Advances in Costas arrays

Konstantinos Drakakis

UCD CASL/Electronic & Electrical Engineering University College Dublin

10 November 2010

.∋...>

(日)

Part 1: Cross-correlation

We obtained these values for $\max_{\substack{a \neq B \\ A \neq B}} \max_{(u,v)} \Psi_{A,B}(u,v)$ when A, B are

Prime	W_1	G_2	Prime	W_1	G_2	Prime	W_1	G_2
5	2	2	59	5	12	127	42	41
7	2	2	61	30	29	131	26	25
11	3	4	67	22	21	136	68	67
13	6	5	71	14	13	139	46	45
17	8	7	73	36	35	149	74	73
19	6	6	79	26	25	151	50	49
23	4	6	83	5	9	157	78	77
29	14	13	89	44	43	163	54	53
31	10	9	97	48	47	167	6	12
37	18	17	101	50	49	173	86	85
41	20	19	103	34	33	179	6	12
43	14	13	107	5	10	181	90	89
47	5	8	109	54	53	191	38	37
53	26	25	113	56	55	193	96	95

both either W_1 or G_2 Costas arrays:

Cross-correlation results – in color

Prime	W_1	G_2	Prime	W_1	G_2	Prime	W_1	G_2
5	2	2	59	5	12	127	42	41
7	2	2	61	30	29	131	26	25
11	3	4	67	22	21	136	68	67
13	6	5	71	14	13	139	46	45
17	8	7	73	36	35	149	74	73
19	6	6	79	26	25	151	50	49
23	4	6	83	5	9	157	78	77
29	14	13	89	44	43	163	54	53
31	10	9	97	48	47	167	6	12
37	18	17	101	50	49	173	86	85
41	20	19	103	34	33	179	6	12
43	14	13	107	5	10	181	90	89
47	5	8	109	54	53	191	38	37
53	26	25	113	56	55	193	96	95

æ

* 聞き * 国き * 国を、

Conjecture

Let A, B be either both W₁ Costas arrays (not related by a shift) or both G₂ Costas arrays built in $\mathbb{F}(p)$, where $p \neq 19$ is a prime such that $\frac{p-1}{2}$ is not a prime (i.e. p is not a safe prime); then, $\max_{(u,v)} \max_{A \neq B} \Psi_{A,B}(u,v) = \max_{A \neq B} \Psi_{A,B}(0,0)$

The central theorems

Theorem

Let A, B *be distinct exponential* W_1 *Costas arrays built in* $\mathbb{F}(p)$ *not related by a shift; then,*

$$\max_{A\neq B}\Psi_{A,B}(0,0)=\frac{p-1}{r}$$

where *r* is the smallest prime such that $p \equiv 1 \mod (2r)$.

Theorem (almost!)

Let A', B' be distinct G_2 Costas arrays built in $\mathbb{F}(p)$, sharing a common primitive root; then,

$$\max_{A'\neq B'}\Psi_{A',B'}(0,0)=\frac{p-1}{r}-1,$$

where *r* is the smallest prime such that $p \equiv 1 \mod (2r)$.

• Let *A*, *B* be exponential W_1 Costas arrays generated by α and α^z , $\alpha \in \mathbb{F}(p)$ a primitive root, (z, p - 1) = 1, and by constants *c* and *d*, respectively. We need the number of solutions of:

$$\alpha^{i-1+c} \equiv \alpha^{z(i-1+d)} \mod p \Leftrightarrow (z-1)(i-1+d) \equiv c-d \mod (p-1)$$

- The number of roots is independent of the exact value of c d: it is (z 1, p 1) if z 1|c d and 0 otherwise.
- It suffices to consider the number of roots of $(z-1)x \equiv 0 \mod (p-1)$, which is necessarily a divisor of p-1.

• The maximum number of solutions possible is $\frac{p-1}{2}$: we need $(z-1, p-1) = \frac{p-1}{2} \Leftrightarrow z = \frac{p+1}{2}$, assuming it is admissible:

•
$$(z, p-1) = 1 = \left(\frac{p+1}{2}, p-1\right) = \left(\frac{p+1}{2}, 2\right)$$
, since $2|p-1$,
hence we need $2 \nmid \frac{p+1}{2} \Leftrightarrow p \equiv 1 \mod 4$.

- Henceforth, assume *p* ≡ 3 mod 4, and let *w* be a prime such that *p* ≡ 1 mod (2*w*).
- It can be easily shown that $z = \lambda \frac{p-1}{w} + 1$, $\lambda \in [w-1]$, is always admissible for $\lambda = 1$ or 2:
 - Let $p = 1 + wk:(\lambda(p-1)/w + 1, p-1) = (\lambda k + 1, wk)$; unless $w|\lambda k + 1$, this equals $(\lambda k + 1, k) = (1, k) = 1$.
 - Assuming w|k + 1 and w|2k + 1, then w|k, so w|1, a contradiction; so, either $\lambda = 1$ or $\lambda = 2$ is enough.
 - When is λ = 2 needed? When w|k+1, k = lw 1 for some l, so that

 $p=1+(lw-1)w=lw^2-w+1\leftrightarrow p\equiv w^2-w+1 \bmod w^2.$

• Hence, for any prime w > 2 there exists a z such that the congruence $(z - 1)x \equiv 0 \mod (p - 1) \operatorname{has} \frac{p - 1}{w}$ roots: clearly, this is maximum for w = r.

A (1) > A (1) > A

- Let *A*, *B* be *G*₂ Costas arrays built in $\mathbb{F}(p)$, generated by α , β , and α^r , β^s , respectively, where (r, p 1) = (s, p 1) = 1.
- We need the number of solutions (*i*, *j*) of

$$\alpha^{i}+\beta^{j}=1, \alpha^{ri}+\beta^{sj}=1, i, j=1,\ldots, p-2 \Leftrightarrow (1-x)^{r}+x^{s}=1,$$

where $x = \beta^j \neq 1$.

- Assuming s = 1, $(1 x)^{r-1} = 1 \Leftrightarrow (r-1)y = 0 \mod (p-1)$, where $1 - x = \alpha^y$. This is the same equation as before, except that $x \neq 0 \Leftrightarrow y \neq 0$, so y = 0 is rejected.
- Note that a conjecture has been made: the largest number of roots occurs for *s* = 1. This remains open.

A (1) > A (1) > A

Prime power	G_2
4	1
8	3
9	3
16	5
25	11
27	6
32	6
49	23
64	20
81	39
121	59
125	61
128	9
169	83
243	21
256	84

æ

▲□▶ ▲圖▶ ▲国▶ ▲国▶

The results and conjectures for G_2 Costas arrays above extend verbatim to extension fields, with some caveats:

- For odd powers, the notion of a safe prime power needs to be introduced (e.g. 27 = 1 + 2 ⋅ 13).
- 16 is an exception analogous to 19.
- Even powers *q* lead to a new phenomenon: *q* − 1 may be a Mersenne prime.

Consider the polynomials $P_{r,s}(x) = (1 - x)^r + x^s - 1$ in $\mathbb{F}(q)$, such that (r, q - 1) = (s, q - 1) = 1, and let $Z_{r,s}$ denote the number of roots of $P_{r,s}$.

- Conjecture: $\max_{r,s} Z_{r,s} = \max_r Z_{r,1}$.
- Fact: $Z_{r,r} \leq (q+1)/2$ (to be proved later).
- *P_{r,r}* := *P_r* is very interesting algebraically.

An algebraically interesting case

For p > 2, the set of roots of the polynomial $P_r(x) := P_{r,r}(x) = (1-x)^r + x^r - 1$ remains invariant under two transforms:

- If *x* is a root, S(x) = 1 x is also a root.
- If $x \neq 0$ is a root, R(x) = 1/x is also a root (note *r* odd).

R and *S* generate a group of 6 elements (observe that $R^2 = S^2 = I$):

$$Ix = x, Sx = 1 - x, Rx = 1/x, SRx = (x - 1)/x,$$

 $RSx = 1/(1 - x), RSRx = x/(x - 1).$

The orbit of *x* consists of 6 elements except for:

$$O_1 = \{0, 1\}, \ O_2 = \{1/2, 2, -1\}, \ \text{and} \ O_u = \{u, 1/u\}$$

such that $u^2 - u + 1 = 0$.

For p=2, $P_r(x) = (1 + x)^r + x^r + 1$, and its set of roots remains invariant under S(x) = 1 + x and R(x) = 1/x. The orbit of x is

$$Ix = x, Sx = 1 + x, Rx = 1/x, SRx = (x + 1)/x,$$

 $RSx = 1/(1 + x), RSRx = x/(x + 1),$

and consists of 6 elements except for:

$$O_1 = \{0, 1\}$$
 and $O_u = \{u, 1/u\}$

such that $u^2 + u + 1 = 0$.

• Assuming r = pm,

$$P_r(x) = (1 - x)^{pm} + x^{pm} - 1 = [(1 - x)^m + x^m - 1]^p$$
:

Root multiplicities of P_r are p times root multiplicities of P_m .

• For all p, unless p|r, 0 and 1 are single roots.

- A - N

Theorem

For p > 2, assuming 6|q - 1 and that $p \not| r$, u is a single root, double root, or no root of P_r , according to whether 6|r + 1, 6|r - 1, or otherwise (equivalently, $r \equiv 5$, 1, or 3 mod 6), respectively. If, in addition, p|r - 1, the former double root case leads now to higher multiplicity.

- Note: in finite fields, derivatives of non-constant polynomials can be identically 0!!!
- Note first that

 $u^2 - u + 1 = 0 \Leftrightarrow u + 1/u = 1 \Rightarrow u^3 = -1 \Rightarrow u^6 = 1.$

- Since $u^{q-1} = 1$, it follows that, if *u* is a root of P_r , 6|q 1.
- *u* is a root of P_r iff $(1 u)^r + u^r = 1$, hence $0 = (-u^2)^r + u^r - 1 = -(u^r)^2 + u^r - 1$, whence both u^r and *u* are roots of $x^2 - x + 1$.
- Either then $u^r = u \Leftrightarrow u^{r-1} = 1$ or $u^r = 1/u \Leftrightarrow u^{r+1} = 1$; equivalently, either 6|r - 1 or 6|r + 1.

•
$$P'_r(x) = r[x^{r-1} - (1-x)^{r-1}] \Rightarrow P'_r(u) = 0$$
 iff either $p|r$ or $u^{r-1} = (1-u)^{r-1}$.

- *u* is then (at least) a double root of P_r iff $(1 u)^r + u^r = 1$, $u^{r-1} = (1 u)^{r-1}$, which is equivalent to $(1 u)^{r-1} = u^{r-1} = 1$; as $u^6 = 1$ too, 6|r 1 and hence 6|(r 1, q 1) (but remember that (r, q 1) = 1 as well).
- *u* is (at least) a triple root iff, additionally, $P''_r(u) = r(r-1)[(1-u)^{r-2} + u^{r-2}] =$ $r(r-1)[(1-u)^{-1} + u^{-1}] = r(r-1)[u+u^{-1}] = r(r-1) = 0$ as well. This occurs iff either p|r (uninteresting) or p|r-1.

< ロ > < 同 > < 回 > < 回 > < 回 >

Theorem

For p = 2, assuming 3|q - 1 and that $2 \not| r$ (r odd), u is a single root, at least a triple root, or no root of P_r , according to whether 3|r + 1, 3|r - 1, or otherwise (equivalently, $r \equiv 2$, 1, or $0 \mod 3$), respectively.

- Note first that $u^2 + u + 1 = 0 \Leftrightarrow u + 1/u = 1 \Rightarrow u^3 = 1$.
- Since $u^{q-1} = 1$, it follows that, if *u* is a root of P_r , 3|q-1.
- *u* is a root of P_r iff $(1 + u)^r + u^r = 1$, hence $0 = (u^2)^r + u^r + 1 = (u^r)^2 + u^r + 1$, whence both u^r and *u* are roots of $x^2 + x + 1$.
- Either then $u^r = u \Leftrightarrow u^{r-1} = 1$ or $u^r = 1/u \Leftrightarrow u^{r+1} = 1$; equivalently, either 3|r 1 or 3|r + 1.

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

- *P*'_r(x) = r[x^{r-1} + (1 + x)^{r-1}] ⇒ *P*'_r(u) = 0 iff either 2|r (rejected) or u^{r-1} = (1 + u)^{r-1}.
- *u* is then (at least) a double root of P_r iff $(1 + u)^r + u^r = 1$, $u^{r-1} = (1 + u)^{r-1}$, which is equivalent to $(1 - u)^{r-1} = u^{r-1} = 1$; as $u^3 = 1$ too, 3|r - 1 and hence 3|(r - 1, q - 1).
- *u* is (at least) a triple root iff, additionally, $P''_r(u) = r(r-1)[(1-u)^{r-2} + u^{r-2}] =$ $r(r-1)[(1-u)^{-1} + u^{-1}] = r(r-1)[u+u^{-1}] = r(r-1) = 0$ as well. As 2|r-1, this always occurs.

< ロ > < 同 > < 回 > < 回 > < 回 >

$Z_{r,r} \leq (q+1)/2$: a proof (by J. Sheekey)

• Let
$$P_{r,r}(x) = P_{r,r}(y) = 0$$
: then $\frac{x}{y}$ is a root iff $\frac{1-x}{1-y}$ is a root (assume $x, y \neq 0, 1$). This is because

$$(1-x)^r + x^r = 1 = (1-y)^r + y^r \Rightarrow x^r - y^r = (1-y)^r - (1-x)^r$$

1

イロト イ理ト イヨト イヨト

so that

$$\left(\frac{x}{y}\right)^r + \left(1 - \frac{x}{y}\right)^r = 1 \Leftrightarrow x^r + (y - x)^r = y^r \Leftrightarrow$$
$$x^r - y^r = (x - y)^r = (1 - y)^r - (1 - x)^r \Leftrightarrow$$
$$\left(\frac{1 - x}{1 - y}\right)^r + \left(1 - \frac{1 - x}{1 - y}\right)^r = 1.$$

æ

• To sum up,

$$P_{r,r}\left(\frac{x}{y}\right) = 0 \Leftrightarrow P_{r,r}\left(\frac{y}{x}\right) = 0 \Leftrightarrow$$
$$P_{r,r}\left(\frac{1-x}{1-y}\right) = 0 \Leftrightarrow P_{r,r}\left(\frac{y}{x}\frac{1-x}{1-y}\right) = 0$$

æ

▲□▶ ▲圖▶ ▲国▶ ▲国▶

Let *R* be the set of nonzero roots of $P_{r,r}$, *c* be such that $P_{r,r}(c) \neq 0$ (such a *c* definitely exists, as the degree of $P_{r,r}$ is at most r < q). Considering the sets *R* and $c^{-1}R$, there are two possibilities:

• If
$$R \cap c^{-1}R = \emptyset$$
, then
 $|R \cup c^{-1}R| = 2|R| \le q - 1 \Leftrightarrow |R| \le \frac{q-1}{2}$.
• If $R \cap c^{-1}R \ne \emptyset$, then if $x \in R \cap c^{-1}R$, i.e. if x and $y = cx$ are
roots, then $\frac{y}{x} = c$ is not a root, hence neither are $c\frac{1-x}{1-cx}$
and $\frac{1-x}{1-cx}$: $\frac{1-x}{1-cx}$ does not lie in $R \cup c^{-1}R$. However,
 $x \rightarrow \frac{1-x}{1-cx}, x \in R \cap c^{-1}R$ is bijective. Denoting its range by
 $U, (R \cup c^{-1}R) \cap U = \emptyset$, namely
 $|(R \cup c^{-1}R) \cup U| = |R \cup c^{-1}R| + |U| =$
 $|R \cup c^{-1}R| + |R \cap c^{-1}R| = |R| + |c^{-1}R| = 2|R| \le q - 1$,
whence $|R| \le \frac{q-1}{2}$.

Part 2: Generalizations

- Isotropic RADAR: a Costas array leads to the optimal detection of the radial velocity and the distance of the target.
- No directionality: this RADAR is spherically blind. Instead, it can be directional and rotate or...
- a RADAR array can be used!
- Linear array: Target Position Ambiguity Surface (TPAS) is a circle.
- Square array: TPAS is 2 points (front or back).
- Cubic array: TPAS is a point (no ambiguity).

This needs a 5D Costas "array"!

Definition

Let $m \in \mathbb{N}$, consider a sequence $f : \mathbb{Z}^m \to \{0, 1\}$, and suppose further that $f(i) = 0, i \notin [N], N \in \mathbb{N}^m$, where $i = (i_1, \ldots, i_m)$, $N = (N_1, \ldots, N_m), [N] = [N_1] \times \ldots \times [N_m]$, and the vector N has the smallest possible entries (for the given sequence f). Let the autocorrelation of f be

$$A_f(k) = \sum_{i \in \mathbb{Z}^m} f(i)f(i+k), \ k \in \mathbb{Z}^m.$$

Then, f will be a Costas hyper-rectangle iff

$$\forall k \in \mathbb{Z}^m - \{0\}, \ A_f(k) \le 1.$$

In even dimensions, a satisfactory generalization of a permutation can be found:

Definition

Let m = 2s, $s \in \mathbb{N}$, and let $g : [n]^s \to [n]^s$ be a bijection, that is a permutation on vectors in general. Let $f : \mathbb{Z}^m \to \{0,1\}$ be a sequence such that f(i) = 1 iff $(i_{s+1}, \ldots, i_{2s}) = g(i_1, \ldots, i_s), (i_1, \ldots, i_s) \in [n]^s$, and such that it has the Costas property; then, f will be called a permutation Costas hypercube in m dimensions with side length n.

In odd dimensions, no such result is available: we can "cut the dimension in half", if the side length is a square (see below).


```
m = 4 dimensions, n = 3 side length:
```

Each vector with 2 coordinates taking values 1,2,3 (9 of them in total) appears exactly once on each side; the Costas property holds.

Theorem

Let
$$m, n \in \mathbb{N}^*$$
, $n = \prod_{i=1}^m n_i$, $n_i > 1$, $i \in [m]$, and let
 $g: [n] - 1 \rightarrow [n] - 1$ be a Costas permutation of order n . Expand
 $i = \sum_{j=1}^m v_j(i) \prod_{l=j+1}^m n_l$, so that i gets mapped bijectively to
 $V(i) = (v_1(i), \dots, v_m(i))$, where $v_j \in [n_j] - 1$, $j \in [m]$; similarly, $g(i)$
gets mapped bijectively to $V(g(i)) = (v_1(g(i)), \dots, v_m(g(i)))$. Then,
the hyper-rectangle of side length n_i in dimension i and $i + m$,
 $i \in [m]$, whose dots (n in total) lie at the points
 $(V(i), V(g(i))) := (v_1(i), \dots, v_m(i), v_1(g(i)), \dots, v_m(g(i)))$,
 $i \in [n] - 1$, is actually a permutation Costas hyper-rectangle.

Proof

Choose 2 values for i, say i_1 and i_2 ; the corresponding distance vector is:

$$\begin{aligned} (V(i_1) - V(i_2), V(g(i_1)) - V(g(i_2))) &= \\ &= (v_1(i_1) - v_1(i_2), \dots, v_m(i_1) - v_m(i_2), \\ &\quad v_1(g(i_1)) - v_1(g(i_2)), \dots, v_m(g(i_1)) - v_m(g(i_2))) \end{aligned}$$

We need to show that all of these vectors are distinct:

$$\begin{aligned} (V(i_1) - V(i_2), V(g(i_1)) - V(g(i_2))) &= \\ &= (V(i_3) - V(i_4), V(g(i_3)) - V(g(i_4))) \Rightarrow i_1 = i_2, \ i_3 = i_4. \end{aligned}$$

Extend V^{-1} by $V^{-1}(v_1, \ldots, v_m) = \sum_{j=1}^m v_j \prod_{l=j+1}^m n_l$ on the class of vectors where $|v_j| < n_j$, $j \in [m]$. It follows that $V^{-1}(V(i_1) - V(i_2)) = i_1 - i_2$, as $V(i_1) - V(i_2)$ falls within this class of vectors. Then:

$$\begin{aligned} (V(i_1) - V(i_2), V(g(i_1)) - V(g(i_2))) &= \\ &= (V(i_3) - V(i_4), V(g(i_3)) - V(g(i_4))) \Rightarrow \end{aligned}$$

$$\begin{split} V^{-1}(V(i_1) - V(i_2), V(g(i_1)) - V(g(i_2))) &= \\ &= V^{-1}(V(i_3) - V(i_4), V(g(i_3)) - V(g(i_4))) \Leftrightarrow \\ & (V^{-1}(V(i_1) - V(i_2)), V^{-1}(V(g(i_1)) - V(g(i_2))))) = \\ &= (V^{-1}(V(i_3) - V(i_4)), V^{-1}(V(g(i_3)) - V(g(i_4)))) \Leftrightarrow \\ & (i_1 - i_2, g(i_1) - g(i_2)) = (i_3 - i_4, g(i_3) - g(i_4)) \Leftrightarrow \\ & i_1 - i_2 = i_3 - i_4, \ g(i_1) - g(i_2) = g(i_3) - g(i_4) \Rightarrow \\ & i_1 = i_3, \ i_2 = i_4 \end{split}$$

In the last step we used the fact that *g* is Costas; the construction is clearly a permutation.

< AP

Heuristic

Let $\sqrt{n} \in \mathbb{N}$, and let $g: [n]^m \times [\sqrt{n}] - 1 \rightarrow [n]^m \times [\sqrt{n}] - 1$ be a *Costas permutation of order n^m* \sqrt{n} *. Expand* $i = v_0(i)n^m + \sum v_j(i)n^{m-j} \Leftrightarrow i \leftrightarrow V(i) = (v_0(i), v_1(i), \dots, v_m(i)),$ *where* $v_i \in [n] - 1$, $j \in [m]$ *and* $v_0 \in [\sqrt{n}] - 1$ *;* $g(i) \leftrightarrow V(g(i)) = (v_0(g(i)), v_1(g(i)), \dots, v_m(g(i)))$. This process forms a Costas hyper-rectangle in 2m + 2 dimensions, whose side length in 2m dimensions is n and in the remaining 2 dimensions \sqrt{n} . Set $(v_0(i), v_0(g(i))) \longrightarrow \sqrt{n}v_0(g(i)) + v_0(i), i \in [n^m \sqrt{n}] - 1$, which takes values in the range [n] - 1. Then, the hypercube of side length n whose dots $(n^m \sqrt{n} \text{ in total})$ lie at the points $(\sqrt{n}v_0(g(i)) + v_0(i), v_1(i), \dots, v_m(i), v_1(g(i)), \dots, v_m(g(i))),$ $i \in [n^m \sqrt{n}] - 1$ may be a Costas hypercube.

< ロ > < 同 > < 回 > < 回 > < 回 >

Example: $25 \rightarrow 5^4$

0	10		0
1	7	ĺ	1
2	6	1	2
3	9		3
4	17		4
5	23		0
6	21		1
7	2		2
8	20	1	3
9	11		4
10	15		0
11	3		1
12	12		2
13	22		3
14	1		4
15	16		0
16	18		1
17	19		2
18	5		3
19	0		4
20	13		0
21	24		1
22	14		2
23	8]	3
24	4		4

0	0	0	2
1	0	2	1
2	0	1	1
3	0	4	1
4	0	2	3
0	1	3	4
1	1	1	4
2	1	2	0
3	1	0	4
4	1	1	2
0	2	0	3
1	2	3	0
2	2	2	2
3	2	2	4
4	2	1	0
0	3	1	3
1	3	3	3
2	3	4	3
3	3	0	1
4	3	0	0
0	4	3	2
1	4	4	4
2	4	4	2
3	4	3	1
4	4	4	0

æ

<ロト < 四ト < 回ト < 回ト

Konstantinos Drakakis Advances in Costas an

Example: $27 \rightarrow 9 \times 3 \times 3 \times 9 \rightarrow 9^3$

0		0	0	0	0	l í
		0	0	0	0	
2	1	1	0	0	2	ĺÌ
18		2	0	2	0	ÍÍ
11		3	0	1	2	ÍÍ
22		4	0	2	4	
4		5	0	0	4	ÍÍ
24		6	0	2	6	
19		7	0	2	1	
9		8	0	1	0	ÍÍ
15		0	1	1	6	
12		1	1	1	3	
26		2	1	2	8	[
10		3	1	1	1	
14		4	1	1	5	
1		5	1	0	1	[
8		6	1	0	8	[
13		7	1	1	4	
7		8	1	0	7	[
20		0	2	2	2	
21		1	2	2	3	
17		2	2	1	8	[
16		3	2	1	7	
25		4	2	2	7	
5		5	2	0	5	[
3		6	2	0	3	[
6		7	2	0	6	[
23		8	2	2	5	[
	$\begin{array}{c} 2\\ 18\\ 11\\ 22\\ 4\\ 24\\ 19\\ 9\\ 9\\ 15\\ 12\\ 26\\ 10\\ 11\\ 1\\ 8\\ 13\\ 7\\ 20\\ 21\\ 17\\ 16\\ 25\\ 5\\ 3\\ 6\\ 23\\ \end{array}$	$\begin{array}{c} 2\\ 18\\ 11\\ 22\\ 4\\ 24\\ 19\\ 9\\ 9\\ 15\\ 12\\ 26\\ 10\\ 14\\ 1\\ 8\\ 13\\ 7\\ 20\\ 21\\ 17\\ 16\\ 20\\ 21\\ 17\\ 16\\ 25\\ 5\\ 3\\ 6\\ 23\\ \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

0	0	0
1	0	2
2	6	0
3	3	2
4	6	4
5	0	4
6	6	6
7	6	1
8	3	0
0	4	6
1	4	3
2	7	8
3	4	1
4	4	5
5	1	1
6	1	8
7	4	4
8	1	7
0	8	2
1	8	3
2	5	8
3	5	7
4	8	7
5	2	5
6	2	3
7	2	6
8	8	5

æ

Konstantinos Drakakis Advar

<ロト < 四ト < 回ト < 回ト

Theorem

Let p *be a prime,* $m \in \mathbb{N}^*$ *,* α *a primitive root of* $\mathbb{F}(q)$ *where* $q = p^m$ *, and* $c \in [q - 1] - 1$ *. Then:*

- The function $f : [q-1] \to \mathbb{F}^*(q)$, where $f(i) = \alpha^{i-1+c} \mod P(x), i \in [q-1]$, P(x) an irreducible polynomial over $\mathbb{F}(p)$ of degree m, is a permutation over $\mathbb{F}^*(q)$.
- The hyper-rectangle in m + 1 dimensions with side length q 1 in the first dimension and p in the others, whose dots lie at $\{(i, f(i))|i \in [q 1]\}$, has the Costas property.
- The hypercube in 2m dimensions with side length p, whose dots lie at $\{(V(i), f(i)) | i \in [q 1]\}$, has the Costas property; V denotes the base p expansion.

< □ > < @ > < B >

Example: $\alpha = x, c = 1, P(x) = x^3 + 2x + 1$ in $\mathbb{F}(27)$

1	0	1	0
2	1	0	0
3	0	1	2
4	1	2	0
5	2	1	2
6	1	1	1
7	1	2	2
8	2	0	2
9	0	1	1
10	1	1	0
11	1	1	2
12	1	0	2
13	0	0	2
14	0	2	0
15	2	0	0
16	0	2	1
17	2	1	0
18	1	2	1
19	2	2	2
20	2	1	1
21	1	0	1
22	0	2	2
23	2	2	0
24	2	2	1
25	2	0	1
26	0	0	1

0	0	1	0	1	0
0	0	2	1	0	0
0	1	0	0	1	2
0	1	1	1	2	0
0	1	2	2	1	2
0	2	0	1	1	1
0	2	1	1	2	2
0	2	2	2	0	2
1	0	0	0	1	1
1	0	1	1	1	0
1	0	2	1	1	2
1	1	0	1	0	2
1	1	1	0	0	2
1	1	2	0	2	0
1	2	0	2	0	0
1	2	1	0	2	1
1	2	2	2	1	0
2	0	0	1	2	1
2	0	1	2	2	2
2	0	2	2	1	1
2	1	0	1	0	1
2	1	1	0	2	2
2	1	2	2	2	0
2	2	0	2	2	1
2	2	1	2	0	1
2	2	2	0	0	1

1	3
2	1
3	21
4	7
5	23
6	13
7	25
8	20
9	12
10	4
11	22
12	19
13	18
14	6
14 15	6 2
14 15 16	6 2 15
14 15 16 17	6 2 15 5
14 15 16 17 18	6 2 15 5 16
14 15 16 17 18 19	6 2 15 5 16 26
14 15 16 17 18 19 20	6 2 15 5 16 26 14
14 15 16 17 18 19 20 21	6 2 15 5 16 26 14 10
$ \begin{array}{r} 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ \end{array} $	6 2 15 5 16 26 14 10 24
$ \begin{array}{r} 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ \end{array} $	6 2 15 5 16 26 14 10 24 8
14 15 16 17 18 19 20 21 22 23 23 24	6 2 15 5 16 26 14 10 24 8 17
$ \begin{array}{r} 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ \end{array} $	6 2 15 5 16 26 14 10 24 8 17 11
$ \begin{array}{r} 14\\ 15\\ 16\\ 17\\ 18\\ 19\\ 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ \end{array} $	6 2 15 5 16 26 14 10 24 8 17 11 9

< **∂** > < ∃ >

< ⊒ >

3

- K. Drakakis. "On the generalization of the Costas property in higher dimensions." Advances in Mathematics of Communications [0.97], Volume 4, Issue 1, 2010, pp. 1–22.
- K. Drakakis, R. Gow, S. Rickard, J. Sheekey, and K. Taylor. "On the maximal cross-correlation of algebraically constructed Costas arrays." (to appear in) IEEE Transactions on Information Theory.

