Decoding Space-Time Codes by absorbing the channel

Jean-Claude Belfiore

Telecom ParisTech
Joint work with Laura Luzzi and Ghaya Rekaya

TELECOM Paristech

Table of Contents

(1) MIMO Coding and Decoding

Diversity and Pairwise Error Probability
(2) The Golden Code structure

Introduction
The division algebra (quaternion algebra)
The order
The group of units
(3) Absorption of the Channel

Case of perfect approximation
The multiplicative error matrix
(4) Hyperbolic Space

Action of $S L_{2}(\mathbb{C})$
The fundamental domain
The generators
(5) Reduction

The algorithm
ZF detection performance

Outline

(1) MIMO Coding and Decoding

Diversity and Pairwise Error Probability
(2) The Golden Code structure

The division algebra (quaternion algebra)
The order
The group of units
(3) Absorption of the Channel

Case of perfect approximation
The multiplicative error matrix
(4) Hyperbolic Space

Action of $S L_{2}(\mathbb{C})$
The fundamental domain
(5) Reduction

The algorithm
ZF detection performance

The quasi static fading channel

MIMO System

Channel Matrix

Figure: The Channel Model

The quasi static fading channel

MIMO System

Channel Matrix

Figure: The Channel Model

- Received signal

$$
\begin{equation*}
\boldsymbol{Y}_{n_{r} \times T}=\boldsymbol{H}_{n_{r} \times n_{t}} \cdot \boldsymbol{X}_{n_{t} \times T}+\boldsymbol{W}_{n_{r} \times T} \tag{1}
\end{equation*}
$$

with \boldsymbol{H} perfectly known at the receiver. All matrices have entries in \mathbb{C}. \boldsymbol{W} is the noise matrix with i.i.d. Gaussian entries.

- \boldsymbol{H} is assumed constant during the transmission of one codeword.

Optimal decoding rule

Find

$$
\hat{\boldsymbol{X}}=\operatorname{argmin}\|\boldsymbol{Y}-\boldsymbol{H} \cdot \boldsymbol{X}\|_{F}^{2}
$$

where

$$
\|\boldsymbol{A}\|_{F}^{2}=\sum_{i, j}\left|a_{i j}\right|^{2}=\operatorname{Tr}\left(\boldsymbol{A} \cdot \boldsymbol{A}^{\dagger}\right)
$$

- Decoding is, in general, a computationally hard problem.

Pairwise Error Probability (I)

$\mathbf{c}=\left[\begin{array}{lllll}c_{1}^{1} & c_{2}^{1} & \cdots & \cdots & c_{T}^{1} \\ c_{1}^{2} & c_{2}^{2} & \cdots & \cdots & c_{T}^{2} \\ c_{1}^{3} & c_{2}^{3} & \ddots & \vdots & c_{T}^{3} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ c_{1}^{n_{t}} & c_{2}^{n_{t}} & \cdots & \cdots & c_{T}^{n_{t}}\end{array}\right]$ and $\mathbf{e}=\left[\begin{array}{lllll}e_{1}^{1} & e_{2}^{1} & \cdots & \cdots & e_{T}^{1} \\ e_{1}^{2} & e_{2}^{2} & \cdots & \cdots & e_{T}^{2} \\ e_{1}^{3} & e_{2}^{3} & \ddots & \vdots & e_{T}^{3} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ e_{1}^{n_{t}} & e_{2}^{n_{t}} & \cdots & \cdots & e_{T}^{n_{t}}\end{array}\right]$ are re-
spectively two distinct codewords $\left(T \geq n_{t}\right)$
$\boldsymbol{B}(\mathbf{c}, \mathbf{e})=\mathbf{c}-\mathbf{e}$

Pairwise Error Probability (I)

$\mathbf{c}=\left[\begin{array}{lllll}c_{1}^{1} & c_{2}^{1} & \cdots & \cdots & c_{T}^{1} \\ c_{1}^{2} & c_{2}^{2} & \cdots & \cdots & c_{T}^{2} \\ c_{1}^{3} & c_{2}^{3} & \ddots & \vdots & c_{T}^{3} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ c_{1}^{n_{t}} & c_{2}^{n_{t}} & \cdots & \cdots & c_{T}^{n_{t}}\end{array}\right]$ and $\mathbf{e}=\left[\begin{array}{lllll}e_{1}^{1} & e_{2}^{1} & \cdots & \cdots & e_{T}^{1} \\ e_{1}^{2} & e_{2}^{2} & \cdots & \cdots & e_{T}^{2} \\ e_{1}^{3} & e_{2}^{3} & \ddots & \vdots & e_{T}^{3} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ e_{1}^{n_{t}} & e_{2}^{n_{t}} & \cdots & \cdots & e_{T}^{n_{t}}\end{array}\right]$ are re-
spectively two distinct codewords ($T \geq n_{t}$)

$$
\boldsymbol{B}(\mathbf{c}, \mathbf{e})=\mathbf{c}-\mathbf{e}
$$

$$
A(\mathbf{c}, \mathbf{e})=\boldsymbol{B}(\mathbf{c}, \mathbf{e})^{\dagger} \cdot \boldsymbol{B}(\mathbf{c}, \mathbf{e})
$$

Pairwise Error Probability (I)

$\mathbf{c}=\left[\begin{array}{lllll}c_{1}^{1} & c_{2}^{1} & \cdots & \cdots & c_{T}^{1} \\ c_{1}^{2} & c_{2}^{2} & \cdots & \cdots & c_{T}^{2} \\ c_{1}^{3} & c_{2}^{3} & \ddots & \vdots & c_{T}^{3} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ c_{1}^{n_{t}} & c_{2}^{n_{t}} & \cdots & \cdots & c_{T}^{n_{t}}\end{array}\right]$ and $\mathbf{e}=\left[\begin{array}{lllll}e_{1}^{1} & e_{2}^{1} & \cdots & \cdots & e_{T}^{1} \\ e_{1}^{2} & e_{2}^{2} & \cdots & \cdots & e_{T}^{2} \\ e_{1}^{3} & e_{2}^{3} & \ddots & \vdots & e_{T}^{3} \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ e_{1}^{n_{t}} & e_{2}^{n_{t}} & \cdots & \cdots & e_{T}^{n_{t}}\end{array}\right]$ are re-
spectively two distinct codewords ($T \geq n_{t}$)

$$
\boldsymbol{B}(\mathbf{c}, \mathbf{e})=\mathbf{c}-\mathbf{e}
$$

$$
A(\mathbf{c}, \mathbf{e})=B(\mathbf{c}, \mathbf{e})^{\dagger} \cdot \boldsymbol{B}(\mathbf{c}, \mathbf{e})
$$

Error probability

Union Bound gives

$$
P_{e} \leq \sum_{\mathbf{c} \in \mathscr{C}} \operatorname{Pr}\{\mathbf{c}\} \sum_{\mathbf{e} \neq \mathbf{c}} P(\mathbf{c} \rightarrow \mathbf{e})
$$

Pairwise Error Probability (II)

- Pairwise error probability for a quasi-static Rayleigh fading channel is upper bounded by

$$
\begin{equation*}
P(\mathbf{c} \rightarrow \mathbf{e}) \leq\left(\prod_{i=1}^{n_{t}} \frac{1}{1+\lambda_{i}^{2} \frac{E_{S}}{4 N_{0}}}\right)^{n_{r}} \tag{2}
\end{equation*}
$$

with λ_{i}^{2} being the eigenvalues of $\mathbf{A}(\mathbf{c}, \mathbf{e})$ counting the multiplicities

Pairwise Error Probability (II)

- Pairwise error probability for a quasi-static Rayleigh fading channel is upper bounded by

$$
\begin{equation*}
P(\mathbf{c} \rightarrow \mathbf{e}) \leq\left(\prod_{i=1}^{n_{t}} \frac{1}{1+\lambda_{i}^{2} \frac{E_{S}}{4 N_{0}}}\right)^{n_{r}} \tag{2}
\end{equation*}
$$

with λ_{i}^{2} being the eigenvalues of $\mathbf{A}(\mathbf{c}, \mathbf{e})$ counting the multiplicities

- Two criteria
- The rank criterion : In order to achieve maximum diversity $n_{t} \cdot n_{r}$, the matrix $\mathbf{B}(\mathbf{c}, \mathbf{e})$ must be of maximum rank n_{t}.
- The coding advantage : In order to maximize the coding gain, the quantity

$$
\begin{equation*}
\min _{\mathbf{c} \neq \mathbf{e}} \operatorname{det} \mathbf{A}(\mathbf{c}, \mathbf{e}) \tag{3}
\end{equation*}
$$

must be maximized.

Outline

MIMO Coding and Decoding
Diversity and Pairwise Error Probability
(2) The Golden Code structure

Introduction
The division algebra (quaternion algebra)
The order
The group of units
(3) Absorption of the Channel

Case of perfect approximation
The multiplicative error matrix
(4) Hyperbolic Space

Action of $S L_{2}(\mathbb{C})$
The fundamental d main
© Reduction
The algorithm
ZF detection performance

The Golden Code

Golden Code B. Rekaya Viterbo (2005)

Codewords are

$$
\mathbf{X}=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
\alpha\left(z_{1}+z_{2} \varphi\right) & \alpha\left(z_{3}+z_{4} \varphi\right) \\
i \cdot \bar{\alpha}\left(z_{3}+z_{4} \bar{\varphi}\right) & \bar{\alpha}\left(z_{1}+z_{2} \bar{\varphi}\right)
\end{array}\right)
$$

with $\varphi=\frac{1+\sqrt{5}}{2}, \bar{\varphi}=\frac{1-\sqrt{5}}{2}, \alpha=1+i-i \varphi, \bar{\alpha}=1+i-i \bar{\varphi}$ and $z_{j} \in \mathbb{Z}[i]$.

The Golden Code

Golden Code B. Rekaya Viterbo (2005)

Codewords are

$$
\mathbf{X}=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
\alpha\left(z_{1}+z_{2} \varphi\right) & \alpha\left(z_{3}+z_{4} \varphi\right) \\
i \cdot \bar{\alpha}\left(z_{3}+z_{4} \bar{\varphi}\right) & \bar{\alpha}\left(z_{1}+z_{2} \bar{\varphi}\right)
\end{array}\right)
$$

with $\varphi=\frac{1+\sqrt{5}}{2}, \bar{\varphi}=\frac{1-\sqrt{5}}{2}, \alpha=1+i-i \varphi, \bar{\alpha}=1+i-i \bar{\varphi}$ and $z_{j} \in \mathbb{Z}[i]$.
The two layers of \mathbf{X} (the two diagonals) can be vectorized,

$$
\begin{aligned}
& \operatorname{vec} \mathbf{X}_{1}=\binom{x_{11}}{x_{22}}=\frac{1}{\sqrt{5}}\left(\begin{array}{ll}
\alpha & \alpha \varphi \\
\bar{\alpha} & \bar{\alpha} \bar{\varphi}
\end{array}\right) \cdot\binom{z_{1}}{z_{2}} \\
& \operatorname{vec}_{2}=\binom{x_{12}}{x_{21}}=\frac{1}{\sqrt{5}}\left(\begin{array}{ll}
\alpha & \alpha \varphi \\
i \bar{\alpha} & i \bar{\alpha} \bar{\varphi}
\end{array}\right) \cdot\binom{z_{3}}{z_{4}}
\end{aligned}
$$

The Golden Code

Golden Code B. Rekaya Viterbo (2005)
Codewords are

$$
\mathbf{X}=\frac{1}{\sqrt{5}}\left(\begin{array}{cc}
\alpha\left(z_{1}+z_{2} \varphi\right) & \alpha\left(z_{3}+z_{4} \varphi\right) \\
i \cdot \bar{\alpha}\left(z_{3}+z_{4} \bar{\varphi}\right) & \bar{\alpha}\left(z_{1}+z_{2} \bar{\varphi}\right)
\end{array}\right)
$$

with $\varphi=\frac{1+\sqrt{5}}{2}, \bar{\varphi}=\frac{1-\sqrt{5}}{2}, \alpha=1+i-i \varphi, \bar{\alpha}=1+i-i \bar{\varphi}$ and $z_{j} \in \mathbb{Z}[i]$.
The two layers of \mathbf{X} (the two diagonals) can be vectorized,

$$
\begin{aligned}
& \operatorname{vec} \mathbf{X}_{1}=\binom{x_{11}}{x_{22}}=\frac{1}{\sqrt{5}}\left(\begin{array}{ll}
\alpha & \alpha \varphi \\
\bar{\alpha} & \bar{\alpha} \bar{\varphi}
\end{array}\right) \cdot\binom{z_{1}}{z_{2}} \\
& \operatorname{vec}_{2}=\binom{x_{12}}{x_{21}}=\frac{1}{\sqrt{5}}\left(\begin{array}{ll}
\alpha & \alpha \varphi \\
i \bar{\alpha} & i \bar{\alpha} \bar{\varphi}
\end{array}\right) \cdot\binom{z_{3}}{z_{4}}
\end{aligned}
$$

Remark the transform which maps $\left(z_{1}, z_{2}\right)$ onto the first layer

$$
\underline{U}=\frac{1}{\sqrt{5}}\left[\begin{array}{ll}
\alpha & \alpha \varphi \\
\bar{\alpha} & \bar{\alpha} \bar{\varphi}
\end{array}\right]
$$

Number i isolates the first layer from the second one so that minimum determinant is not zero.

We obtain

$$
\delta_{\min }=\min _{\mathbf{X} \neq 0}|\operatorname{det} \mathbf{X}|^{2}=\frac{1}{5}
$$

(best minimum determinant for such codes)

Minimum determinant

We obtain

$$
\delta_{\min }=\min _{\mathbf{X} \neq 0}|\operatorname{det} \mathbf{X}|^{2}=\frac{1}{5}
$$

(best minimum determinant for such codes)

Problems

- Symbols z_{i} are, in the "real life", QAM symbols (finite subset of $\mathbb{Z}[i]$)
- The Golden code is computationally hard to decode.

Division Algebra

The Algebra of the Golden Code

The Golden Algebra \mathscr{A} (quaternion algebra) has elements

$$
\boldsymbol{A}=\left[\begin{array}{cc}
s_{1}+\theta s_{2} & s_{3}+\theta s_{4} \\
i s_{3}+\bar{\theta} s_{4} & s_{1}+\bar{\theta} s_{2}
\end{array}\right]
$$

with $\theta=\frac{1+\sqrt{5}}{2}, \bar{\theta}=\frac{1-\sqrt{5}}{2}$ and $s_{l}, l=1 \ldots 4$ are elements of the field $\mathbb{Q}(i)$.

Division Algebra

The Algebra of the Golden Code

The Golden Algebra \mathscr{A} (quaternion algebra) has elements

$$
\boldsymbol{A}=\left[\begin{array}{cc}
s_{1}+\theta s_{2} & s_{3}+\theta s_{4} \\
i s_{3}+\bar{\theta} s_{4} & s_{1}+\bar{\theta} s_{2}
\end{array}\right]
$$

with $\theta=\frac{1+\sqrt{5}}{2}, \bar{\theta}=\frac{1-\sqrt{5}}{2}$ and $s_{l}, l=1 \ldots 4$ are elements of the field $\mathbb{Q}(i)$.

- Every non zero element in \mathscr{A} has an inverse since

$$
\operatorname{det} \boldsymbol{A}=(2+i)\left[N\left(s_{1}+\theta s_{2}\right)-i N\left(s_{3}+\theta s_{4}\right)\right] \neq 0
$$

In fact, i is not a norm of $\mathbb{Q}(i, \sqrt{5})$.

Code defined on an order

The Order of the Golden Code

The Golden Order $\mathscr{O}_{\mathscr{A}}$ has elements

$$
\boldsymbol{O}=\left[\begin{array}{cc}
s_{1}+\theta s_{2} & s_{3}+\theta s_{4} \\
i s_{3}+\bar{\theta} s_{4} & s_{1}+\bar{\theta} s_{2}
\end{array}\right]
$$

with $\theta=\frac{1+\sqrt{5}}{2}, \bar{\theta}=\frac{1-\sqrt{5}}{2}$ and $s_{l}, l=1 \ldots 4$ are elements of $\mathbb{Z}[i] . \mathscr{O}_{\mathscr{A}}$ is a maximal order.

Code defined on an order

The Order of the Golden Code

The Golden Order $\mathscr{O}_{\mathscr{A}}$ has elements

$$
\boldsymbol{O}=\left[\begin{array}{cc}
s_{1}+\theta s_{2} & s_{3}+\theta s_{4} \\
i s_{3}+\bar{\theta} s_{4} & s_{1}+\bar{\theta} s_{2}
\end{array}\right]
$$

with $\theta=\frac{1+\sqrt{5}}{2}, \bar{\theta}=\frac{1-\sqrt{5}}{2}$ and $s_{l}, l=1 \ldots 4$ are elements of $\mathbb{Z}[i] . \mathscr{O}_{\mathscr{A}}$ is a maximal order.

- The Golden code is the ideal $\alpha \cdot \mathscr{O}_{\mathscr{A}}$. Codewords are (up to a normalization constant),

Code defined on an order

The Order of the Golden Code

The Golden Order $\mathscr{O}_{\mathscr{A}}$ has elements

$$
\boldsymbol{O}=\left[\begin{array}{cc}
s_{1}+\theta s_{2} & s_{3}+\theta s_{4} \\
i s_{3}+\bar{\theta} s_{4} & s_{1}+\bar{\theta} s_{2}
\end{array}\right]
$$

with $\theta=\frac{1+\sqrt{5}}{2}, \bar{\theta}=\frac{1-\sqrt{5}}{2}$ and $s_{l}, l=1 \ldots 4$ are elements of $\mathbb{Z}[i] . \mathscr{O}_{\mathscr{A}}$ is a maximal order.

- The Golden code is the ideal $\alpha \cdot \mathscr{O}_{\mathscr{A}}$. Codewords are (up to a normalization constant),

Golden Code

A codeword \boldsymbol{X} of the Golden code is

$$
\boldsymbol{X}=\left[\begin{array}{cc}
\alpha\left(s_{1}+\theta s_{2}\right) & \alpha\left(s_{3}+\theta s_{4}\right) \\
i \bar{\alpha}\left(s_{3}+\bar{\theta} s_{4}\right) & \bar{\alpha}\left(s_{1}+\bar{\theta} s_{2}\right)
\end{array}\right]
$$

with $\theta=\frac{1+\sqrt{5}}{2}, \bar{\theta}=\frac{1-\sqrt{5}}{2}, \alpha=1+i-i \theta, \bar{\alpha}=1+i-i \bar{\theta}$ and $s_{l}, l=1 \ldots 4$ are the information symbols carved from $\mathbb{Z}[i]$.

The group of units \mathscr{O}^{+}

Group of units of $\mathscr{O}_{\mathscr{A}}$
The group of units \mathscr{O}^{\times}is the group of elements \boldsymbol{O} of the order with determinant equal to a unit in $\mathbb{Z}[i]$, i.e.

$$
\operatorname{det} \boldsymbol{O} \in\{ \pm 1, \pm i\}
$$

The group of units \mathscr{O}^{+}

Group of units of $\mathscr{O}_{\mathscr{A}}$

The group of units \mathscr{O}^{\times}is the group of elements \boldsymbol{O} of the order with determinant equal to a unit in $\mathbb{Z}[i]$, i.e.

$$
\operatorname{det} \boldsymbol{O} \in\{ \pm 1, \pm i\}
$$

- We only need those units with determinant equal to 1 . These units form a subgroup of \mathscr{O}^{\times}

The group of units \mathscr{O}^{+}

Group of units of $\mathscr{O}_{\mathscr{A}}$

The group of units \mathscr{O}^{\times}is the group of elements \boldsymbol{O} of the order with determinant equal to a unit in $\mathbb{Z}[i]$, i.e.

$$
\operatorname{det} \boldsymbol{O} \in\{ \pm 1, \pm i\}
$$

- We only need those units with determinant equal to 1 . These units form a subgroup of \mathscr{O}^{\times}

Subgroup \mathscr{O}^{+}

The subgroup \mathscr{O}^{+}of \mathscr{O}^{\times}is

$$
\mathscr{O}^{+}=\left\{\boldsymbol{O} \in \mathscr{O}_{\mathscr{A}} \mid \operatorname{det} \boldsymbol{O}=1\right\}
$$

Outline

MIMO Coding and Decoding
Diversity and Pairwise Error Probability
2. The Golden Codestructure

The division algebra (quaternion algebra)
The order
The group of units
(3) Absorption of the Channel

Case of perfect approximation
The multiplicative error matrix
(4) Hyperbolic Space

Action of $S L_{2}(\mathbb{C})$
The fundamental do main
© Reduction
The algorithm
ZF detection performance

The MIMO Channel is a Unit

Received Signal

Received signal is

$$
\boldsymbol{Y}_{2 \times 2}=\boldsymbol{H}_{2 \times 2} \cdot \boldsymbol{X}_{2 \times 2}+\boldsymbol{W}_{2 \times 2}
$$

where \boldsymbol{X} is a Golden Code codeword.

The MIMO Channel is a Unit

Received Signal

Received signal is

$$
\boldsymbol{Y}_{2 \times 2}=\boldsymbol{H}_{2 \times 2} \cdot \boldsymbol{X}_{2 \times 2}+\boldsymbol{W}_{2 \times 2}
$$

where \boldsymbol{X} is a Golden Code codeword.

- Set $\tilde{\boldsymbol{Y}}=\frac{1}{\sqrt{\operatorname{det} \boldsymbol{H}}} \boldsymbol{Y}$ and write

$$
\tilde{\boldsymbol{Y}}=\tilde{\boldsymbol{H}} \cdot \boldsymbol{X}+\tilde{\boldsymbol{W}}
$$

with $\tilde{\boldsymbol{H}} \in S L_{2}(\mathbb{C})$. In fact, we could restrict to

$$
P S L_{2}(\mathbb{C})=S U_{2}(\mathbb{C}) \backslash S L_{2}(\mathbb{C})
$$

since $\tilde{\boldsymbol{H}}$ can be known up to a unitary transform.

The MIMO Channel is a Unit

Received Signal

Received signal is

$$
\boldsymbol{Y}_{2 \times 2}=\boldsymbol{H}_{2 \times 2} \cdot \boldsymbol{X}_{2 \times 2}+\boldsymbol{W}_{2 \times 2}
$$

where \boldsymbol{X} is a Golden Code codeword.

- Set $\tilde{\boldsymbol{Y}}=\frac{1}{\sqrt{\operatorname{det} \boldsymbol{H}}} \boldsymbol{Y}$ and write

$$
\tilde{\boldsymbol{Y}}=\tilde{\boldsymbol{H}} \cdot \boldsymbol{X}+\tilde{\boldsymbol{W}}
$$

with $\tilde{\boldsymbol{H}} \in S L_{2}(\mathbb{C})$. In fact, we could restrict to

$$
P S L_{2}(\mathbb{C})=S U_{2}(\mathbb{C}) \backslash S L_{2}(\mathbb{C})
$$

since $\tilde{\boldsymbol{H}}$ can be known up to a unitary transform.

- Suppose $\tilde{\boldsymbol{H}}$ is a unit in \mathscr{O}^{+}up to a left unitary transform, then $\tilde{\boldsymbol{H}} \cdot \boldsymbol{X}$ is a new codeword $\tilde{\boldsymbol{X}}$, absorption of the channel by the code,

$$
\tilde{\boldsymbol{Y}}=\tilde{\boldsymbol{X}}+\tilde{\boldsymbol{W}}
$$

and $\boldsymbol{X}=\tilde{\boldsymbol{H}}^{-1} \cdot \tilde{\boldsymbol{X}}$.

- $\tilde{\boldsymbol{H}}$ is no more a unit. We write $\tilde{\boldsymbol{H}}=\boldsymbol{E} \cdot \boldsymbol{U}$ where \boldsymbol{U} is a unit.

The Multiplicative Error (1)

- $\tilde{\boldsymbol{H}}$ is no more a unit. We write $\tilde{\boldsymbol{H}}=\boldsymbol{E} \cdot \boldsymbol{U}$ where \boldsymbol{U} is a unit.

Received Signal

The received signal is (up to a left unitary transform)

$$
\tilde{\boldsymbol{Y}}=\boldsymbol{E} \cdot \tilde{\boldsymbol{U}} \cdot \boldsymbol{X}+\tilde{W}
$$

and $\tilde{\boldsymbol{U}} \cdot \boldsymbol{X}$ is a new codeword.

The Multiplicative Error (1)

- $\tilde{\boldsymbol{H}}$ is no more a unit. We write $\tilde{\boldsymbol{H}}=\boldsymbol{E} \cdot \boldsymbol{U}$ where \boldsymbol{U} is a unit.

Received Signal

The received signal is (up to a left unitary transform)

$$
\tilde{\boldsymbol{Y}}=\boldsymbol{E} \cdot \tilde{\boldsymbol{U}} \cdot \boldsymbol{X}+\tilde{W}
$$

and $\tilde{\boldsymbol{U}} \cdot \boldsymbol{X}$ is a new codeword.

Fact
 Two problems to solve

The Multiplicative Error (2)

Unit Search

With a ZF detector used, minimizing the noise variance after ZF is equivalent to

$$
\tilde{\boldsymbol{U}}=\arg \min _{\boldsymbol{U} \in \mathscr{O}^{+}}\left\|\tilde{\boldsymbol{H}} \cdot \boldsymbol{U}^{-1}\right\|_{F}
$$

where $\|\boldsymbol{A}\|_{F}$ is the Frobenius norm of \boldsymbol{A}.

- Find an algorithm that can search for $\tilde{\boldsymbol{U}}$ with a low complexity.

The Multiplicative Error (2)

Unit Search

With a ZF detector used, minimizing the noise variance after ZF is equivalent to

$$
\tilde{\boldsymbol{U}}=\arg \min _{\boldsymbol{U} \in \mathscr{O}^{+}}\left\|\tilde{\boldsymbol{H}} \cdot \boldsymbol{U}^{-1}\right\|_{F}
$$

where $\|\boldsymbol{A}\|_{F}$ is the Frobenius norm of \boldsymbol{A}.

- Find an algorithm that can search for $\tilde{\boldsymbol{U}}$ with a low complexity.

Detection

- Find then a detector that can use this algebraic reduction
- Performance?

Outline

MIMO Coding and Decoding
Diversity and Pairwise Error Probability
2. The Golden Codestructure

The division algebra (quaternion algebra)
The order
The group of units
(3) Absorption of the Channel

Case of perfect approximation
The multiplicative error matrix
(4) Hyperbolic Space

Action of $S L_{2}(\mathbb{C})$
The fundamental domain
The generators
3. Reduction

The algorithm
ZF detection performance

The Hyperbolic Space \mathbb{H}_{3}
Space

$$
\mathbb{H}_{3}=\{(z, r), z \in \mathbb{C}, r \in \mathbb{R}, r>0\}
$$

The Hyperbolic Space \mathbb{H}_{3}
Space

$$
\mathbb{H}_{3}=\{(z, r), z \in \mathbb{C}, r \in \mathbb{R}, r>0\}
$$

- $g=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $g \in S L_{2}(\mathbb{C})$

Action of $S L_{2}(\mathbb{C})$

The Hyperbolic Space \mathbb{H}_{3}
Space

$$
\mathbb{H}_{3}=\{(z, r), z \in \mathbb{C}, r \in \mathbb{R}, r>0\}
$$

- $g=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ with $g \in S L_{2}(\mathbb{C})$

Action on H_{3}

$$
g((z, r))=\left(z^{\star}, r^{\star}\right) \quad \text { with } \quad\left\{\begin{array}{l}
z^{\star}=\frac{(a z+b)(\bar{c} \bar{z}+\bar{d})+a \bar{c} r^{2}}{|c z+d|^{2}+|c|^{2} r^{2}} \\
r^{\star}=\frac{r}{|c z+d|^{2}+|c|^{2} r^{2}}
\end{array}\right.
$$

- We make our group act over $J=(0,1)$

Hyperbolic distance

Define the hyperbolic dictance on \mathbb{H}_{3}

$$
\cosh \rho\left(P, P^{\prime}\right)=1+\frac{d\left(P, P^{\prime}\right)^{2}}{2 r r^{\prime}}
$$

- With the action of $S L_{2}(\mathbb{C})$ on J, we have the nice property

Hyperbolic distance

Hyperbolic distance

Define the hyperbolic dictance on \Vdash_{3}

$$
\cosh \rho\left(P, P^{\prime}\right)=1+\frac{d\left(P, P^{\prime}\right)^{2}}{2 r r^{\prime}}
$$

- With the action of $S L_{2}(\mathbb{C})$ on J, we have the nice property

Hyperbolic vs Frobenius

$$
\forall g \in S L_{2}(\mathbb{C}),\|g\|_{F}^{2}=2 \cosh \rho(J, g(J))
$$

The fundamental domain

- \mathscr{O}^{+}is a discrete subgroup of $S L_{2}(\mathbb{C})$. The action of \mathscr{O}^{+}on J generates a tesselation of \mathbb{H}_{3}.
- The tesselation defines, for each element g of \mathscr{O}^{+}, a hyperbolic polyhedron

$$
\mathscr{P}_{g}=\left\{x \in \mathbb{H}_{3} \mid \rho(x, g(J)) \leq \rho\left(x, g^{\prime}(J)\right), \forall g^{\prime} \neq g\right\}
$$

The fundamental domain

- \mathscr{O}^{+}is a discrete subgroup of $S L_{2}(\mathbb{C})$. The action of \mathscr{O}^{+}on J generates a tesselation of \mathbb{H}_{3}.
- The tesselation defines, for each element g of \mathscr{O}^{+}, a hyperbolic polyhedron

$$
\mathscr{P}_{g}=\left\{x \in \mathbb{H}_{3} \mid \rho(x, g(J)) \leq \rho\left(x, g^{\prime}(J)\right), \forall g^{\prime} \neq g\right\}
$$

Fundamental Domain

\mathscr{P}_{I} (Dirichlet polyhedron) is the fundamental domain of \mathscr{O}^{+}

The generators

8 generators for \mathscr{O}^{+}

$$
\begin{aligned}
u_{1}=\left(\begin{array}{cc}
i \theta & 0 \\
0 & i \bar{\theta}
\end{array}\right) & u_{2}=\left(\begin{array}{cc}
i & 1+i \\
i-1 & i
\end{array}\right)
\end{aligned} u_{3}=\left(\begin{array}{cc}
\theta & 1+i \\
i-1 & \bar{\theta}
\end{array}\right)
$$

The generators

8 generators for \mathscr{O}^{+}

$$
\begin{aligned}
u_{1}=\left(\begin{array}{cc}
i \theta & 0 \\
0 & i \bar{\theta}
\end{array}\right) & u_{2}=\left(\begin{array}{cc}
i & 1+i \\
i-1 & i
\end{array}\right)
\end{aligned} u_{3}=\left(\begin{array}{cc}
\theta & 1+i \\
i-1 & \bar{\theta}
\end{array}\right)
$$

Word problem

Each element in \mathscr{O}^{+}can be written by using eight letters $\left(u_{i}\right)$

- MIMO Coding and Decoding

Diversity and Pairwise Error Probability
2) The Golden Code structure

The division algebra (quaternion algebra)
The order
The group of units
(3) Absorption of the Channel

Case of perfect approximation
The multiplicative error matrix
(4) Hyperbolic Space

Action of $S L_{2}(\mathbb{C})$
The fundamental domain
(5) Reduction

The algorithm
ZF detection performance

- Using the fundamental domain (generators), the aim is to find

$$
\tilde{\boldsymbol{U}}=\arg \min _{\boldsymbol{U} \in \mathscr{O}^{+}}\left\|\tilde{\boldsymbol{H}} \cdot \boldsymbol{U}^{-1}\right\|_{F}
$$

by using an iterative process.

- The optimal remaining error

$$
\boldsymbol{E}=\tilde{\boldsymbol{H}} \cdot \tilde{\boldsymbol{U}}^{-1}
$$

is inside the fundamental domain of \mathscr{O}^{+}.

Reduction Algorithm (I)

- Using the fundamental domain (generators), the aim is to find

$$
\tilde{\boldsymbol{U}}=\arg \min _{\boldsymbol{U} \in \mathscr{O}^{+}}\left\|\tilde{\boldsymbol{H}} \cdot \boldsymbol{U}^{-1}\right\|_{F}
$$

by using an iterative process.

- The optimal remaining error

$$
\boldsymbol{E}=\tilde{\boldsymbol{H}} \cdot \tilde{\boldsymbol{U}}^{-1}
$$

is inside the fundamental domain of \mathscr{O}^{+}.

Figure: The algorithm

Figure: The algorithm

Simulation Results

Figure: Simulation Results 8 bits pcu

Figure: Thank you for your attention !!!

