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1 Background

• Jointly decoding codewords of a Reed-Solomon (RS) code arranged in parallel, or

collaborative decoding of interleaved RS codes, first proposed by:

– V. Y. Krachkovsky and Y. X. Lee, “Decoding for interleaved Reed-Solomon schemes,” IEEE Trans. Magn., vol. 33, pp.

2740–2743, Sep. 1997.

• Notable related works that have appeared in the literature include:

– D. Bleichenbacher, A. Kiayas and M. Yung, “Decoding of interleaved Reed-Solomon codes over noisy data,” Lect. Notes

Computer Sci., vol. 2719, pp. 97–108, Jan. 2003.

– A. Brown, L. Minder and A. Shokrollahi, “Improved decoding of interleaved AG codes,” Lect. Notes Computer Sci.,

vol. 3796, pp. 37–46, 2005.

– G. Schmidt, V. R. Sidorenko and M. Bossert, “Collaborative decoding of interleaved Reed-Solomon codes and concate-

nated code designs,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 2991–3012, Jul. 2009.
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• Approach of Bleichenbacher et. al. may be viewed as a generalization of the Welch-

Berlekamp approach which Brown et. al. further extended to decode interleaved AG

codes.

• Approach of Schmidt et. al. is based on multisequence shift register synthesis (MSRS)

and has its roots in the work by Krachkovsky & Lee.

• Given an interleaved code RS(�;n, k;Fq) comprising � parallel copies of an (n, k) RS

code over Fq where q := 2m, the MSRS approach enables the correction of up to

tm :=

⌊
�

� + 1
(n− k)

⌋
(column) errors, which may be viewed as elements of Fq�.
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• If the errors are uniformly distributed on Fq� \ {0}, probability of decoding failure,

given that t errors have occurred, is

≤
(
q� − (1/q)

q� − 1

)t
q−(�+1)(tm−t)

q − 1
(1)

where t ≤ tm but greater than the guaranteed decoding radius,

tg := 	(n− k)/2
.

Probability of decoding failure, given that tm errors have occurred, is therefore at most

O(1/q).
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• Probability of decoding error, given that t errors have occurred, tg < t ≤ tm, is

≤
∑t+tm

w=n−k+1 Aw

∑min{t,tm}
j=0 U (q�, t, w, j)(

n
t

)
(q� − 1)t

(2)

where Aw is the number of codewords of weight w, and

U (q�, t, w, j) :=

t+w−j∑
i=�t+w−j

2 

(
w

i

)(
i

j − t− w + 2i

)(
n− w

t− i

)

· (q� − 2)j−t−w+2i(q� − 1)t−i.

Aw is obtained by viewing RS(�;n, k;Fq) as an (n, k) MDS code over Fq�, for which,

the weight distribution is well known.
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2 This Work

•We consider q�-ary interleaved codes formed from RS codes over an alphabet of car-

dinality q2, i.e., the Galois ring

R := GR(4, m) ∼= Z4[y]/〈Φ〉

where Φ is a basic irreducible polynomial in Z4[y] of degree m.

•Motivation stems from the question: “Can a q�-ary interleaved code formed from �/2

parallel copies of an (n, k) RS code over R offer any advantage over its field counterpart

formed from � parallel copies of an (n, k) RS code over Fq?”

We will show that when � is large, the former interleaved code can be as good as

its counterpart over Fq�, in terms of the word error probabilities of their respective

collaborative decoders, while incurring lower decoding complexity.
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3 The Codes

• Throughout, let � ≥ 4 and even.

• Let C be an (n, k) RS code over R whose generator polynomial is
∏n−k

i=1 (X − ξi) and

parity-check matrix is 


1 ξ ξ2 . . . ξn−1

1 ξ2 ξ4 . . . ξ2(n−1)

... ... ... . . . ...

1 ξn−k ξ2(n−k) . . . ξ(n−1)(n−k)




where ξ ∈ R is a primitive nth root of unity such that ξ := ξ mod 2 is a primitive nth

root of unity in the residue field R/2R of R, i.e., Fq.

• Since n divides q− 1, we take n := q− 1 in which case ξ is a primitive element of Fq.
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• C is a MDS code over R (in the usual sense), i.e., its minimum distance is n− k + 1.

• RS(�/2;n, k;R) will denote a q�-ary interleaved RS code comprising �/2 parallel copies

of C.
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4 The Decoding Problem & Its Solution

• Suppose a codeword C of RS(�/2;n, k;R) is transmitted and received as

R = C + E.

• Let Ej := ( e
(1)
j e

(2)
j . . . e

(�/2)
j

)T be the jth column of E, Supp(E) := {j : Ej �= 0}
and t := |Supp(E)|.
As in earlier works, we will assume that all (column) errors are equally likely.

• For 1 ≤ l ≤ �/2, let s(l) denote the lth syndrome, i.e.,

s(l) := s
(l)
0 , s

(l)
−1, . . . , s

(l)
−n+k+1

where s
(l)
i :=

∑
j∈Supp(E) e

(l)
j ξ−ji.
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• Objective is to find a monic polynomial σ :=
∑t

j=0 σjX
j ∈ R[X ] which simultaneously

annihilates s(1), s(2), . . . , s(�/2), i.e., σ satisfies
t−1∑
j=0

σjs
(l)
i−j = −s(l)

i−t , −n + k + t + 1 ≤ i ≤ 0, 1 ≤ l ≤ �/2. (3)

• Straightforward to show that

Γ(l) ≡ Xω(l)/σ mod X−n+k , 1 ≤ l ≤ �/2

where

Γ(l) :=

0∑
j=−n+k+1

s
(l)
j Xj

σ :=
∏

j∈Supp(E)

(X − ξj)

ω(l) :=
∑

j∈Supp(E)

e
(l)
j ξj

∏
i∈Supp(E), i �=j

(X − ξi).
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• Due to the presence of zero divisors in R, the error locator polynomial actually has a

slightly more general form.

Theorem 4.1 If zj ∈ R s.t. zjEj = 0 for all j ∈ Supp(E), then
∏

j∈Supp(E)(X − ξj −
zj) ∈ Ann[s].

Ann[s] is the set of monic polynomials in R[X ] of degree at most t which simultaneously

annihilate s(1), s(2), . . . , s(�/2).

• Following paper gives an algorithm for finding µ ∈ Ann[s] of minimal degree.

– M. A. Armand, “Multisequence shift register synthesis over commutative rings with identity with applications to decoding

cyclic codes over integer residue rings,” IEEE Trans. Inf. Theory, vol. 50, no. 1, pp. 220–229, Jan. 2004.

• Since deg µ ≤ deg σ = t, µ may not be an error locator polynomial. If it is, then by

Theorem 4.1, we can find the (column) error locations over Fq.
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• Our analog to the MSRS decoding approach by Schmidt et. al., for RS(�/2;n, k;R).

Algorithm 4.2

i. Given R, compute s(1), s(2), . . . , s(�/2).

ii. Compute µ ∈ Ann[s] of minimal degree.

iii. For j = 0, 1, . . . , n−1, if µ(ξj) = 0 over Fq, then Supp(Ê)← j where µ := µ mod 2.

iv. If |Supp(Ê)| = deg µ, then

a) set σ :=
∏

j∈Supp(Ê)(X − ξj) and ω(l) :=
∑deg σ

i=1

∑0
j=−i+1 σis

(l)
j Xi+j−1,

b) for 1 ≤ l ≤ �/2, set e
(l)
j := ω(l)(ξj)/(ξjσ′(ξj)) if j ∈ Supp(Ê) and e

(l)
j := 0

otherwise,

c) output R− Ê;

else, declare decoding failure.
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5 Decoding Radius

• Guaranteed decoding radius of Algorithm 4.2 is also

tg = 	(n− k)/2
.

Not obvious and requires the following two results. Note that when at most tg (column)

errors have occurred, deg σ is ≤ tg — a fact required in the hypothesis of both results.

Lemma 5.1 Let f ∈ Ann[s] with deg f ≤ tg. Then f(ξj)e
(l)
j ξ2jσ′(ξj) = 0 for j ∈

Supp(E) and 1 ≤ l ≤ �/2 where σ′ is the formal derivative of σ.

Theorem 5.2 Let µ be a polynomial of minimal degree in Ann[s] such that deg µ ≤ tg.

Then µ =
∏

j∈Supp(E)(X − ξj) where µ := µ mod 2.

Lemma 5.1 is needed to prove Theorem 5.2.
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• By Theorem 5.2, if there are at most tg errors, σ and the polynomial µ computed in

step ii. of Algorithm 4.2, will always coincide modulo 2.

Thus, Algorithm 4.2 will always decode correctly whenever |Supp(E)| ≤ tg.

• Next, recall from Cramer’s Rule that if A ∈ RN×N with det(A) a unit of R, then for

any B ∈ RN×1,

AX = B

has a unique solution X ∈ RN×1.
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• Thus, if in the system of equations in (3), we equate the #Constraints, (n− k − t)�/2,

to the #Unknowns, t, there is a possibility that the solution is unique.

Rearranging (n− k − t)�/2 = t yields

t = τ :=

⌊
(�/2)

(�/2) + 1
(n− k)

⌋
.

Algorithm 4.2 will be able to correct t errors where tg < t ≤ τ , with certain probability.

• Observe that as �→∞,

τ/n→ 1−R
where R = k/n, i.e., the rate of the code. (Compare this to the fraction of correctable

errors for classical decoding, (1−R)/2, and Guruswami-Sudan list decoding, 1−√R.)
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•When will τ coincide with the maximum decoding radius tm of the MSRS approach

of Schmidt et. al.?

Theorem 5.3 gives refined conditions for τ = tm.

Theorem 5.3 For � ≤ 	(n − 3 +
√
n2 − 6n + 1)/2
, τ = tm for certain code rates

exceeding

1− � + 3 + (2/�)

n
.
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6 Decoding Error & Decoding Failure Probabilities

• The derivation of the upperbound on the probability of decoding error for the field

case by Schmidt et. al., (i.e., (2)), is independent of the algebraic structure of the code

alphabet.

Thus, Algorithm 4.2’s probability of decoding error, given that t errors have occurred,

tg < t ≤ τ , is

≤
∑t+τ

w=n−k+1 Aw

∑min{t,τ}
j=0 U (q�, t, w, j)(

n
t

)
(q� − 1)t

(4)

Clearly, (4) coincides with (2) when τ = tm.

Aw can similarly be obtained by viewing RS(�/2;n, k;R) as a q�-ary MDS code and

noting that the derivation of the weight distribution of an MDS code over Fq� is based

on combinatorial arguments independent of the algebraic structure of the code alphabet.
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• An upperbound on Algorithm 4.2’s probability of decoding failure is given by

Theorem 6.1 An upper bound on the probability of decoding failure, given t errors

have occurred, tg < t ≤ τ , is
t∑

w=1

w∑
i=0

w−i∑
j=0

t!(q�/2 − 1)j(q2 − q)i(q − 1)w−i

(t− w)!(w − i− j)!i!j!(q� − 1)w

· q
(3w−i−3j−2n+2k+2t−min{w−i−j,w−j−n+k+t})�/2

(q2 − q)I(i) + (q − 1)(1− I(i))
where

I(i) :=

 1 : i > 0

0 : otherwise.
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7 Example #1

• Computed upperbounds on probability of decoding failure forRS(8; 255, 237; GR(4, 8))

and RS(16; 255, 237;F256) using Theorem 6.1 and (1), respectively.

t RS(8; 255, 237; GR(4, 8)) RS(16; 255, 237;F256)

10 3.536× 10−133 8.974× 10−249

11 1.670× 10−111 7.817× 10−208

12 7.885× 10−90 6.810× 10−167

13 3.724× 10−68 5.932× 10−126

14 1.758× 10−46 5.168× 10−85

15 8.304× 10−25 4.502× 10−44

16 3.937× 10−3 3.922× 10−3
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• For these codes, τ = tm = 16. Therefore, the upperbounds on the probability of

decoding error given by (2) and (4) are identical (and hence not shown).

• Observe that the probability of decoding failure is larger in the ring case for the various

values of t considered other than t = tm.

On the other hand, decoding RS(8; 255, 237; GR(4, 8)) is more computationally inten-

sive, primarily because an R-multiplication is more complex than an Fq-multiplication.

So, Galois ring interleaved codes have no advantage over their finite field counterparts,

or do they?
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8 Decoding When � Is Large

• Recall the component code of RS(�/2;n, k;R), which is an (n, k) RS code over R

whose generator polynomial is
∏n−k

i=1 (X − ξi).

Its canonical image in F
n
q is an (n, k) RS code with generator polynomial

∏n−k
i=1 (X−ξi).

• Consequently, suppose that with high probability, E does not contain any zero divisors

of R so that

Supp(E) = Supp(E)

where E := E mod 2.

Thus, to determine Supp(E), we can decode the canonical image RS(�/2;n, k;Fq) of

RS(�/2;n, k;R) in F
n
q�/2

.

The following modification of Algorithm 4.2 does just that.



Faculty of Engg., Dept. of Electrical & Computer Engg.

Algorithm 8.1

i. Given R, compute the �/2 syndrome sequences.

ii. Compute a monic polynomial µ ∈ Fq[X ] of minimal degree that simultaneously anni-

hilates s(1), s(2), . . . , s(�/2).

iii. For j = 0, . . . , n− 1, if µ(ξj) = 0, then Supp(Ê)← j.

iv. If |Supp(Ê)| = deg µ, then

a) set σ :=
∏

j∈Supp(Ê)
(X − ξj) and ω(l) :=

∑deg σ
i=1

∑0
j=−i+1 σis

(l)
j Xi+j−1,

b) for 1 ≤ l ≤ �/2, set e(l)
j := ω(l)(ξj)/(ξjσ′(ξj)) if j ∈ Supp(Ê) and e

(l)
j := 0 otherwise,

c) output R− Ê;

else, declare decoding failure.
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• Key modification is in step ii. where the objective is to compute a monic polynomial in

Fq[X ] of minimal degree that simultaneously annihilates (over Fq), s(1), s(2), . . . , s(�/2)

where s(l) := s(l) mod 2.

• Algorithm 8.1 has no guaranteed decoding radius, since it will not decode correctly if

at least one of the (column) errors does not contain any units of R.

Since all errors are assumed to be equally likely, the probability that an error does not

contain any units of R, is

pK :=

∑�/2
l=1

(
�/2
l

)
(q − 1)l∑�/2

l=1

(
�/2
l

)
(q2 − 1)l

.

• Clearly, pK decreases as � increases, for a given q.

Therefore, it only makes sense to use Algorithm 8.1 when � is large.
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9 Word Error Rates Under Modified Decoding Strategy

• Given t (column) errors, tg < t ≤ τ , all of which not containing any zero divisors of

R, probability of decoding failure is

≤ Pf(t) :=

(
q�/2 − (1/q)

q�/2 − 1

)t
q−((�/2)+1)(τ−t)

q − 1

and probability of decoding error is

≤ Pe(t) :=

∑t+τ
w=n−k+1 Aw

∑min{t,τ}
j=0 U (q�/2, t, w, j)(

n
t

)
(q�/2 − 1)t

where Aw is the number of codewords of weight w of a q�/2-ary (n, k) MDS code, and

U (q�/2, t, w, j) :=

t+w−j∑
i=�t+w−j

2 

(
w

i

)(
i

j − t− w + 2i

)(
n− w

t− i

)

· (q�/2 − 2)j−t−w+2i(q�/2 − 1)t−i.
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• Given t errors have occurred, probability that at least one of the errors does not contain

any units of R, is PK(t) :=
∑t

i=1

(
t
i

)
(1− pK)t−ipi

K .

With that, the (overall) word error probability of Algorithm 8.1 is

≤ Pw :=
n∑

t=1

Pw(t) · ρ(t) (5)

where

Pw(t) :=




PK(t) : t ≤ tg

min
{(

Pe(t) + Pf(t)
)
(1−PK(t)) + PK(t), 1

}
: tg < t ≤ τ

1 : t > τ

upperbounds the probability of word error given that t errors have occurred, and

ρ(t) :=

(
n

t

)
(1− p)n−tpt

is the probability of t errors occurring, where p is the probability of an error occurring.
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10 Example #2

• Using (5), we computed upperbounds on the word error probability of Algorithm 8.1

when used to decode RS(36; 255, 235; GR(4, 8)) for p = 10−4, 10−5, 10−6, 10−7.

We also computed the corresponding upperbounds on the word error probability of the

MSRS approach of Schmidt et. al. when used to decode RS(72; 255, 235;F256).

p RS(36; 255, 235; GR(4, 8)) RS(72; 255, 235;F256)

10−4 1.092× 10−50 1.092× 10−50

10−5 8.830× 10−70 8.830× 10−70

10−6 8.667× 10−89 8.616× 10−89

10−7 5.127× 10−92 8.594× 10−108

Evidently, we have comparable word error rate performance for p = 10−4, 10−5, 10−6.
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11 Decoding Complexity

• Compare the computational cost of decodingRS(�/2;n, k;R) andRS(�;n, k;Fq) using

their respective collaborative decoders in terms of the number of multiplications needed.

As there are R-multiplications and Fq-multiplications involved, we count one R-

multiplication as two Fq-multiplications.

• The rationale follows from the fact that the critical path length (i.e., the longest path

a signal has to travel during one clock cycle) of a standard-shift-register (SSR) serial

R-multiplier need only be twice as long as that of a SSR serial Fq-multiplier.

– B. Abrahamsson, “Architectures for multiplication in Galois rings,” Undergraduate thesis, Linköping University, Dept.

of Electrical Engineering, Jun. 2004. Available online at http://www.ep.liu.se.
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• This means that the clock frequency for the Fq-multiplier can be twice as fast as that

for the R-multiplier.

With each multiplier needing m clock cycles to perform the calculations, the R-

multiplier will therefore take twice as long as the Fq-multiplier to produce a result.

• Straightforward counting procedure shows that Algorithm 8.1 requires at most

�(n− 1)(n− k) + (�/2)(n− k)2 + n(τ − 1) + ((�/2) + 1)(τ − 1)τ + 2�τ 2

Fq-multiplications, while the MSRS approach by Schmidt et. al. requires at most

�(n− 1)(n− k) + �(n− k)2 + n(tm − 1) + (�/2)(tm − 1)tm + 2�t2m

Fq-multiplications.
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• Decoding RS(36; 255, 235; GR(4, 8)) and RS(72; 255, 235;F256) require at most 449388

and 463446 F256-multiplications, respectively.

Translates to a computational saving of 3.03% at the decoder if one chooses to use the

former code instead of the latter.

• In general, given n, one can expect increasing computational savings as � increases

(resp., code rate decreases), while code rate (resp., �) remains fixed.
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12 Summary

•We have studied the merits of MSRS-based collaborative decoding of interleaved codes

formed from RS codes over Galois rings, in terms of key performance indicators such

as the decoding error and decoding failure probabilities.

•We have shown that when � is large, a q�-ary interleaved code formed from �/2 parallel

copies of an (n, k) RS code over R, can be as good as its field counterpart, formed from

� parallel copies of an (n, k) RS code over Fq, in terms of the word error probabilities

of their respective collaborative decoders, while incurring lower decoding complexity.


