as follows.

Theorem 5.3: We get the following results for different com-
positions.
1) For , we get

2) For , we get

3) Let , and

. Then

(14)

Proof: The first two results follow immediately from the
lower bounds on . In part 1, each codeword in the per-
mutation code corresponds to a rearrangement of the composi-
tion . In part 2, each codeword in the binary con-
stant weight code corresponds to a rearrangement of the com-
position in .
For the third result, we include a larger range of CCCs.

The expression is obtained by taking CCCs from separate
constant composition spaces , whose
compositions are separated by a Hamming distance of at
least . Two different compositions
and correspond to taking binary
constant weight codes with weights separated by . Note that
this choice of separate compositions corresponds to a binary
bounded weight code, as studied in [3].

There is a tradeoff between the size of the constant composi-
tion space with composition and the size of the
constant weight code in . The size of the constant weight
code in is substantial only for large around . On the
other hand, the size of the constant composition space is large
for small , thus potentially allowing for a larger CCC.
The lower bound in (14) is in fact useful in the case of a

bounded symbol weight code with symbol weight at most . It
is unclear how to combine codes of different symbol weights ,
where , such that we can obtain a computable
expression. We instead use (14) and optimize over the different
symbol weights and the smallest weight . Note that for a
given symbol weight , the quantity corresponds to the min-
imum number of symbols with frequency that we include in
our estimate.

Theorem 5.4:

where ,

, , , and

.

C. Numerical Examples

We consider some numerical examples in order to show how
the expressions in the previous section can be used to obtain
lower bounds on symbol weight codes. We adopt the exponen-
tial notation of Chu et al. [8] to denote a composition in a com-
pact form. The notation is used to denote the
composition

We also recall the notion of a refinement of a composition from
the same work. The composition is called
a refinement of a composition if there is
a partition of such that
, for every . We write if is a refinement of .

This notion is important because of the following inequality (see
[8]):

(15)

Below, we use lower bounds on FPAs, where the lower bound is
taken from [8]. Using (15), lower bounds on CCCs are obtained
from the lower bounds on the FPAs. The lower bound on FPA
mentioned below rely on the existence of certain (generalized)
distance preserving mappings from to the permutation space
(see [8]). The distances between compositions used in this

section are all taken in the metric, unless mentioned
otherwise.

Example 5.5: In this example, we show how Theorem 5.3
and (11) can be used. We know from [8, Example 3.7] that

. Since , we immediately obtain
that . In this case, and and
the number of symbols occurring with frequency five is .
Hence, Theorem 5.3 is not applicable. But (11) can be applied
directly. For instance, the compositions and satisfy

which is greater
than seven. Thus, .
In fact, the compositions and have the

special property that if a symbol has different compositions
, then . We can exploit this property to get a

variant of Lemma 5.2 below.
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Lemma 5.6: For two compositions , let
. For , if either

or it is zero, then .
Proof: The proof is very similar to the proof of Lemma

5.2. Let , be as defined in the proof of that lemma, and let
, . Finally, use (12) to get

Returning to this example, we know that if two compositions
differ in a symbol, then the difference is four, and so .
We will have the distance between two compositions at least
seven if we ensure (using Lemma 5.6) that , that
is, . Using , , , we get
that . The size of the
binary code is obtained from [1]: . This gives
the much improved lower bound .

Example 5.7: We continue with the previous example and
a finer refinement . We show in this example that
directly using (11) can lead to a better bound, compared to
Theorem 5.3. In this case, we apply Theorem 5.3 with ,

, , and . From the table
of constant weight codes in [1], we get .
This gives . However, this bound
can be improved by using (11). A greedy search through the
compositions with the maximum value of each part being two
shows that the compositions , , ,

, and are mutually at
distance at least seven from one another. Since each of them is
a refinement of , we get that .
Finally, we look at an example which considers the bounded

symbol weight and demonstrate the use of Theorem 5.4.

Example 5.8: Consider the refinement . We can
consider a code in this space to be embedded in the con-
stant composition space with 16 symbols. Thus, we get

. We use the fact that if we consider all
compositions containing eight symbols occurring with fre-
quency three, then the difference of frequency between two
symbols from different compositions is either zero or three.
Thus, , , and . Using Lemma 5.6, we need
to ensure that . We get the lower bound

. From [1], we have
. Hence,

. In
this particular example, using the lower bound in (14) on the
constant symbol weight codes with does not yield a
better bound, primarily due to the absence of a known good
lower bound on the corresponding CCC. The improvement
mainly stems from the fact that we use a large binary constant
weight code with weight .
As is evident from the above examples, Theorems 5.3 and

5.4 help in actual computation of the bounds. In Example 5.7,
the number of ordered partitions of , into parts
with each part taking values between zero and two, inclusive, is

. A nonexhaustive greedy search could
only find five compositions. It is computationally difficult to
search exhaustively in such a large space. Similarly, for larger
lengths and alphabet sizes, finding the size of, and compositions
in, is difficult. Instead, by relying on known bounds on
binary constant weight codes and CCCs, we compute the sizes
of the symbol weight codes more easily.

VI. CONSTRUCTIONS OF SYMBOL WEIGHT CODES

In this section, we determine constructions of symbol weight
codes. Versfeld et al. [29], [30] provided constructions of
bounded symbol weight codes from Reed–Solomon codes. We
seek to obtain constant symbol weight codes with positive rate
and positive relative distance. The following two constructions
provide us with such codes with positive rate and positive
relative distance, given that we already have a constant symbol
weight code with positive rate and positive relative distance.

Construction: Let be a constant symbol weight code
with parameters over . Let be an FPA over
with parameters . Then the construction

results in a code . It is obtained by taking all codewords as
follows:

The code has parameters
over . In particular if the code had theminimum symbol

weight then so does the code , that is,
.

Concatenated Construction: Let be a code over with
parameters . Let be an FPA with parameters

over , such that . The concatenated
code with as the inner code and as the outer code has
parameters . It is obtained by replacing
every -ary symbol of with a codeword from . In partic-
ular, the resulting code has the minimum symbol weight

.

A. Constructions From Reed–Solomon Codes

In this section, we use the symbol to denote the di-
mension of the Reed–Solomon code. Let be a
Reed–Solomon code over a finite field with
and . Versfeld et al. [29], [30] showed that aside
from the Reed–Solomon codewords which correspond to a
constant polynomial, the Reed–Solomon code has maximum
symbol weight of . It is also established in the
same works that there exists a coset of the Reed–Solomon code
such that the maximum symbol weight of any codeword in the
code is at most . These codes belong to the bounded
symbol weight space . By the Singleton bound,
these are optimal codes.
In this section, we establish several results which show that

subsets of Reed–Solomon codes or their cosets can achieve the
GV-type lower bound in Theorem 4.3. First, Lemma 6.1 below
shows that for any constant symbol weight , there exists a coset
of the Reed–Solomon code that attains the GV bound asymptot-
ically. In Theorem 6.4, we provide a more explicit description
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of a subset of the Reed–Solomon code itself that has the con-
stant symbol weight for , such that it attains the GV
bound asymptotically. Since , this also means that this
latter result holds only for Reed–Solomon codes with rate more
than .
We first show by an averaging argument that the GV bound

can be achieved by subcodes of cosets of Reed–Solomon codes.

Lemma 6.1: Let be a family of Reed–Solomon
codes. For let , and . Then, there
exists a family of subcodes which is a subset of some coset
of the code such that

Proof: Let denote the cosets of the
Reed–Solomon code. Since the cosets of the Reed–Solomon
code are disjoint and they partition the Hamming space, we
have

Thus, the average size of the intersection of a coset with the
space is . Hence, there exists
at least one coset whose intersection with has size
at least this average. In the asymptotics for , , we get
the result stated in the Lemma.

In the remaining part of this section, we give a more ex-
plicit description of a subcode of the Reed–Solomon code with
rate equal to the GV-type bound. The derivation of this result
uses a lemma and a proposition stated below. The Proposition
6.2 below states that asymptotically the rate of the constant
symbol weight code with symbol weight that is a subset of
the Reed–Solomon code, can not exceed the rate of the sub-
code formed by all the codewords of weight . Lemma 6.3
gives an upper bound on the size of the number of codewords of
weight . The combination of this proposition and the lemma
imply that the rate of the constant symbol weight code, which
is a subset of the Reed–Solomon code, with symbol weight

, can not exceed the GV-type lower bound that
we obtained in Theorem 4.3, for any , . Theorem 6.4
below shows that this rate can be attained for any satisfying

. We state the proposition and the lemma first, and
defer their proofs to after the proof of the theorem.

Proposition 6.2: Let be a family of
Reed–Solomon codes with parameters ,

. Let denote the set of vectors with symbol
weight exactly , for , and let denote the
number of vectors of weight . Then

Lemma 6.3: The weight distribution
of a linear maximum distance separable code with parameters

satisfies

for .
The main theorem in this section is now stated below.

Theorem 6.4: Let denote the family of
Reed–Solomon codes with and . Let

. For , let and .
There exists a family of subcodes of of symbol weight
exactly such that

Proof: Every codeword of the Reed–Solomon code con-
sists of coordinates which are the evaluations at all the nonzero
points of , of a polynomial of degree at most . Let

be a polynomial in .
Let . If has symbol weight then it implies
that for some and for different values of
in . In other words, has exactly distinct roots.

Note that is restricted to be since the polynomials
cannot have more than roots.
Let be a polynomial of degree such that it has

exactly nonzero distinct roots in . Then
can be written as

where and is a product of monic irreducible poly-
nomials, each of degree at least two. The total degree of
is . Since , the polynomial can not at-
tain the value , where , at more than different points

since there are points at which the
function is nonzero. Hence, the symbol weight of the codeword
represented by is exactly . We seek the asymptotic expo-
nent of the number of such polynomials . This number is
dominated by the number of possible monic irreducible polyno-
mials . To describe this number, we recall the definition of
the Möbius function

if
if
if

The number of monic irreducible polynomials of degree is
given by the sum (see [20, Th. 3.25]). In
particular, for large , this sum is dominated by just the first term

. As a consequence, asymptotically the number
of polynomials is described by the number of monic ir-
reducible polynomials of degree . The asymp-
totic exponent of this count is approximately

. Thus, the subset of consists of all the
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codewords obtained from at least these polynomials. Hence, the
count above provides a lower bound on the rate of

The upper bound on the rate of is obtained by applying both
Lemma 6.3 and Proposition 6.2. We get

and

Proof of Proposition 6.2: Let be a code-
word in the Reed–Solomon code. Then, is the image of a poly-
nomial evaluated at all points of . We write

. If resulting from has symbol weight
exactly then so do the codewords obtained from the polyno-
mials , for , . Consider the subset

of that is obtained by retaining exactly one monic
polynomial from the set for
any polynomial . Thus, the size of satisfies

.
We claim that . To show this, we claim that

there exists an injection mapping from to the set of all
vectors of weight . Since any in has symbol
weight exactly , there exists a such that has
exactly distinct roots. Thus, the codeword has
Hamming weight exactly . This is the only such vector.
If there exists and such that

, then the two polynomials and
must satisfy the relation since they

are the same on points and their degrees are at most
. Thus, , which is not possible

since contains exactly one polynomial of this form.

Proof of Lemma 6.3: The expression for the weight distri-
bution satisfies (see [24, Chapter 11])

Retaining only the first term gives the required upper bound on
. The above expression can be rewritten as

where is an indicator function that is 1 if 2
does not divide and 0 otherwise. We show that each of
the terms in the summation above is positive, and hence, we can
upper bound by only the first term. This is proved via the
following sequence of inequalities. For any ,

, we have

We use the inequality . This expression
is greater than the RHS of the above because of the inequalities

, , and
. This proves the lemma.

B. Discussion

For correcting narrowband noise in the powerline channel,
it is desirable that the symbol weight be close to the minimum
possible value of . It remains open to determine a large
subset of the Reed–Solomon code for the case . It fol-
lows from Proposition 6.2 that the rate of this subset cannot ex-
ceed the GV-type bound . The more interesting question
is whether this bound can be achieved, especially in the cases
where is small. The work of Konyagin and Pappalardi [17]
gives an affirmative answer to this question in the case of ,
and for low relative distance . They show that the number of
permutation polynomials of degree at most is ap-
proximately for . This is asymptotically,

, where .
For the other ranges of , when is growing with , we be-

lieve that it should be possible to attain the GV bound. For in-
stance, it would be interesting to prove that for large ,

, and for any irreducible polynomial of degree
, there exists distinct and nonzero points

in such that the polynomial has
symbol weight exactly . Since most of the count of polyno-
mials attaining constant symbol weight comes from the count
of irreducible polynomials, proving this will show that the rate
attains the GV-type bound. We have obtained no counterex-
ample on performing an exhaustive computer search over all
such irreducible polynomials of degree , with

in all finite fields up to . We are
unable to verify for larger fields because the computations be-
come prohibitive. We believe that the conjecture is not true for
very small (when does not grow with ). For instance, for

, the polynomial , where is an
irreducible polynomial in , has symbol weight greater than
one for every choice of .

VII. CONCLUSION

We derive the asymptotic estimates of the sizes of symbol
weight codes.We also provide means of obtaining lower bounds
on such codes and show that it is possible to provide symbol
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weight codes with the minimal possible symbol weight via re-
cursive constructions, given we start with a known such code.
Finally, we provided constructions of asymptotically good con-
stant symbol weight codes. It remains open to determine fam-
ilies of codes with positive rate and positive relative distance
with symbol weights that are optimal or close to the optimal
value of .
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