Advances in Costas arrays

Konstantinos Drakakis

UCD CASL/Electronic \& Electrical Engineering
University College Dublin

10 November 2010

Part 1: Cross-correlation

[Drakakis et al. (2011?)]

Cross-correlation results

We obtained these values for max max $\Psi_{A, B}(u, v)$ when A, B are

$$
A \neq B(u, v)
$$

both either W_{1} or G_{2} Costas arrays:

Prime	W_{1}	G_{2}	Prime	W_{1}	G_{2}	Prime	W_{1}	G_{2}
5	2	2	59	5	12	127	42	41
7	2	2	61	30	29	131	26	25
11	3	4	67	22	21	136	68	67
13	6	5	71	14	13	139	46	45
17	8	7	73	36	35	149	74	73
19	6	6	79	26	25	151	50	49
23	4	6	83	5	9	157	78	77
29	14	13	89	44	43	163	54	53
31	10	9	97	48	47	167	6	12
37	18	17	101	50	49	173	86	85
41	20	19	103	34	33	179	6	12
43	14	13	107	5	10	181	90	89
47	5	8	109	54	53	191	38	37
53	26	25	113	56	55	193	96	95

Cross-correlation results - in color

Prime	W_{1}	G_{2}	Prime	W_{1}	G_{2}	Prime	W_{1}	G_{2}
5	2	2	59	5	12	127	42	41
7	2	2	61	30	29	131	26	25
11	3	4	67	22	21	136	68	67
13	6	5	71	14	13	139	46	45
17	8	7	73	36	35	149	74	73
19	6	6	79	26	25	151	50	49
23	4	6	83	5	9	157	78	77
29	14	13	89	44	43	163	54	53
31	10	9	97	48	47	167	6	12
37	18	17	101	50	49	173	86	85
41	20	19	103	34	33	179	6	12
43	14	13	107	5	10	181	90	89
47	5	8	109	54	53	191	38	37
53	26	25	113	56	55	193	96	95

A plausible conjecture

Conjecture

Let A, B be either both W_{1} Costas arrays (not related by a shift) or both G_{2} Costas arrays built in $\mathbb{F}(p)$, where $p \neq 19$ is a prime such that $\frac{p-1}{2}$ is not a prime (i.e. p is not a safe prime); then,

$$
\max _{(u, v)} \max _{A \neq B} \Psi_{A, B}(u, v)=\max _{A \neq B} \Psi_{A, B}(0,0)
$$

The central theorems

Theorem

Let A, B be distinct exponential W_{1} Costas arrays built in $\mathbb{F}(p)$ not related by a shift; then,

$$
\max _{A \neq B} \Psi_{A, B}(0,0)=\frac{p-1}{r}
$$

where r is the smallest prime such that $p \equiv 1 \bmod (2 r)$.

Theorem (almost!)

Let A^{\prime}, B^{\prime} be distinct G_{2} Costas arrays built in $\mathbb{F}(p)$, sharing a common primitive root; then,

$$
\max _{A^{\prime} \neq B^{\prime}} \Psi_{A^{\prime}, B^{\prime}}(0,0)=\frac{p-1}{r}-1
$$

where r is the smallest prime such that $p \equiv 1 \bmod (2 r)$.

Proof sketch

- Let A, B be exponential W_{1} Costas arrays generated by α and $\alpha^{z}, \alpha \in \mathbb{F}(p)$ a primitive root, $(z, p-1)=1$, and by constants c and d, respectively. We need the number of solutions of:
$\alpha^{i-1+c} \equiv \alpha^{z(i-1+d)} \bmod p \Leftrightarrow(z-1)(i-1+d) \equiv c-d \bmod (p-1)$
- The number of roots is independent of the exact value of $c-d$: it is $(z-1, p-1)$ if $z-1 \mid c-d$ and 0 otherwise.
- It suffices to consider the number of roots of $(z-1) x \equiv 0 \bmod (p-1)$, which is necessarily a divisor of $p-1$.
- The maximum number of solutions possible is $\frac{p-1}{2}$: we need $(z-1, p-1)=\frac{p-1}{2} \Leftrightarrow z=\frac{p+1}{2}$, assuming it is admissible:
- $(z, p-1)=1=\left(\frac{p+1}{2}, p-1\right)=\left(\frac{p+1}{2}, 2\right)$, since $2 \mid p-1$, hence we need $2 \nmid \frac{p+1}{2} \Leftrightarrow p \equiv 1 \bmod 4$.
- Henceforth, assume $p \equiv 3 \bmod 4$, and let w be a prime such that $p \equiv 1 \bmod (2 w)$.
- It can be easily shown that $z=\lambda \frac{p-1}{w}+1, \lambda \in[w-1]$, is always admissible for $\lambda=1$ or 2 :
- Let $p=1+w k:(\lambda(p-1) / w+1, p-1)=(\lambda k+1, w k)$; unless $w \mid \lambda k+1$, this equals $(\lambda k+1, k)=(1, k)=1$.
- Assuming $w \mid k+1$ and $w \mid 2 k+1$, then $w \mid k$, so $w \mid 1$, a contradiction; so, either $\lambda=1$ or $\lambda=2$ is enough.
- When is $\lambda=2$ needed? When $w \mid k+1, k=l w-1$ for some l, so that

$$
p=1+(l w-1) w=l w^{2}-w+1 \leftrightarrow p \equiv w^{2}-w+1 \bmod w^{2} .
$$

- Hence, for any prime $w>2$ there exists a z such that the congruence $(z-1) x \equiv 0 \bmod (p-1)$ has $\frac{p-1}{w}$ roots: clearly, this is maximum for $w=r$.
- Let A, B be G_{2} Costas arrays built in $\mathbb{F}(p)$, generated by α, β, and α^{r}, β^{s}, respectively, where $(r, p-1)=(s, p-1)=1$.
- We need the number of solutions (i, j) of
$\alpha^{i}+\beta^{j}=1, \alpha^{r i}+\beta^{s j}=1, i, j=1, \ldots, p-2 \Leftrightarrow(1-x)^{r}+x^{s}=1$, where $x=\beta^{j} \neq 1$.
- Assuming $s=1,(1-x)^{r-1}=1 \Leftrightarrow(r-1) y=0 \bmod (p-1)$, where $1-x=\alpha^{y}$. This is the same equation as before, except that $x \neq 0 \Leftrightarrow y \neq 0$, so $y=0$ is rejected.
- Note that a conjecture has been made: the largest number of roots occurs for $s=1$. This remains open.

Prime power	G_{2}
4	1
8	3
9	3
16	5
25	11
27	6
32	6
49	23
64	20
81	39
121	59
125	61
128	9
169	83
243	21
256	84

Extension to prime powers for G_{2} Costas arrays

The results and conjectures for G_{2} Costas arrays above extend verbatim to extension fields, with some caveats:

- For odd powers, the notion of a safe prime power needs to be introduced (e.g. $27=1+2 \cdot 13$).
- 16 is an exception analogous to 19 .
- Even powers q lead to a new phenomenon: $q-1$ may be a Mersenne prime.

Polynomials

Consider the polynomials $P_{r, s}(x)=(1-x)^{r}+x^{s}-1$ in $\mathbb{F}(q)$, such that $(r, q-1)=(s, q-1)=1$, and let $Z_{r, s}$ denote the number of roots of $P_{r, s}$.

- Conjecture: $\max _{r, s} Z_{r, s}=\max _{r} Z_{r, 1}$.
- Fact: $Z_{r, r} \leq(q+1) / 2$ (to be proved later).
- $P_{r, r}:=P_{r}$ is very interesting algebraically.

An algebraically interesting case

For $p>2$, the set of roots of the polynomial
$P_{r}(x):=P_{r, r}(x)=(1-x)^{r}+x^{r}-1$ remains invariant under two transforms:

- If x is a root, $S(x)=1-x$ is also a root.
- If $x \neq 0$ is a root, $R(x)=1 / x$ is also a root (note r odd).
R and S generate a group of 6 elements (observe that $\left.R^{2}=S^{2}=I\right)$:

$$
\begin{aligned}
& I x=x, S x=1-x, R x=1 / x, \operatorname{SR} x=(x-1) / x \\
& \\
& \quad R S x=1 /(1-x), R S R x=x /(x-1) .
\end{aligned}
$$

The orbit of x consists of 6 elements except for:

$$
O_{1}=\{0,1\}, O_{2}=\{1 / 2,2,-1\}, \text { and } O_{u}=\{u, 1 / u\}
$$

such that $u^{2}-u+1=0$.

For $\mathrm{p}=2, P_{r}(x)=(1+x)^{r}+x^{r}+1$, and its set of roots remains invariant under $S(x)=1+x$ and $R(x)=1 / x$. The orbit of x is

$$
\begin{aligned}
& I x=x, S x=1+x, R x=1 / x, \operatorname{SR} x=(x+1) / x \\
& \\
& \quad R S x=1 /(1+x), \operatorname{RSR} x=x /(x+1),
\end{aligned}
$$

and consists of 6 elements except for:

$$
O_{1}=\{0,1\} \text { and } O_{u}=\{u, 1 / u\}
$$

such that $u^{2}+u+1=0$.

Two related notes

- Assuming $r=p m$,

$$
P_{r}(x)=(1-x)^{p m}+x^{p m}-1=\left[(1-x)^{m}+x^{m}-1\right]^{p}:
$$

Root multiplicities of P_{r} are p times root multiplicities of P_{m}.

- For all p, unless $p \mid r, 0$ and 1 are single roots.

More on u

Theorem

For $p>2$, assuming $6 \mid q-1$ and that $p \nmid r, u$ is a single root, double root, or no root of P_{r}, according to whether $6|r+1,6| r-1$, or otherwise (equivalently, $r \equiv 5$, 1 , or $3 \bmod 6$), respectively. If, in addition, $p \mid r-1$, the former double root case leads now to higher multiplicity.

- Note: in finite fields, derivatives of non-constant polynomials can be identically 0!!!
- Note first that
$u^{2}-u+1=0 \Leftrightarrow u+1 / u=1 \Rightarrow u^{3}=-1 \Rightarrow u^{6}=1$.
- Since $u^{q-1}=1$, it follows that, if u is a root of $P_{r}, 6 \mid q-1$.
- u is a root of P_{r} iff $(1-u)^{r}+u^{r}=1$, hence $0=\left(-u^{2}\right)^{r}+u^{r}-1=-\left(u^{r}\right)^{2}+u^{r}-1$, whence both u^{r} and u are roots of $x^{2}-x+1$.
- Either then $u^{r}=u \Leftrightarrow u^{r-1}=1$ or $u^{r}=1 / u \Leftrightarrow u^{r+1}=1$; equivalently, either $6 \mid r-1$ or $6 \mid r+1$.
- $P_{r}^{\prime}(x)=r\left[x^{r-1}-(1-x)^{r-1}\right] \Rightarrow P_{r}^{\prime}(u)=0$ iff either $p \mid r$ or $u^{r-1}=(1-u)^{r-1}$.
- u is then (at least) a double root of P_{r} iff $(1-u)^{r}+u^{r}=1$, $u^{r-1}=(1-u)^{r-1}$, which is equivalent to $(1-u)^{r-1}=u^{r-1}=1$; as $u^{6}=1$ too, $6 \mid r-1$ and hence $6 \mid(r-1, q-1)$ (but remember that $(r, q-1)=1$ as well).
- u is (at least) a triple root iff, additionally,
$P_{r}^{\prime \prime}(u)=r(r-1)\left[(1-u)^{r-2}+u^{r-2}\right]=$
$r(r-1)\left[(1-u)^{-1}+u^{-1}\right]=r(r-1)\left[u+u^{-1}\right]=r(r-1)=0$
as well. This occurs iff either $p \mid r$ (uninteresting) or $p \mid r-1$.

Theorem

For $p=2$, assuming $3 \mid q-1$ and that $2 \nmid r$ (r odd $), u$ is a single root, at least a triple root, or no root of P_{r}, according to whether $3 \mid r+1$, $3 \mid r-1$, or otherwise (equivalently, $r \equiv 2,1$, or $0 \bmod 3$), respectively.

- Note first that $u^{2}+u+1=0 \Leftrightarrow u+1 / u=1 \Rightarrow u^{3}=1$.
- Since $u^{q-1}=1$, it follows that, if u is a root of $P_{r}, 3 \mid q-1$.
- u is a root of P_{r} iff $(1+u)^{r}+u^{r}=1$, hence $0=\left(u^{2}\right)^{r}+u^{r}+1=\left(u^{r}\right)^{2}+u^{r}+1$, whence both u^{r} and u are roots of $x^{2}+x+1$.
- Either then $u^{r}=u \Leftrightarrow u^{r-1}=1$ or $u^{r}=1 / u \Leftrightarrow u^{r+1}=1$; equivalently, either $3 \mid r-1$ or $3 \mid r+1$.
- $P_{r}^{\prime}(x)=r\left[x^{r-1}+(1+x)^{r-1}\right] \Rightarrow P_{r}^{\prime}(u)=0$ iff either $2 \mid r$ (rejected) or $u^{r-1}=(1+u)^{r-1}$.
- u is then (at least) a double root of P_{r} iff $(1+u)^{r}+u^{r}=1$, $u^{r-1}=(1+u)^{r-1}$, which is equivalent to $(1-u)^{r-1}=u^{r-1}=1$; as $u^{3}=1$ too, $3 \mid r-1$ and hence $3 \mid(r-1, q-1)$.
- u is (at least) a triple root iff, additionally, $P_{r}^{\prime \prime}(u)=r(r-1)\left[(1-u)^{r-2}+u^{r-2}\right]=$ $r(r-1)\left[(1-u)^{-1}+u^{-1}\right]=r(r-1)\left[u+u^{-1}\right]=r(r-1)=0$ as well. As $2 \mid r-1$, this always occurs.

$Z_{r, r} \leq(q+1) / 2:$ a proof (by J. Sheekey)

- Let $P_{r, r}(x)=P_{r, r}(y)=0$: then $\frac{x}{y}$ is a root iff $\frac{1-x}{1-y}$ is a root (assume $x, y \neq 0,1$). This is because

$$
(1-x)^{r}+x^{r}=1=(1-y)^{r}+y^{r} \Rightarrow x^{r}-y^{r}=(1-y)^{r}-(1-x)^{r}
$$

so that

$$
\begin{aligned}
\left(\frac{x}{y}\right)^{r}+\left(1-\frac{x}{y}\right)^{r}=1 \Leftrightarrow & x^{r}+(y-x)^{r}=y^{r} \Leftrightarrow \\
x^{r}-y^{r}=(x-y)^{r} & =(1-y)^{r}-(1-x)^{r} \Leftrightarrow \\
& \left(\frac{1-x}{1-y}\right)^{r}+\left(1-\frac{1-x}{1-y}\right)^{r}=1
\end{aligned}
$$

- As x^{-1} and y^{-1} are also roots, $\frac{x^{-1}}{y^{-1}}=\frac{y}{x}$ is a root iff $\frac{1-x^{-1}}{1-y^{-1}}=\frac{y}{x} \frac{1-x}{1-y}$ is a root.
- $\frac{y}{x}$ is a root iff $\frac{x}{y}$ is a root.
- To sum up,

$$
\begin{aligned}
P_{r, r}\left(\frac{x}{y}\right)=0 \Leftrightarrow & P_{r, r}\left(\frac{y}{x}\right)=0 \Leftrightarrow \\
& P_{r, r}\left(\frac{1-x}{1-y}\right)=0 \Leftrightarrow P_{r, r}\left(\frac{y}{x} \frac{1-x}{1-y}\right)=0
\end{aligned}
$$

Let R be the set of nonzero roots of $P_{r, r}, c$ be such that $P_{r, r}(c) \neq 0$ (such a c definitely exists, as the degree of $P_{r, r}$ is at most $r<q$). Considering the sets R and $c^{-1} R$, there are two possibilities:

- If $R \cap c^{-1} R=\emptyset$, then

$$
\left|R \cup c^{-1} R\right|=2|R| \leq q-1 \Leftrightarrow|R| \leq \frac{q-1}{2}
$$

- If $R \cap c^{-1} R \neq \emptyset$, then if $x \in R \cap c^{-1} R$, i.e. if x and $y=c x$ are
roots, then $\frac{y}{x}=c$ is not a root, hence neither are $c \frac{1-x}{1-c x}$
and $\frac{1-x}{1-c x}: \frac{1-x}{1-c x}$ does not lie in $R \cup c^{-1} R$. However,
$x \rightarrow \frac{1-x}{1-c x}, x \in R \cap c^{-1} R$ is bijective. Denoting its range by
$U,\left(R \cup c^{-1} R\right) \cap U=\emptyset$, namely
$\left|\left(R \cup c^{-1} R\right) \cup U\right|=\left|R \cup c^{-1} R\right|+|U|=$
$\left|R \cup c^{-1} R\right|+\left|R \cap c^{-1} R\right|=|R|+\left|c^{-1} R\right|=2|R| \leq q-1$,
whence $|R| \leq \frac{q-1}{2}$.

Part 2: Generalizations

[Drakakis (2010)]

Motivation

- Isotropic RADAR: a Costas array leads to the optimal detection of the radial velocity and the distance of the target.
- No directionality: this RADAR is spherically blind. Instead, it can be directional and rotate or...
- a RADAR array can be used!
- Linear array: Target Position Ambiguity Surface (TPAS) is a circle.
- Square array: TPAS is 2 points (front or back).
- Cubic array: TPAS is a point (no ambiguity).

This needs a 5D Costas "array"!

Costas property in higher dimensions

Definition

Let $m \in \mathbb{N}$, consider a sequence $f: \mathbb{Z}^{m} \rightarrow\{0,1\}$, and suppose further that $f(i)=0, i \notin[N], N \in \mathbb{N}^{m}$, where $i=\left(i_{1}, \ldots, i_{m}\right)$, $N=\left(N_{1}, \ldots, N_{m}\right),[N]=\left[N_{1}\right] \times \ldots \times\left[N_{m}\right]$, and the vector N has the smallest possible entries (for the given sequence f). Let the autocorrelation of f be

$$
A_{f}(k)=\sum_{i \in \mathbb{Z}^{m}} f(i) f(i+k), k \in \mathbb{Z}^{m}
$$

Then, f will be a Costas hyper-rectangle iff

$$
\forall k \in \mathbb{Z}^{m}-\{0\}, A_{f}(k) \leq 1
$$

What about permutations?

In even dimensions, a satisfactory generalization of a permutation can be found:

Definition

Let $m=2 s, s \in \mathbb{N}$, and let $g:[n]^{s} \rightarrow[n]^{s}$ be a bijection, that is a permutation on vectors in general. Let $f: \mathbb{Z}^{m} \rightarrow\{0,1\}$ be a sequence such that $f(i)=1$ iff
$\left(i_{s+1}, \ldots, i_{2 s}\right)=g\left(i_{1}, \ldots, i_{s}\right),\left(i_{1}, \ldots, i_{s}\right) \in[n]^{s}$, and such that it has the Costas property; then, f will be called a permutation Costas hypercube in m dimensions with side length n.

In odd dimensions, no such result is available: we can "cut the dimension in half", if the side length is a square (see below).

Example of a Costas hypercube

$m=4$ dimensions, $n=3$ side length:

1	1	2	1
1	2	2	3
1	3	3	1

$\begin{array}{llll}2 & 1 & 2 & 3\end{array}$
$\begin{array}{llll}2 & 2 & 1 & 2\end{array}$
$\begin{array}{llll}2 & 3 & 1 & 3\end{array}$
$\begin{array}{llll}3 & 1 & 3 & 2\end{array}$
$\begin{array}{llll}3 & 2 & 3 & 1\end{array}$
$\begin{array}{llll}3 & 3 & 1 & 2\end{array}$

Each vector with 2 coordinates taking values 1,2,3 (9 of them in total) appears exactly once on each side; the Costas property holds.

Reshaping: the main construction method

Theorem

Let $m, n \in \mathbb{N}^{*}, n=\prod^{m} n_{i}, n_{i}>1, i \in[m]$, and let

$$
i=1
$$

$g:[n]-1 \rightarrow[n]-1$ be a Costas permutation of order n. Expand
$i=\sum_{j=1}^{m} v_{j}(i) \prod_{l=j+1}^{m} n_{l}$, so that i gets mapped bijectively to
$V(i)=\left(v_{1}(i), \ldots, v_{m}(i)\right)$, where $v_{j} \in\left[n_{j}\right]-1, j \in[m]$; similarly, $g(i)$ gets mapped bijectively to $V(g(i))=\left(v_{1}(g(i)), \ldots, v_{m}(g(i))\right)$. Then, the hyper-rectangle of side length n_{i} in dimension i and $i+m$, $i \in[m]$, whose dots (n in total) lie at the points
$(V(i), V(g(i))):=\left(v_{1}(i), \ldots, v_{m}(i), v_{1}(g(i)), \ldots, v_{m}(g(i))\right)$, $i \in[n]-1$, is actually a permutation Costas hyper-rectangle.

Choose 2 values for i, say i_{1} and i_{2}; the corresponding distance vector is:

$$
\begin{aligned}
& \left(V\left(i_{1}\right)-V\left(i_{2}\right), V\left(g\left(i_{1}\right)\right)-V\left(g\left(i_{2}\right)\right)\right)= \\
& =\left(v_{1}\left(i_{1}\right)-v_{1}\left(i_{2}\right), \ldots, v_{m}\left(i_{1}\right)-v_{m}\left(i_{2}\right),\right. \\
& \left.\quad v_{1}\left(g\left(i_{1}\right)\right)-v_{1}\left(g\left(i_{2}\right)\right), \ldots, v_{m}\left(g\left(i_{1}\right)\right)-v_{m}\left(g\left(i_{2}\right)\right)\right)
\end{aligned}
$$

We need to show that all of these vectors are distinct:

$$
\begin{aligned}
& \left(V\left(i_{1}\right)-V\left(i_{2}\right), V\left(g\left(i_{1}\right)\right)-V\left(g\left(i_{2}\right)\right)\right)= \\
& \quad=\left(V\left(i_{3}\right)-V\left(i_{4}\right), V\left(g\left(i_{3}\right)\right)-V\left(g\left(i_{4}\right)\right)\right) \Rightarrow i_{1}=i_{2}, i_{3}=i_{4}
\end{aligned}
$$

Extend V^{-1} by $V^{-1}\left(v_{1}, \ldots, v_{m}\right)=\sum_{j=1}^{m} v_{j} \prod_{l=j+1}^{m} n_{l}$ on the class of vectors where $\left|v_{j}\right|<n_{j}, j \in[m]$. It follows that $V^{-1}\left(V\left(i_{1}\right)-V\left(i_{2}\right)\right)=i_{1}-i_{2}$, as $V\left(i_{1}\right)-V\left(i_{2}\right)$ falls within this class of vectors. Then:

$$
\begin{gathered}
\left(V\left(i_{1}\right)-V\left(i_{2}\right), V\left(g\left(i_{1}\right)\right)-V\left(g\left(i_{2}\right)\right)\right)= \\
=\left(V\left(i_{3}\right)-V\left(i_{4}\right), V\left(g\left(i_{3}\right)\right)-V\left(g\left(i_{4}\right)\right)\right) \Rightarrow \\
V^{-1}\left(V\left(i_{1}\right)-V\left(i_{2}\right), V\left(g\left(i_{1}\right)\right)-V\left(g\left(i_{2}\right)\right)\right)= \\
=V^{-1}\left(V\left(i_{3}\right)-V\left(i_{4}\right), V\left(g\left(i_{3}\right)\right)-V\left(g\left(i_{4}\right)\right)\right) \Leftrightarrow \\
\left(V^{-1}\left(V\left(i_{1}\right)-V\left(i_{2}\right)\right), V^{-1}\left(V\left(g\left(i_{1}\right)\right)-V\left(g\left(i_{2}\right)\right)\right)\right)= \\
=\left(V^{-1}\left(V\left(i_{3}\right)-V\left(i_{4}\right)\right), V^{-1}\left(V\left(g\left(i_{3}\right)\right)-V\left(g\left(i_{4}\right)\right)\right)\right) \Leftrightarrow \\
\left(i_{1}-i_{2}, g\left(i_{1}\right)-g\left(i_{2}\right)\right)=\left(i_{3}-i_{4}, g\left(i_{3}\right)-g\left(i_{4}\right)\right) \Leftrightarrow \\
i_{1}-i_{2}=i_{3}-i_{4}, g\left(i_{1}\right)-g\left(i_{2}\right)=g\left(i_{3}\right)-g\left(i_{4}\right) \Rightarrow \\
i_{1}=i_{3}, i_{2}=i_{4}
\end{gathered}
$$

In the last step we used the fact that g is Costas; the construction is clearly a permutation.

Odd dimensions

Heuristic

Let $\sqrt{n} \in \mathbb{N}$, and let $g:[n]^{m} \times[\sqrt{n}]-1 \rightarrow[n]^{m} \times[\sqrt{n}]-1$ be a Costas permutation of order $n^{m} \sqrt{n}$. Expand
$i=v_{0}(i) n^{m}+\sum_{j=1}^{m} v_{j}(i) n^{m-j} \Leftrightarrow i \leftrightarrow V(i)=\left(v_{0}(i), v_{1}(i), \ldots, v_{m}(i)\right)$,
where $v_{j} \in[n]-1, j \in[m]$ and $v_{0} \in[\sqrt{n}]-1$;
$g(i) \leftrightarrow V(g(i))=\left(v_{0}(g(i)), v_{1}(g(i)), \ldots, v_{m}(g(i))\right)$. This process forms a Costas hyper-rectangle in $2 m+2$ dimensions, whose side length in $2 m$ dimensions is n and in the remaining 2 dimensions \sqrt{n}. Set $\left(v_{0}(i), v_{0}(g(i))\right) \longrightarrow \sqrt{n} v_{0}(g(i))+v_{0}(i), i \in\left[n^{m} \sqrt{n}\right]-1$, which takes values in the range $[n]-1$. Then, the hypercube of side length n whose dots ($n^{m} \sqrt{n}$ in total) lie at the points
$\left(\sqrt{n} v_{0}(g(i))+v_{0}(i), v_{1}(i), \ldots, v_{m}(i), v_{1}(g(i)), \ldots, v_{m}(g(i))\right)$, $i \in\left[n^{m} \sqrt{n}\right]-1$ may be a Costas hypercube.

Example: $25 \rightarrow 5^{4}$

0	10
1	7
2	6
3	9
4	17
5	23
6	21
7	2
8	20
9	11
10	15
11	3
12	12
13	22
14	1
15	16
16	18
17	19
18	5
19	0
20	13
21	24
22	14
23	8
24	4

0	0	0	2
1	0	2	1
2	0	1	1
3	0	4	1
4	0	2	3
0	1	3	4
1	1	1	4
2	1	2	0
3	1	0	4
4	1	1	2
0	2	0	3
1	2	3	0
2	2	2	2
3	2	2	4
4	2	1	0
0	3	1	3
1	3	3	3
2	3	4	3
3	3	0	1
4	3	0	0
0	4	3	2
1	4	4	4
2	4	4	2
3	4	3	1
4	4	4	0

4
三
Konstantinos Drakakis

Example: $27 \rightarrow 9 \times 3 \times 3 \times 9 \rightarrow 9^{3}$

0	0	0	0	0	0	0	0	0
1	2	1	0	0	2	1	0	2
2	18	2	0	2	0	2	6	0
3	11	3	0	1	2	3	3	2
4	22	4	0	2	4	4	6	4
5	4	5	0	0	4	5	0	4
6	24	6	0	2	6	6	6	6
7	19	7	0	2	1	7	6	1
8	9	8	0	1	0	8	3	0
9	15	0	1	1	6	0	4	6
10	12	1	1	1	3	1	4	3
11	26	2	1	2	8	2	7	8
12	10	3	1	1	1	3	4	1
13	14	4	1	1	5	4	4	5
14	1	5	1	0	1	5	1	1
15	8	6	1	0	8	6	1	8
16	13	7	1	1	4	7	4	4
17	7	8	1	0	7	8	1	7
18	20	0	2	2	2	0	8	2
19	21	1	2	2	3	1	8	3
20	17	2	2	1	8	2	5	8
21	16	3	2	1	7	3	5	7
22	25	4	2	2	7	4	8	7
23	5	5	2	0	5	5	2	5
24	3	6	2	0	3	6	2	3
25	6	7	2	0	6	7	2	6
26	23	8	2	2	5	8	8	5

The extended Welch construction

Theorem

Let p be a prime, $m \in \mathbb{N}^{*}, \alpha$ a primitive root of $\mathbb{F}(q)$ where $q=p^{m}$, and $c \in[q-1]-1$. Then:

- The function $f:[q-1] \rightarrow \mathbb{F}^{*}(q)$, where $f(i)=\alpha^{i-1+c} \bmod P(x), i \in[q-1], P(x)$ an irreducible polynomial over $\mathbb{F}(p)$ of degree m, is a permutation over $\mathbb{F}^{*}(q)$.
- The hyper-rectangle in $m+1$ dimensions with side length $q-1$ in the first dimension and p in the others, whose dots lie at $\{(i, f(i)) \mid i \in[q-1]\}$, has the Costas property.
- The hypercube in $2 m$ dimensions with side length p, whose dots lie at $\{(V(i), f(i)) \mid i \in[q-1]\}$, has the Costas property; V denotes the base pexpansion.

Example: $\alpha=x, c=1, P(x)=x^{3}+2 x+1$ in $\mathbb{F}(27)$

1	0	1	0	0	0	1	0	1	0	1	3
2	1	0	0	0	0	2	1	0	0	2	1
3	0	1	2	0	1	0	0	1	2	3	21
4	1	2	0	0	1	1	1	2	0	4	7
5	2	1	2	0	1	2	2	1	2	5	23
6	1	1	1	0	2	0	1	1	1	6	13
7	1	2	2	0	2	1	1	2	2	7	25
8	2	0	2	0	2	2	2	0	2	8	20
9	0	1	1	1	0	0	0	1	1	9	12
10	1	1	0	1	0	1	1	1	0	10	4
11	1	1	2	1	0	2	1	1	2	11	22
12	1	0	2	1	1	0	1	0	2	12	19
13	0	0	2	1	1	1	0	0	2	13	18
14	0	2	0	1	1	2	0	2	0	14	6
15	2	0	0	1	2	0	2	0	0	15	2
16	0	2	1	1	2	1	0	2	1	16	15
17	2	1	0	1	2	2	2	1	0	17	5
18	1	2	1	2	0	0	1	2	1	18	16
19	2	2	2	2	0	1	2	2	2	19	26
20	2	1	1	2	0	2	2	1	1	20	14
21	1	0	1	2	1	0	1	0	1	21	10
22	0	2	2	2	1	1	0	2	2	22	24
23	2	2	0	2	1	2	2	2	0	23	8
24	2	2	1	2	2	0	2	2	1	24	17
25	2	0	1	2	2	1	2	0	1	25	11
26	0	0	1	2	2	2	0	0	1	26	9

Konstantinos Drakakis
R. Krakakis. "On the generalization of the Costas property in higher dimensions." Advances in Mathematics of Communications [0.97], Volume 4, Issue 1, 2010, pp. 1-22.

R K. Drakakis, R. Gow, S. Rickard, J. Sheekey, and K. Taylor. "On the maximal cross-correlation of algebraically constructed Costas arrays." (to appear in) IEEE Transactions on Information Theory.

