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Part 1: Cross-correlation
[Drakakis et al. (2011?)]
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Cross-correlation results

We obtained these values for max
A
∗
6=B

max
(u,v)

ΨA,B(u, v) when A,B are

both either W1 or G2 Costas arrays:
Prime W1 G2 Prime W1 G2 Prime W1 G2

5 2 2 59 5 12 127 42 41
7 2 2 61 30 29 131 26 25

11 3 4 67 22 21 136 68 67
13 6 5 71 14 13 139 46 45
17 8 7 73 36 35 149 74 73
19 6 6 79 26 25 151 50 49
23 4 6 83 5 9 157 78 77
29 14 13 89 44 43 163 54 53
31 10 9 97 48 47 167 6 12
37 18 17 101 50 49 173 86 85
41 20 19 103 34 33 179 6 12
43 14 13 107 5 10 181 90 89
47 5 8 109 54 53 191 38 37
53 26 25 113 56 55 193 96 95
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Cross-correlation results – in color

Prime W1 G2 Prime W1 G2 Prime W1 G2

5 2 2 59 5 12 127 42 41
7 2 2 61 30 29 131 26 25

11 3 4 67 22 21 136 68 67
13 6 5 71 14 13 139 46 45
17 8 7 73 36 35 149 74 73
19 6 6 79 26 25 151 50 49
23 4 6 83 5 9 157 78 77
29 14 13 89 44 43 163 54 53
31 10 9 97 48 47 167 6 12
37 18 17 101 50 49 173 86 85
41 20 19 103 34 33 179 6 12
43 14 13 107 5 10 181 90 89
47 5 8 109 54 53 191 38 37
53 26 25 113 56 55 193 96 95
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A plausible conjecture

Conjecture

Let A,B be either both W1 Costas arrays (not related by a shift) or
both G2 Costas arrays built in F(p), where p 6= 19 is a prime such

that
p− 1

2
is not a prime (i.e. p is not a safe prime); then,

max
(u,v)

max
A6=B

ΨA,B(u, v) = max
A 6=B

ΨA,B(0, 0)
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The central theorems

Theorem
Let A,B be distinct exponential W1 Costas arrays built in F(p) not
related by a shift; then,

max
A6=B

ΨA,B(0, 0) =
p− 1

r

where r is the smallest prime such that p ≡ 1 mod (2r).

Theorem (almost!)

Let A′,B′ be distinct G2 Costas arrays built in F(p), sharing a
common primitive root; then,

max
A′ 6=B′

ΨA′,B′(0, 0) =
p− 1

r
− 1,

where r is the smallest prime such that p ≡ 1 mod (2r).
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Proof sketch

Let A,B be exponential W1 Costas arrays generated by α
and αz, α ∈ F(p) a primitive root, (z, p− 1) = 1, and by
constants c and d, respectively. We need the number of
solutions of:

αi−1+c ≡ αz(i−1+d) mod p⇔ (z−1)(i−1+d) ≡ c−d mod (p−1)

The number of roots is independent of the exact value of
c− d: it is (z− 1, p− 1) if z− 1|c− d and 0 otherwise.
It suffices to consider the number of roots of
(z− 1)x ≡ 0 mod (p− 1), which is necessarily a divisor of
p− 1.
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The maximum number of solutions possible is
p− 1

2
: we

need (z− 1, p− 1) =
p− 1

2
⇔ z =

p + 1
2

, assuming it is
admissible:

(z, p− 1) = 1 =

(
p + 1

2
, p− 1

)
=

(
p + 1

2
, 2
)

, since 2|p− 1,

hence we need 2 -
p + 1

2
⇔ p ≡ 1 mod 4.
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Henceforth, assume p ≡ 3 mod 4, and let w be a prime
such that p ≡ 1 mod (2w).

It can be easily shown that z = λ
p− 1

w
+ 1, λ ∈ [w− 1], is

always admissible for λ = 1 or 2:
Let p = 1 + wk:(λ(p− 1)/w + 1, p− 1) = (λk + 1,wk); unless
w|λk + 1, this equals (λk + 1, k) = (1, k) = 1.
Assuming w|k + 1 and w|2k + 1, then w|k, so w|1, a
contradiction; so, either λ = 1 or λ = 2 is enough.
When is λ = 2 needed? When w|k + 1, k = lw− 1 for some l,
so that
p = 1 + (lw− 1)w = lw2 − w + 1↔ p ≡ w2 − w + 1 mod w2.

Hence, for any prime w > 2 there exists a z such that the

congruence (z− 1)x ≡ 0 mod (p− 1) has
p− 1

w
roots:

clearly, this is maximum for w = r.
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Let A,B be G2 Costas arrays built in F(p), generated by
α, β, and αr, βs, respectively, where
(r, p− 1) = (s, p− 1) = 1.
We need the number of solutions (i, j) of

αi+βj = 1, αri+βsj = 1, i, j = 1, . . . , p−2⇔ (1−x)r+xs = 1,

where x = βj 6= 1.
Assuming s = 1, (1− x)r−1 = 1⇔ (r− 1)y = 0 mod (p− 1),
where 1− x = αy. This is the same equation as before,
except that x 6= 0⇔ y 6= 0, so y = 0 is rejected.
Note that a conjecture has been made: the largest number
of roots occurs for s = 1. This remains open.
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Prime power G2

4 1
8 3
9 3

16 5
25 11
27 6
32 6
49 23
64 20
81 39
121 59
125 61
128 9
169 83
243 21
256 84
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Extension to prime powers for G2 Costas arrays

The results and conjectures for G2 Costas arrays above extend
verbatim to extension fields, with some caveats:

For odd powers, the notion of a safe prime power needs to
be introduced (e.g. 27 = 1 + 2 · 13).
16 is an exception analogous to 19.
Even powers q lead to a new phenomenon: q− 1 may be a
Mersenne prime.
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Polynomials

Consider the polynomials Pr,s(x) = (1− x)r + xs − 1 in F(q),
such that (r, q− 1) = (s, q− 1) = 1, and let Zr,s denote the
number of roots of Pr,s.

Conjecture: maxr,s Zr,s = maxr Zr,1.
Fact: Zr,r ≤ (q + 1)/2 (to be proved later).
Pr,r := Pr is very interesting algebraically.
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An algebraically interesting case

For p > 2, the set of roots of the polynomial
Pr(x) := Pr,r(x) = (1− x)r + xr − 1 remains invariant under two
transforms:

If x is a root, S(x) = 1− x is also a root.
If x 6= 0 is a root, R(x) = 1/x is also a root (note r odd).

R and S generate a group of 6 elements (observe that
R2 = S2 = I):

Ix = x, Sx = 1− x, Rx = 1/x, SRx = (x− 1)/x,
RSx = 1/(1− x),RSRx = x/(x− 1).

The orbit of x consists of 6 elements except for:

O1 = {0, 1}, O2 = {1/2, 2,−1}, and Ou = {u, 1/u}

such that u2 − u + 1 = 0.
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For p=2, Pr(x) = (1 + x)r + xr + 1, and its set of roots remains
invariant under S(x) = 1 + x and R(x) = 1/x. The orbit of x is

Ix = x, Sx = 1 + x, Rx = 1/x, SRx = (x + 1)/x,
RSx = 1/(1 + x),RSRx = x/(x + 1),

and consists of 6 elements except for:

O1 = {0, 1} and Ou = {u, 1/u}

such that u2 + u + 1 = 0.
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Two related notes

Assuming r = pm,

Pr(x) = (1− x)pm + xpm − 1 = [(1− x)m + xm − 1]p :

Root multiplicities of Pr are p times root multiplicities of
Pm.
For all p, unless p|r, 0 and 1 are single roots.
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More on u

Theorem
For p > 2, assuming 6|q− 1 and that p 6 |r, u is a single root, double
root, or no root of Pr, according to whether 6|r + 1, 6|r− 1, or
otherwise (equivalently, r ≡ 5, 1, or 3 mod 6), respectively. If, in
addition, p|r− 1, the former double root case leads now to higher
multiplicity.

Note: in finite fields, derivatives of non-constant
polynomials can be identically 0!!!
Note first that
u2 − u + 1 = 0⇔ u + 1/u = 1⇒ u3 = −1⇒ u6 = 1.
Since uq−1 = 1, it follows that, if u is a root of Pr, 6|q− 1.
u is a root of Pr iff (1− u)r + ur = 1, hence
0 = (−u2)r + ur − 1 = −(ur)2 + ur − 1, whence both ur and
u are roots of x2 − x + 1.
Either then ur = u⇔ ur−1 = 1 or ur = 1/u⇔ ur+1 = 1;
equivalently, either 6|r− 1 or 6|r + 1.
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P′r(x) = r[xr−1 − (1− x)r−1]⇒ P′r(u) = 0 iff either p|r or
ur−1 = (1− u)r−1.
u is then (at least) a double root of Pr iff (1− u)r + ur = 1,
ur−1 = (1− u)r−1, which is equivalent to
(1− u)r−1 = ur−1 = 1; as u6 = 1 too, 6|r− 1 and hence
6|(r− 1, q− 1) (but remember that (r, q− 1) = 1 as well).
u is (at least) a triple root iff, additionally,
P′′r (u) = r(r− 1)[(1− u)r−2 + ur−2] =
r(r− 1)[(1− u)−1 + u−1] = r(r− 1)[u + u−1] = r(r− 1) = 0
as well. This occurs iff either p|r (uninteresting) or p|r− 1.
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Theorem
For p = 2, assuming 3|q− 1 and that 2 6 |r (r odd), u is a single root,
at least a triple root, or no root of Pr, according to whether 3|r + 1,
3|r− 1, or otherwise (equivalently, r ≡ 2, 1, or 0 mod 3),
respectively.

Note first that u2 + u + 1 = 0⇔ u + 1/u = 1⇒ u3 = 1.
Since uq−1 = 1, it follows that, if u is a root of Pr, 3|q− 1.
u is a root of Pr iff (1 + u)r + ur = 1, hence
0 = (u2)r + ur + 1 = (ur)2 + ur + 1, whence both ur and u
are roots of x2 + x + 1.
Either then ur = u⇔ ur−1 = 1 or ur = 1/u⇔ ur+1 = 1;
equivalently, either 3|r− 1 or 3|r + 1.
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P′r(x) = r[xr−1 + (1 + x)r−1]⇒ P′r(u) = 0 iff either 2|r
(rejected) or ur−1 = (1 + u)r−1.
u is then (at least) a double root of Pr iff (1 + u)r + ur = 1,
ur−1 = (1 + u)r−1, which is equivalent to
(1− u)r−1 = ur−1 = 1; as u3 = 1 too, 3|r− 1 and hence
3|(r− 1, q− 1).
u is (at least) a triple root iff, additionally,
P′′r (u) = r(r− 1)[(1− u)r−2 + ur−2] =
r(r− 1)[(1− u)−1 + u−1] = r(r− 1)[u + u−1] = r(r− 1) = 0
as well. As 2|r− 1, this always occurs.
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Zr,r ≤ (q + 1)/2: a proof (by J. Sheekey)

Let Pr,r(x) = Pr,r(y) = 0: then
x
y

is a root iff
1− x
1− y

is a root

(assume x, y 6= 0, 1). This is because

(1−x)r +xr = 1 = (1−y)r +yr ⇒ xr−yr = (1−y)r− (1−x)r

so that(
x
y

)r

+

(
1− x

y

)r

= 1⇔ xr + (y− x)r = yr ⇔

xr − yr = (x− y)r = (1− y)r − (1− x)r ⇔(
1− x
1− y

)r

+

(
1− 1− x

1− y

)r

= 1.
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As x−1 and y−1 are also roots,
x−1

y−1 =
y
x

is a root iff

1− x−1

1− y−1 =
y
x

1− x
1− y

is a root.

y
x

is a root iff
x
y

is a root.

To sum up,

Pr,r

(
x
y

)
= 0⇔ Pr,r

(y
x

)
= 0⇔

Pr,r

(
1− x
1− y

)
= 0⇔ Pr,r

(
y
x

1− x
1− y

)
= 0
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Let R be the set of nonzero roots of Pr,r, c be such that Pr,r(c) 6= 0
(such a c definitely exists, as the degree of Pr,r is at most r < q).
Considering the sets R and c−1R, there are two possibilities:

If R ∩ c−1R = ∅, then

|R ∪ c−1R| = 2|R| ≤ q− 1⇔ |R| ≤ q− 1
2

.

If R ∩ c−1R 6= ∅, then if x ∈ R ∩ c−1R, i.e. if x and y = cx are

roots, then
y
x

= c is not a root, hence neither are c
1− x
1− cx

and
1− x
1− cx

:
1− x
1− cx

does not lie in R ∪ c−1R. However,

x→ 1− x
1− cx

, x ∈ R ∩ c−1R is bijective. Denoting its range by

U, (R ∪ c−1R) ∩U = ∅, namely
|(R ∪ c−1R) ∪U| = |R ∪ c−1R|+ |U| =
|R ∪ c−1R|+ |R ∩ c−1R| = |R|+ |c−1R| = 2|R| ≤ q− 1,

whence |R| ≤ q− 1
2

.
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Part 2: Generalizations
[Drakakis (2010)]
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Motivation

Isotropic RADAR: a Costas array leads to the optimal
detection of the radial velocity and the distance of the
target.
No directionality: this RADAR is spherically blind.
Instead, it can be directional and rotate or. . .
a RADAR array can be used!
Linear array: Target Position Ambiguity Surface (TPAS) is
a circle.
Square array: TPAS is 2 points (front or back).
Cubic array: TPAS is a point (no ambiguity).

This needs a 5D Costas “array”!
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Costas property in higher dimensions

Definition
Let m ∈ N, consider a sequence f : Zm → {0, 1}, and suppose further
that f (i) = 0, i /∈ [N],N ∈ Nm, where i = (i1, . . . , im),
N = (N1, . . . ,Nm), [N] = [N1]× . . .× [Nm], and the vector N has
the smallest possible entries (for the given sequence f ). Let the
autocorrelation of f be

Af (k) =
∑
i∈Zm

f (i)f (i + k), k ∈ Zm.

Then, f will be a Costas hyper-rectangle iff

∀k ∈ Zm − {0}, Af (k) ≤ 1.
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What about permutations?

In even dimensions, a satisfactory generalization of a
permutation can be found:

Definition
Let m = 2s, s ∈ N, and let g : [n]s → [n]s be a bijection, that is a
permutation on vectors in general. Let f : Zm → {0, 1} be a sequence
such that f (i) = 1 iff
(is+1, . . . , i2s) = g(i1, . . . , is), (i1, . . . , is) ∈ [n]s, and such that it has
the Costas property; then, f will be called a permutation Costas
hypercube in m dimensions with side length n.

In odd dimensions, no such result is available: we can “cut the
dimension in half”, if the side length is a square (see below).
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Example of a Costas hypercube

m = 4 dimensions, n = 3 side length:
1 1 2 1
1 2 2 3
1 3 3 1
2 1 2 3
2 2 1 2
2 3 1 3
3 1 3 2
3 2 3 1
3 3 1 2

Each vector with 2 coordinates taking values 1,2,3 (9 of them in
total) appears exactly once on each side; the Costas property
holds.
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Reshaping: the main construction method

Theorem

Let m,n ∈ N∗, n =

m∏
i=1

ni, ni > 1, i ∈ [m], and let

g : [n]− 1→ [n]− 1 be a Costas permutation of order n. Expand

i =

m∑
j=1

vj(i)
m∏

l=j+1

nl, so that i gets mapped bijectively to

V(i) = (v1(i), . . . , vm(i)), where vj ∈ [nj]− 1, j ∈ [m]; similarly, g(i)
gets mapped bijectively to V(g(i)) = (v1(g(i)), . . . , vm(g(i))). Then,
the hyper-rectangle of side length ni in dimension i and i + m,
i ∈ [m], whose dots (n in total) lie at the points
(V(i),V(g(i))) := (v1(i), . . . , vm(i), v1(g(i)), . . . , vm(g(i))),
i ∈ [n]− 1, is actually a permutation Costas hyper-rectangle.
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Proof

Choose 2 values for i, say i1 and i2; the corresponding distance
vector is:

(V(i1)− V(i2),V(g(i1))− V(g(i2))) =

= (v1(i1)− v1(i2), . . . , vm(i1)− vm(i2),

v1(g(i1))− v1(g(i2)), . . . , vm(g(i1))− vm(g(i2)))

We need to show that all of these vectors are distinct:

(V(i1)− V(i2),V(g(i1))− V(g(i2))) =

= (V(i3)− V(i4),V(g(i3))− V(g(i4)))⇒ i1 = i2, i3 = i4.

Extend V−1 by V−1(v1, . . . , vm) =

m∑
j=1

vj

m∏
l=j+1

nl on the class of

vectors where |vj| < nj, j ∈ [m]. It follows that
V−1(V(i1)− V(i2)) = i1 − i2, as V(i1)− V(i2) falls within this
class of vectors. Then:
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(V(i1)− V(i2),V(g(i1))− V(g(i2))) =

= (V(i3)− V(i4),V(g(i3))− V(g(i4)))⇒

V−1(V(i1)− V(i2),V(g(i1))− V(g(i2))) =

= V−1(V(i3)− V(i4),V(g(i3))− V(g(i4)))⇔
(V−1(V(i1)− V(i2)),V−1(V(g(i1))− V(g(i2)))) =

= (V−1(V(i3)− V(i4)),V−1(V(g(i3))− V(g(i4))))⇔
(i1 − i2, g(i1)− g(i2)) = (i3 − i4, g(i3)− g(i4))⇔
i1 − i2 = i3 − i4, g(i1)− g(i2) = g(i3)− g(i4)⇒

i1 = i3, i2 = i4

In the last step we used the fact that g is Costas; the
construction is clearly a permutation.
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Odd dimensions

Heuristic

Let
√

n ∈ N, and let g : [n]m × [
√

n]− 1→ [n]m × [
√

n]− 1 be a
Costas permutation of order nm√n. Expand

i = v0(i)nm +

m∑
j=1

vj(i)nm−j ⇔ i↔ V(i) = (v0(i), v1(i), . . . , vm(i)),

where vj ∈ [n]− 1, j ∈ [m] and v0 ∈ [
√

n]− 1;
g(i)↔ V(g(i)) = (v0(g(i)), v1(g(i)), . . . , vm(g(i))). This process
forms a Costas hyper-rectangle in 2m + 2 dimensions, whose side
length in 2m dimensions is n and in the remaining 2 dimensions

√
n.

Set (v0(i), v0(g(i))) −→
√

nv0(g(i)) + v0(i), i ∈ [nm√n]− 1, which
takes values in the range [n]− 1. Then, the hypercube of side length n
whose dots (nm√n in total) lie at the points
(
√

nv0(g(i)) + v0(i), v1(i), . . . , vm(i), v1(g(i)), . . . , vm(g(i))),
i ∈ [nm√n]− 1 may be a Costas hypercube.
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Example: 25→ 54

0 10
1 7
2 6
3 9
4 17
5 23
6 21
7 2
8 20
9 11
10 15
11 3
12 12
13 22
14 1
15 16
16 18
17 19
18 5
19 0
20 13
21 24
22 14
23 8
24 4

0 0 0 2
1 0 2 1
2 0 1 1
3 0 4 1
4 0 2 3
0 1 3 4
1 1 1 4
2 1 2 0
3 1 0 4
4 1 1 2
0 2 0 3
1 2 3 0
2 2 2 2
3 2 2 4
4 2 1 0
0 3 1 3
1 3 3 3
2 3 4 3
3 3 0 1
4 3 0 0
0 4 3 2
1 4 4 4
2 4 4 2
3 4 3 1
4 4 4 0
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Example: 27→ 9× 3× 3× 9→ 93

0 0
1 2
2 18
3 11
4 22
5 4
6 24
7 19
8 9
9 15
10 12
11 26
12 10
13 14
14 1
15 8
16 13
17 7
18 20
19 21
20 17
21 16
22 25
23 5
24 3
25 6
26 23

0 0 0 0
1 0 0 2
2 0 2 0
3 0 1 2
4 0 2 4
5 0 0 4
6 0 2 6
7 0 2 1
8 0 1 0
0 1 1 6
1 1 1 3
2 1 2 8
3 1 1 1
4 1 1 5
5 1 0 1
6 1 0 8
7 1 1 4
8 1 0 7
0 2 2 2
1 2 2 3
2 2 1 8
3 2 1 7
4 2 2 7
5 2 0 5
6 2 0 3
7 2 0 6
8 2 2 5

0 0 0
1 0 2
2 6 0
3 3 2
4 6 4
5 0 4
6 6 6
7 6 1
8 3 0
0 4 6
1 4 3
2 7 8
3 4 1
4 4 5
5 1 1
6 1 8
7 4 4
8 1 7
0 8 2
1 8 3
2 5 8
3 5 7
4 8 7
5 2 5
6 2 3
7 2 6
8 8 5
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The extended Welch construction

Theorem
Let p be a prime, m ∈ N∗, α a primitive root of F(q) where q = pm,
and c ∈ [q− 1]− 1. Then:

The function f : [q− 1]→ F∗(q), where
f (i) = αi−1+c mod P(x), i ∈ [q− 1], P(x) an irreducible
polynomial over F(p) of degree m, is a permutation over F∗(q).
The hyper-rectangle in m + 1 dimensions with side length q− 1
in the first dimension and p in the others, whose dots lie at
{(i, f (i))|i ∈ [q− 1]}, has the Costas property.
The hypercube in 2m dimensions with side length p, whose dots
lie at {(V(i), f (i))|i ∈ [q− 1]}, has the Costas property; V
denotes the base p expansion.
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Example: α = x, c = 1, P(x) = x3 + 2x + 1 in F(27)

1 0 1 0
2 1 0 0
3 0 1 2
4 1 2 0
5 2 1 2
6 1 1 1
7 1 2 2
8 2 0 2
9 0 1 1
10 1 1 0
11 1 1 2
12 1 0 2
13 0 0 2
14 0 2 0
15 2 0 0
16 0 2 1
17 2 1 0
18 1 2 1
19 2 2 2
20 2 1 1
21 1 0 1
22 0 2 2
23 2 2 0
24 2 2 1
25 2 0 1
26 0 0 1

0 0 1 0 1 0
0 0 2 1 0 0
0 1 0 0 1 2
0 1 1 1 2 0
0 1 2 2 1 2
0 2 0 1 1 1
0 2 1 1 2 2
0 2 2 2 0 2
1 0 0 0 1 1
1 0 1 1 1 0
1 0 2 1 1 2
1 1 0 1 0 2
1 1 1 0 0 2
1 1 2 0 2 0
1 2 0 2 0 0
1 2 1 0 2 1
1 2 2 2 1 0
2 0 0 1 2 1
2 0 1 2 2 2
2 0 2 2 1 1
2 1 0 1 0 1
2 1 1 0 2 2
2 1 2 2 2 0
2 2 0 2 2 1
2 2 1 2 0 1
2 2 2 0 0 1

1 3
2 1
3 21
4 7
5 23
6 13
7 25
8 20
9 12
10 4
11 22
12 19
13 18
14 6
15 2
16 15
17 5
18 16
19 26
20 14
21 10
22 24
23 8
24 17
25 11
26 9
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