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Checkable Codes from Group Rings

Introduction

Motivation

Various applications of cyclic codes is based on their single
generator and check polynomials.

Checkable codes are introduced to have the similar properties.

Some special cyclic codes were studied:
- reversible cyclic codes [Massey’64],
- complementary-dual cyclic codes [Yang & Massey’94].

These ideas are generalized for checkable codes.
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Checkable Codes from Group Rings

Introduction

Group Rings

G – an abelian of order n, written multiplicatively (with identity 1).
F – a finite field of characteristic p.
FG = {

∑

g∈G

αgg | αg ∈ F} – the group ring of G over F, where

∑

g∈G

αgg +
∑

g∈G

βgg :=
∑

g∈G

(αg + βg )g

and




∑

g∈G

αgg





(

∑

h∈G

βhh

)

:=
∑

g ,h∈G

(αgβh)gh.

Obviously, FG is an F-vector space with a basis G .
As G is abelian, the group ring FG is commutative.
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Checkable Codes from Group Rings

Introduction

Cyclic Codes

If G = 〈x〉 is cyclic, then Rn = F[X ]/〈X n − 1〉 ∼= FG via X 7→ x .

Cyclic Codes in Rn

For g(X ) ∈ Rn,
C = 〈g(X )〉 - a cyclic code.

g(X ) - a generator polynomial.

∃h(X ) ∈ Rn,
C = {f (X ) ∈ Rn | f (X )h(X ) = 0}

( g(X ) | (XN − 1) and h(X ) = Xn
−1

g(X )
).

h(X ) - a check polynomial.

Cyclic Codes from FG , G = 〈x〉

For a zero-divisor u ∈ FG ,
C = FGu - a zero-divisor code.

u - a generator element.

Using X 7→ x , ∃v ∈ FG ,

C = {y ∈ FG | yv = 0}

= Ann(v).

v - a check element.
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Introduction

Checkable Codes

Cyclic Codes from FG , G = 〈x〉

For a zero-divisor u ∈ FG ,
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u - a generator element.
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Checkable Codes from FG , G is abelian

For a zero-divisor u ∈ FG ,
C = FGu - a zero-divisor code.

u - a generator element.

If there exists v ∈ FG

C = {y ∈ FG | yv = 0}

= Ann(v), then

v - a check element and
C - a checkable code.

FG is code-checkable if every non-trivial ideal of FG is a
checkable code.
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Checkable Codes from Group Rings

Checkable Codes from Group Rings

Given a finite abelian group G and a finite field F of characteristic
p, we have the following results.

Proposition

FG is code-checkable if and only if it is a principal ideal ring (PIR).

Theorem (Fisher & Sehgal’76)

FG is a PIR if and only if a Sylow p-subgroup of G is cyclic.

Theorem

FG is code-checkable if and only if a Sylow p-subgroup of G is
cyclic.
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Checkable Codes from Group Rings

Dual of Checkable Codes

For f (X ) = f0 + f1X + · · ·+ X t ∈ F[X ] with f0 6= 0, the reciprocal

polynomial of f (X ) is defined to be f ∗(X ) := f −1
0 X t f (

1

X
).

Proposition

Let g(X )h(X ) = X n − 1. Then 〈g(X )〉⊥ = 〈h∗(X )〉 = 〈h(X−1)〉.

For v =
∑

g∈G

vgg ∈ FG , we define v (−1) =
∑

g∈G

vg−1g =
∑

g∈G

vgg
−1.

Proposition

Let FGu be checkable with a check element v. Then (FGu)⊥ = FGv (−1).

Corollary

If FGu is checkable with a check element v, then |FGu| = |FGu(−1)|,
|FGv | = |FGv (−1)|, and |FG | = |FGu| · |FGv |.

S. Jitman 8/20
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Checkable Codes from Group Rings

Some Special Checkable Codes

Reversible Cyclic Codes

A code C is reversible if (cn, cn−1, . . . , c1) ∈ C whenever
(c1, c2, . . . , cn) ∈ C.

Note that the reversibility of cyclic codes are corresponding to the
fixed list of monomials {1,X ,X 2, . . . ,X n−1}.

f (X ) is said to be self-reciprocal if f (X ) = f ∗(X ).

Corollary (Massey’64)

The cyclic code generated by a monic polynomial g(X ) is
reversible if and only if g(X ) is self-reciprocal.
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Some Special Checkable Codes

Reversible Checkable Codes

Let L = {g1, g2, . . . , gn} denote a fixed list of the elements in G .

For w =
n
∑

i=1

wigi , the reverse rL(w) of w is rL(w) :=
n
∑

i=1

wn+1−igi .

A code C ⊆ FG is said to be reversible with respect to L if
rL(w) ∈ C whenever w ∈ C.
If the list L satisfies

k = gn−(i−1)gi , (1)

for some fixed k ∈ G , and for every i = 1, 2, . . . , n, then

rL(w) =
n
∑

i=1

wn+1−igi =
n
∑

i=1

wign+1−i

=

n
∑

i=1

wikg
−1
i = k

n
∑

i=1

wig
−1
i = kw (−1),∀w ∈ FG . (2)
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Some Special Checkable Codes

Example

Let G = Cn1 × Cn2 × · · · × Cnr denote a finite abelian group of
order n = n1n2 . . . nr written as the product of cyclic groups
Cnj = 〈xj〉. Define the list {g1, g2, . . . , gn} of G by

g1+j1+n1j2+n1n2j3+···+n1n2...nr−1jr = x j11 x
j2
2 . . . x jrr , (3)

where 0 ≤ ji < ni for all 1 ≤ i ≤ r .
Then g1 = 1, the identity of G , and gn = gn−(i−1)gi for all
1 ≤ i ≤ n. Hence, this list satisfies (1), where k = gn.

Note that if G = 〈x〉 is cyclic of order n, the list represents
{1, x , x2, . . . , xn−1} which corresponds to the set of monomials
{1,X ,X 2, . . . ,X n−1} in F[X ]/〈X n − 1〉.
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Checkable Codes from Group Rings

Some Special Checkable Codes

Theorem

Let L be a fixed list of G satisfying (1). Let FGu be a checkable
code with a check element v . Then the following statements are
equivalent:

i) FGu is reversible with respect to L.

ii) FGu = FGu(−1).

iii) u = au(−1) for some unit a in FG.

iv) v = bv (−1) for some unit b in FG.

v) FGv = FGv (−1).

vi) FGv is reversible with respect to L.

Remark

To verify whether FGu is reversible, by the condition ii), it is
equivalent to checking if u(−1) ∈ FGu.

S. Jitman 12/20
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Some Special Checkable Codes

Complementary-Dual Checkable Codes

FGu is complementary dual if FGu∩ (FGu)⊥ = {0}. Assume that p ∤ n.

Then FG is code-checkable since the Sylow p-subgroup of G is trivial.

Theorem

Let FGu be checkable with a check element v and L a list of G
satisfying (1). Then the following statements are equivalent.

i) FGu is a complementary dual code.

ii) FGu is a reversible code with respect to L.

iii) FGv is a reversible code with respect to L.

iv) FGv is a complementary dual code.

Corollary (Yang & Massey’94)

Then a cyclic code of length n over F is a complementary dual
code if and only if it is reversible.

S. Jitman 14/20
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Examples

Trivial MDS Checkable Codes

Lemma

Given a finite field F and a finite abelian group G, then the
element

∑

g∈G

g is always a zero-divisor in the group ring FG.

Corollary

If a Sylow p-subgroup of G is cyclic, then there exist checkable
[n, 1, n] and [n, n − 1, 2] MDS codes from FG.

Remark

Since (
∑

g∈G

g)(−1) = (
∑

g∈G

g), the [n, 1, n] MDS code generated by
∑

g∈G

g

and its dual are reversible.
Moreover, if p ∤ n, then they are complementary dual.
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Examples

Good Checkable Codes

1 Many Good Codes

2 4 New Codes

The code C36 derived from F5(C6 × C6) is generated by

u36 = (021242402043131423014123232100132334)

with check element

v36 = (100004000410431304002224330013242110).

C36 is an optimal [36, 28, 6]5 code.

Shortening C36 at the 1st position, we obtain an optimal [35, 27, 6]5
code.

Shortening C36 at the 1st and 2nd positions, we obtain an optimal
[34, 26, 6]5 code

S. Jitman 16/20
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Examples

The code C72 derived from F5(C6 × C12) is generated by

u72 = (312411232330313143111221222301122414030013401133430420133323011301020100),

with check element

v72 = (100000000441004102234010043124424101300211324012401114201004023203011413).

The C72 is an [72, 62, 6]5 code.
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Conclusion and Open Questions

Conclusion and Open Problems

Conclusion

1 a notion of checkable codes and code-checkable group rings.

2 necessary and sufficient conditions for a group ring FG to be
code-checkable.

3 the dual of checkable codes.

4 reversible and complementary dual checkable codes.

5 many good codes and 4 new codes.

Open Problems

1 generalize other properties of cyclic codes to codes in FG .

2 study self-orthogonal codes.

3 extend this concept to RG , where R is a finite commutative
ring and G is a finite group.
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