Checkable Codes from Group Rings

Somphong Jitman, (joint work with S. Ling, H. Liu, and X. Xie)

MAS-SPMS-NTU

September 23, 2011

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

≡ ∽ 1/20

Outline

- 2 Checkable Codes from Group Rings
- Some Special Checkable Codes

4 Examples

5 Conclusion and Open Questions

◆□ > ◆圖 > ◆臣 > ◆臣 >

2/20

Outline

2 Checkable Codes from Group Rings

3 Some Special Checkable Codes

4 Examples

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

2/20

- 2 Checkable Codes from Group Rings
- 3 Some Special Checkable Codes
- 4 Examples
- **5** Conclusion and Open Questions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

2/20

- 2 Checkable Codes from Group Rings
- 3 Some Special Checkable Codes

5 Conclusion and Open Questions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

2/20

- 2 Checkable Codes from Group Rings
- 3 Some Special Checkable Codes

4 Examples

イロン イヨン イヨン イヨン

2/20

- Various applications of cyclic codes is based on their single generator and check polynomials.
- Checkable codes are introduced to have the similar properties.
- Some special cyclic codes were studied:
 - reversible cyclic codes [Massey'64],
 - complementary-dual cyclic codes [Yang & Massey'94].
- These ideas are generalized for checkable codes.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- Various applications of cyclic codes is based on their single generator and check polynomials.
- Checkable codes are introduced to have the similar properties.
- Some special cyclic codes were studied:
 - reversible cyclic codes [Massey'64],
 - complementary-dual cyclic codes [Yang & Massey'94].
- These ideas are generalized for checkable codes.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

- Various applications of cyclic codes is based on their single generator and check polynomials.
- Checkable codes are introduced to have the similar properties.
- Some special cyclic codes were studied:
 - reversible cyclic codes [Massey'64],
 - complementary-dual cyclic codes [Yang & Massey'94].
- These ideas are generalized for checkable codes.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

- Various applications of cyclic codes is based on their single generator and check polynomials.
- Checkable codes are introduced to have the similar properties.
- Some special cyclic codes were studied:
 - reversible cyclic codes [Massey'64],
 - complementary-dual cyclic codes [Yang & Massey'94].
- These ideas are generalized for checkable codes.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Group Rings

G – an abelian of order n, written multiplicatively (with identity 1). \mathbb{F} – a finite field of characteristic p.

 $\mathbb{F}G = \{\sum_{g \in G} \alpha_g g \mid \alpha_g \in \mathbb{F}\} - \text{the group ring of } G \text{ over } \mathbb{F}, \text{ where}$

$$\sum_{g \in G} \alpha_g g + \sum_{g \in G} \beta_g g := \sum_{g \in G} (\alpha_g + \beta_g) g$$

and

$$\left(\sum_{g\in G}\alpha_g g\right)\left(\sum_{h\in G}\beta_h h\right) := \sum_{g,h\in G}(\alpha_g\beta_h)gh.$$

Obviously, $\mathbb{F}G$ is an \mathbb{F} -vector space with a basis G. As G is abelian, the group ring $\mathbb{F}G$ is commutative.

S. Jitman

< ロト < 同ト < ヨト < ヨト

If $G = \langle x \rangle$ is cyclic, then $\mathcal{R}_n = \mathbb{F}[X]/\langle X^n - 1 \rangle \cong \mathbb{F}G$ via $X \mapsto x$.

Cyclic Codes in \mathcal{R}_n	Cyclic Codes from $\mathbb{F}G$, $G=\langle x angle$
• For $g(X) \in \mathcal{R}_n$, $\mathcal{C} = \langle g(X) \rangle$ - a cyclic code.	• For a zero-divisor $u \in \mathbb{F}G$, $C = \mathbb{F}Gu$ - a zero-divisor code .
• $g(X)$ - a generator polynomial.	• <i>u</i> - a generator element.
• $\exists h(X) \in R_n$, $C = \{f(X) \in \mathcal{R}_n \mid f(X)h(X) = 0\}$ ($g(X) \mid (X^N - 1)$ and $h(X) = \frac{X^n - 1}{g(X)}$).	• Using $X \mapsto x$, $\exists v \in \mathbb{F}G$, $C = \{y \in \mathbb{F}G \mid yv = 0\}$ $= \operatorname{Ann}(v).$
• $h(X)$ - a check polynomial.	• v - a check element.

S. Jitman

э.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

If $G = \langle x \rangle$ is cyclic, then $\mathcal{R}_n = \mathbb{F}[X]/\langle X^n - 1 \rangle \cong \mathbb{F}G$ via $X \mapsto x$.

Cyclic Codes in \mathcal{R}_n	Cyclic Codes from $\mathbb{F}G$, $G=\langle x angle$
• For $g(X) \in \mathcal{R}_n$, $\mathcal{C} = \langle g(X) angle$ - a cyclic code.	• For a zero-divisor $u \in \mathbb{F}G$, $C = \mathbb{F}Gu$ - a zero-divisor code .
• $g(X)$ - a generator polynomial.	• <i>u</i> - a generator element.
• $\exists h(X) \in R_n,$ $\mathcal{C} = \{f(X) \in \mathcal{R}_n \mid f(X)h(X) = 0\}$	• Using $X \mapsto x$, $\exists v \in \mathbb{F}G$,
$(g(X) (X^N - 1) \text{ and } h(X) = \frac{X^n - 1}{g(X)}).$	$\mathcal{C} = \{ y \in \mathbb{F} G \mid yv = 0 \}$ $= \operatorname{Ann}(v).$
• $h(X)$ - a check polynomial.	• v - a check element.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

5/20

If $G = \langle x \rangle$ is cyclic, then $\mathcal{R}_n = \mathbb{F}[X]/\langle X^n - 1 \rangle \cong \mathbb{F}G$ via $X \mapsto x$.

Cyclic Codes in \mathcal{R}_n	Cyclic Codes from $\mathbb{F}G$, $G=\langle x angle$
• For $g(X) \in \mathcal{R}_n$, $\mathcal{C} = \langle g(X) angle$ - a cyclic code.	• For a zero-divisor $u \in \mathbb{F}G$, $C = \mathbb{F}Gu$ - a zero-divisor code .
 g(X) - a generator polynomial. ∃h(X) ∈ R_n, 	• u - a generator element. • Using $X \mapsto x$, $\exists v \in \mathbb{F}G$,
$\mathcal{C} = \{f(X) \in \mathcal{R}_n \mid f(X)h(X) = 0\}$ ($g(X) \mid (X^N - 1)$ and $h(X) = \frac{X^n - 1}{g(X)}$).	$\mathcal{C} = \{ y \in \mathbb{F}G \mid yv = 0 \}$ = Ann(v).
• $h(X)$ - a check polynomial.	• v - a check element.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

5/20

If $G = \langle x \rangle$ is cyclic, then $\mathcal{R}_n = \mathbb{F}[X]/\langle X^n - 1 \rangle \cong \mathbb{F}G$ via $X \mapsto x$.

Cyclic Codes in \mathcal{R}_n	Cyclic Codes from $\mathbb{F}G$, $G=\langle x angle$
• For $g(X) \in \mathcal{R}_n$, $\mathcal{C} = \langle g(X) angle$ - a cyclic code.	• For a zero-divisor $u \in \mathbb{F}G$, $C = \mathbb{F}Gu$ - a zero-divisor code .
 g(X) - a generator polynomial. ∃h(X) ∈ R_n, C = {f(X) ∈ R_n f(X)h(X) = 0} 	• u - a generator element. • Using $X \mapsto x$, $\exists v \in \mathbb{F}G$,
$(g(X) (X^N - 1) \text{ and } h(X) = \frac{X^n - 1}{g(X)}).$	$\mathcal{C} = \{ y \in \mathbb{F}G \mid yv = 0 \}$ $= \operatorname{Ann}(v).$
	• v - a check element.

S. Jitman

э.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

If $G = \langle x \rangle$ is cyclic, then $\mathcal{R}_n = \mathbb{F}[X]/\langle X^n - 1 \rangle \cong \mathbb{F}G$ via $X \mapsto x$.

Cyclic Codes in \mathcal{R}_n	Cyclic Codes from $\mathbb{F}G$, $G=\langle x angle$
• For $g(X) \in \mathcal{R}_n$,	• For a zero-divisor $u \in \mathbb{F} G$,
$\mathcal{C}=\langle g(X) angle$ - a cyclic code.	$C = \mathbb{F}Gu$ - a zero-divisor code.
 g(X) - a generator polynomial. 	• <i>u</i> - a generator element.
• $\exists h(X) \in R_n$,	• Using $X \mapsto x$, $\exists v \in \mathbb{F}G$,
$\mathcal{C} = \{f(X) \in \mathcal{R}_n \mid f(X)h(X) = 0\}$	$C = \{v \in \mathbb{E} C \mid vv = 0\}$
$(g(X) (X^N - 1) \text{ and } h(X) = \frac{X^n - 1}{g(X)}).$	$C = \{ y \in \mathbb{P} \mathbf{G} \mid yv = 0 \}$
	= Ann (V) .
• $h(X)$ - a check polynomial.	• v - a check element.

S. Jitman

э.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

If $G = \langle x \rangle$ is cyclic, then $\mathcal{R}_n = \mathbb{F}[X]/\langle X^n - 1 \rangle \cong \mathbb{F}G$ via $X \mapsto x$.

Cyclic Codes in \mathcal{R}_n	Cyclic Codes from $\mathbb{F} G$, $G = \langle x angle$
• For $g(X) \in \mathcal{R}_n$, $\mathcal{C} = \langle g(X) \rangle$ - a cyclic code.	• For a zero-divisor $u \in \mathbb{F}G$, $C = \mathbb{F}Gu$ - a zero-divisor code .
• $g(X)$ - a generator polynomial.	• <i>u</i> - a generator element.
• $\exists h(X) \in R_n$,	• Using $X \mapsto x$, $\exists v \in \mathbb{F}G$,
$\mathcal{C} = \{f(X) \in \mathcal{R}_n \mid f(X)h(X) = 0\}$	
$(g(X) (X^N - 1) \text{ and } h(X) = \frac{X^n - 1}{r(X)}).$	$C = \{ y \in \mathbb{F} G \mid yv = 0 \}$
5(**)	$= \operatorname{Ann}(v).$
• $h(X)$ - a check polynomial.	• v - a check element.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

5/20

If $G = \langle x \rangle$ is cyclic, then $\mathcal{R}_n = \mathbb{F}[X]/\langle X^n - 1 \rangle \cong \mathbb{F}G$ via $X \mapsto x$.

Cyclic Codes in \mathcal{R}_n	Cyclic Codes from $\mathbb{F}G$, $G=\langle x angle$
• For $g(X) \in \mathcal{R}_n$, $\mathcal{C} = \langle g(X) \rangle$ - a cyclic code.	• For a zero-divisor $u \in \mathbb{F}G$, $C = \mathbb{F}Gu$ - a zero-divisor code .
• $g(X)$ - a generator polynomial.	• <i>u</i> - a generator element.
• $\exists h(X) \in R_n$,	• Using $X \mapsto x$, $\exists v \in \mathbb{F}G$,
$C = \{f(X) \in \mathcal{R}_n \mid f(X)h(X) = 0\}$ ($g(X) \mid (X^N - 1)$ and $h(X) = \frac{X^n - 1}{g(X)}$).	$\mathcal{C} = \{y \in \mathbb{F}G \mid yv = 0\}$ = Ann(v).
• $h(X)$ - a check polynomial.	• v - a check element.

S. Jitman

э.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

If $G = \langle x \rangle$ is cyclic, then $\mathcal{R}_n = \mathbb{F}[X]/\langle X^n - 1 \rangle \cong \mathbb{F}G$ via $X \mapsto x$.

Cyclic Codes in \mathcal{R}_n	Cyclic Codes from $\mathbb{F}G$, $G=\langle x angle$
• For $g(X) \in \mathcal{R}_n$, $\mathcal{C} = \langle g(X) \rangle$ - a cyclic code.	• For a zero-divisor $u \in \mathbb{F}G$, $C = \mathbb{F}Gu$ - a zero-divisor code .
• $g(X)$ - a generator polynomial.	• <i>u</i> - a generator element.
• $\exists h(X) \in R_n$,	• Using $X \mapsto x$, $\exists v \in \mathbb{F}G$,
$C = \{f(X) \in \mathcal{R}_n \mid f(X)h(X) = 0\}$ ($g(X) \mid (X^N - 1)$ and $h(X) = \frac{X^n - 1}{g(X)}$).	$\mathcal{C} = \{y \in \mathbb{F}G \mid yv = 0\}$ = Ann(v).
• $h(X)$ - a check polynomial.	• v - a check element.

S. Jitman

∃ 990

・ロト ・ 聞 ト ・ 国 ト ・ 国 ト

Cyclic Codes from $\mathbb{F}G$, $G = \langle x \rangle$

- For a zero-divisor $u \in \mathbb{F}G$, $C = \mathbb{F}Gu$ - a zero-divisor code.
- *u* a generator element.

• $\exists v \in \mathbb{F}G$,

 $\begin{aligned} \mathcal{C} &= \{ y \in \mathbb{F}G \mid yv = 0 \} \\ &= \operatorname{Ann}(v). \end{aligned}$

• v - a check element.

Checkable Codes from $\mathbb{F}G$, G is abelian

For a zero-divisor u ∈ 𝔽𝔅,
 C = 𝔅𝔅𝔅𝔅𝔅 - a zero-divisor code.

```
• u - a generator element.
```

```
• If there exists v \in \mathbb{F}G
```

```
\mathcal{C} = \{ y \in \mathbb{F}G \mid yv = 0 \}
= Ann(v), then
```

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

6/20

```
    v - a check element and
    C - a checkable code.
```

Cyclic Codes from $\mathbb{F}G$, $G = \langle x \rangle$

- For a zero-divisor $u \in \mathbb{F}G$, $C = \mathbb{F}Gu$ - a zero-divisor code.
- *u* a generator element.

• $\exists v \in \mathbb{F}G$,

 $C = \{ y \in \mathbb{F}G \mid yv = 0 \}$ = Ann(v).

• v - a check element.

Checkable Codes from $\mathbb{F}G$, G is abelian

- For a zero-divisor $u \in \mathbb{F}G$, $C = \mathbb{F}Gu$ - a zero-divisor code.
- *u* a generator element.

• If there exists $v \in \mathbb{F}G$

 $\mathcal{C} = \{ y \in \mathbb{F}G \mid yv = 0 \}$ = Ann(v), then

э.

6/20

v - a check element andC - a checkable code.

Cyclic Codes from $\mathbb{F}G$, $G = \langle x \rangle$

- For a zero-divisor $u \in \mathbb{F}G$, $C = \mathbb{F}Gu$ - a zero-divisor code.
- *u* a generator element.

• $\exists v \in \mathbb{F}G$,

 $C = \{ y \in \mathbb{F}G \mid yv = 0 \}$ = Ann(v).

• v - a check element.

Checkable Codes from $\mathbb{F}G$, G is abelian

- For a zero-divisor $u \in \mathbb{F}G$, $C = \mathbb{F}Gu$ - a zero-divisor code.
- *u* a generator element.
- If there exists $v \in \mathbb{F}G$

$$\mathcal{C} = \{ y \in \mathbb{F}G \mid yv = 0 \}$$

= Ann(v), then

< ロ > < 同 > < 回 > < 回 > < 回 > <

6/20

v - a **check element** and *C* - a **checkable code**.

Cyclic Codes from $\mathbb{F}G$, $G = \langle x \rangle$

- For a zero-divisor $u \in \mathbb{F}G$, $C = \mathbb{F}Gu$ - a zero-divisor code.
- *u* a generator element.

• $\exists v \in \mathbb{F}G$,

$$\mathcal{C} = \{ y \in \mathbb{F}G \mid yv = 0 \}$$

= Ann(v).

• v - a check element.

Checkable Codes from $\mathbb{F}G$, G is abelian

- For a zero-divisor $u \in \mathbb{F}G$, $C = \mathbb{F}Gu$ - a zero-divisor code.
- *u* a generator element.
- If there exists $v \in \mathbb{F}G$

$$\mathcal{C} = \{ y \in \mathbb{F}G \mid yv = 0 \}$$

= Ann(v), then

v - a **check element** and *C* - a **checkable code**.

 $\mathbb{F}G \text{ is } \mathbf{code-checkable} \text{ if every non-trivial ideal of } \mathbb{F}G \text{ is a checkable code.}$

Given a finite abelian group G and a finite field \mathbb{F} of characteristic p, we have the following results.

Proposition

 $\mathbb{F}G$ is code-checkable if and only if it is a principal ideal ring (PIR).

Theorem (Fisher & Sehgal'76)

 $\mathbb{F}G$ is a PIR if and only if a Sylow p-subgroup of G is cyclic.

Theorem

 $\mathbb{F}G$ is code-checkable if and only if a Sylow p-subgroup of G is cyclic.

・ロト ・四ト ・ヨト ・ヨト

7/20

Given a finite abelian group G and a finite field \mathbb{F} of characteristic p, we have the following results.

Proposition

 $\mathbb{F}G$ is code-checkable if and only if it is a principal ideal ring (PIR).

Theorem (Fisher & Sehgal'76)

 $\mathbb{F}G$ is a PIR if and only if a Sylow p-subgroup of G is cyclic.

Theorem

 $\mathbb{F}G$ is code-checkable if and only if a Sylow p-subgroup of G is cyclic.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

3

7/20

Given a finite abelian group G and a finite field \mathbb{F} of characteristic p, we have the following results.

Proposition

 $\mathbb{F}G$ is code-checkable if and only if it is a principal ideal ring (PIR).

Theorem (Fisher & Sehgal'76)

 $\mathbb{F}G$ is a PIR if and only if a Sylow p-subgroup of G is cyclic.

Theorem

 $\mathbb{F}G$ is code-checkable if and only if a Sylow p-subgroup of G is cyclic.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

7/20

For $f(X) = f_0 + f_1 X + \dots + X^t \in \mathbb{F}[X]$ with $f_0 \neq 0$, the **reciprocal** polynomial of f(X) is defined to be $f^*(X) := f_0^{-1} X^t f(\frac{1}{X})$.

Proposition

Let $g(X)h(X) = X^n - 1$. Then $\langle g(X) \rangle^{\perp} = \langle h^*(X) \rangle = \langle h(X^{-1}) \rangle$.

For
$$v = \sum_{g \in G} v_g g \in \mathbb{F}G$$
, we define $v^{(-1)} = \sum_{g \in G} v_{g^{-1}}g = \sum_{g \in G} v_g g^{-1}$.

Proposition

Let \mathbb{F} Gu be checkable with a check element v. Then $(\mathbb{F}$ Gu)^{\perp} = \mathbb{F} Gv⁽⁻¹⁾.

Corollary

If $\mathbb{F}Gu$ is checkable with a check element v, then $|\mathbb{F}Gu| = |\mathbb{F}Gu^{(-1)}|$, $|\mathbb{F}Gv| = |\mathbb{F}Gv^{(-1)}|$, and $|\mathbb{F}G| = |\mathbb{F}Gu| \cdot |\mathbb{F}Gv|$.

For $f(X) = f_0 + f_1 X + \dots + X^t \in \mathbb{F}[X]$ with $f_0 \neq 0$, the **reciprocal** polynomial of f(X) is defined to be $f^*(X) := f_0^{-1} X^t f(\frac{1}{X})$.

Proposition

Let
$$g(X)h(X) = X^n - 1$$
. Then $\langle g(X) \rangle^{\perp} = \langle h^*(X) \rangle = \langle h(X^{-1}) \rangle$.

For
$$v = \sum_{g \in G} v_g g \in \mathbb{F}G$$
, we define $v^{(-1)} = \sum_{g \in G} v_{g^{-1}}g = \sum_{g \in G} v_g g^{-1}$.

Proposition

Let $\mathbb F$ Gu be checkable with a check element v. Then $(\mathbb F Gu)^\perp = \mathbb F Gv^{(-1)}.$

Corollary

If $\mathbb{F}Gu$ is checkable with a check element v, then $|\mathbb{F}Gu| = |\mathbb{F}Gu^{(-1)}|$, $|\mathbb{F}Gv| = |\mathbb{F}Gv^{(-1)}|$, and $|\mathbb{F}G| = |\mathbb{F}Gu| \cdot |\mathbb{F}Gv|$.

For $f(X) = f_0 + f_1 X + \dots + X^t \in \mathbb{F}[X]$ with $f_0 \neq 0$, the **reciprocal** polynomial of f(X) is defined to be $f^*(X) := f_0^{-1} X^t f(\frac{1}{X})$.

Proposition

Let
$$g(X)h(X) = X^n - 1$$
. Then $\langle g(X) \rangle^{\perp} = \langle h^*(X) \rangle = \langle h(X^{-1}) \rangle$.

For
$$v = \sum_{g \in G} v_g g \in \mathbb{F}G$$
, we define $v^{(-1)} = \sum_{g \in G} v_{g^{-1}}g = \sum_{g \in G} v_g g^{-1}$.

Proposition

Let \mathbb{F} Gu be checkable with a check element v. Then $(\mathbb{F}$ Gu)^{\perp} = \mathbb{F} Gv⁽⁻¹⁾.

Corollary

If $\mathbb{F}Gu$ is checkable with a check element v, then $|\mathbb{F}Gu| = |\mathbb{F}Gu^{(-1)}|$, $|\mathbb{F}Gv| = |\mathbb{F}Gv^{(-1)}|$, and $|\mathbb{F}G| = |\mathbb{F}Gu| \cdot |\mathbb{F}Gv|$.

For $f(X) = f_0 + f_1 X + \dots + X^t \in \mathbb{F}[X]$ with $f_0 \neq 0$, the **reciprocal** polynomial of f(X) is defined to be $f^*(X) := f_0^{-1} X^t f(\frac{1}{X})$.

Proposition

Let
$$g(X)h(X) = X^n - 1$$
. Then $\langle g(X) \rangle^{\perp} = \langle h^*(X) \rangle = \langle h(X^{-1}) \rangle$.

For
$$v = \sum_{g \in G} v_g g \in \mathbb{F}G$$
, we define $v^{(-1)} = \sum_{g \in G} v_{g^{-1}}g = \sum_{g \in G} v_g g^{-1}$.

Proposition

Let $\mathbb{F}Gu$ be checkable with a check element v. Then $(\mathbb{F}Gu)^{\perp} = \mathbb{F}Gv^{(-1)}$.

Corollary

If $\mathbb{F}Gu$ is checkable with a check element v, then $|\mathbb{F}Gu| = |\mathbb{F}Gu^{(-1)}|$, $|\mathbb{F}Gv| = |\mathbb{F}Gv^{(-1)}|$, and $|\mathbb{F}G| = |\mathbb{F}Gu| \cdot |\mathbb{F}Gv|$.

Reversible Cyclic Codes

A code C is **reversible** if $(c_n, c_{n-1}, \ldots, c_1) \in C$ whenever $(c_1, c_2, \ldots, c_n) \in C$.

Note that the reversibility of cyclic codes are corresponding to the fixed list of monomials $\{1, X, X^2, \dots, X^{n-1}\}$.

f(X) is said to be **self-reciprocal** if $f(X) = f^*(X)$.

Corollary (Massey'64)

The cyclic code generated by a monic polynomial g(X) is reversible if and only if g(X) is self-reciprocal.

Reversible Cyclic Codes

A code C is **reversible** if $(c_n, c_{n-1}, \ldots, c_1) \in C$ whenever $(c_1, c_2, \ldots, c_n) \in C$.

Note that the reversibility of cyclic codes are corresponding to the fixed list of monomials $\{1, X, X^2, \dots, X^{n-1}\}$.

f(X) is said to be **self-reciprocal** if $f(X) = f^*(X)$.

Corollary (Massey'64)

The cyclic code generated by a monic polynomial g(X) is reversible if and only if g(X) is self-reciprocal.

S. Jitman

イロン 不通 と 不良 と 不良 と 一度

Reversible Checkable Codes

Let
$$\mathcal{L} = \{g_1, g_2, \dots, g_n\}$$
 denote a fixed list of the elements in G .
For $w = \sum_{i=1}^{n} w_i g_i$, the reverse $r_{\mathcal{L}}(w)$ of w is $r_{\mathcal{L}}(w) := \sum_{i=1}^{n} w_{n+1-i} g_i$.
A code $\mathcal{C} \subseteq \mathbb{F}G$ is said to be **reversible** with respect to \mathcal{L} if $r_{\mathcal{L}}(w) \in \mathcal{C}$ whenever $w \in \mathcal{C}$.
If the list \mathcal{L} satisfies

$$k = g_{n-(i-1)}g_i, \tag{1}$$

for some fixed $k \in G$, and for every $i = 1, 2, \ldots, n$, then

$$r_{\mathcal{L}}(w) = \sum_{i=1}^{n} w_{n+1-i}g_i = \sum_{i=1}^{n} w_i g_{n+1-i}$$
$$= \sum_{i=1}^{n} w_i k g_i^{-1} = k \sum_{i=1}^{n} w_i g_i^{-1} = k w^{(-1)}, \forall w \in \mathbb{F}G.$$
(2)

Some Special Checkable Codes

Example

Let $G = C_{n_1} \times C_{n_2} \times \cdots \times C_{n_r}$ denote a finite abelian group of order $n = n_1 n_2 \dots n_r$ written as the product of cyclic groups $C_{n_j} = \langle x_j \rangle$. Define the list $\{g_1, g_2, \dots, g_n\}$ of G by

$$g_{1+j_1+n_1j_2+n_1n_2j_3+\dots+n_1n_2\dots n_{r-1}j_r} = x_1^{j_1}x_2^{j_2}\dots x_r^{j_r},$$
 (3)

where $0 \le j_i < n_i$ for all $1 \le i \le r$. Then $g_1 = 1$, the identity of G, and $g_n = g_{n-(i-1)}g_i$ for all $1 \le i \le n$. Hence, this list satisfies (1), where $k = g_n$.

Note that if $G = \langle x \rangle$ is cyclic of order *n*, the list represents $\{1, x, x^2, \ldots, x^{n-1}\}$ which corresponds to the set of monomials $\{1, X, X^2, \ldots, X^{n-1}\}$ in $\mathbb{F}[X]/\langle X^n - 1 \rangle$.

Let \mathcal{L} be a fixed list of G satisfying (1). Let $\mathbb{F}Gu$ be a checkable code with a check element v. Then the following statements are equivalent:

i) $\mathbb{F}Gu$ is reversible with respect to \mathcal{L} .

ii)
$$\mathbb{F}Gu = \mathbb{F}Gu^{(-1)}$$
.

iii)
$$u = au^{(-1)}$$
 for some unit a in $\mathbb{F}G$.

iv)
$$v = bv^{(-1)}$$
 for some unit b in $\mathbb{F}G$.

$$\mathbf{v}) \ \mathbb{F} G \mathbf{v} = \mathbb{F} G \mathbf{v}^{(-1)}.$$

vi)
$$\mathbb{F}Gv$$
 is reversible with respect to \mathcal{L} .

Remark

To verify whether $\mathbb{F}Gu$ is reversible, by the condition *ii*), it is equivalent to checking if $u^{(-1)} \in \mathbb{F}Gu$.

Let \mathcal{L} be a fixed list of G satisfying (1). Let $\mathbb{F}Gu$ be a checkable code with a check element v. Then the following statements are equivalent:

i) $\mathbb{F}Gu$ is reversible with respect to \mathcal{L} .

ii)
$$\mathbb{F}Gu = \mathbb{F}Gu^{(-1)}$$
.

iii)
$$u = au^{(-1)}$$
 for some unit a in $\mathbb{F}G$.

iv)
$$v = bv^{(-1)}$$
 for some unit b in $\mathbb{F}G$.

$$v) \mathbb{F}Gv = \mathbb{F}Gv^{(-1)}.$$

vi)
$$\mathbb{F}Gv$$
 is reversible with respect to \mathcal{L} .

Remark

To verify whether $\mathbb{F}Gu$ is reversible, by the condition *ii*), it is equivalent to checking if $u^{(-1)} \in \mathbb{F}Gu$.

Let \mathcal{L} be a fixed list of G satisfying (1). Let $\mathbb{F}Gu$ be a checkable code with a check element v. Then the following statements are equivalent:

i) $\mathbb{F}Gu$ is reversible with respect to \mathcal{L} .

ii)
$$\mathbb{F}Gu = \mathbb{F}Gu^{(-1)}$$
.

iii)
$$u = au^{(-1)}$$
 for some unit a in $\mathbb{F}G$.

iv)
$$v = bv^{(-1)}$$
 for some unit b in $\mathbb{F}G$.

$$v) \mathbb{F}Gv = \mathbb{F}Gv^{(-1)}.$$

vi) $\mathbb{F}Gv$ is reversible with respect to \mathcal{L} .

Corollary (Massey'64)

The cyclic code generated by a monic polynomial g(X) is reversible if and only if g(X) is self-reciprocal.

S. Jitman

Let \mathcal{L} be a fixed list of G satisfying (1). Let $\mathbb{F}Gu$ be a checkable code with a check element v. Then the following statements are equivalent:

i) $\mathbb{F}Gu$ is reversible with respect to \mathcal{L} .

ii)
$$\mathbb{F}Gu = \mathbb{F}Gu^{(-1)}$$
.

iii)
$$u = au^{(-1)}$$
 for some unit a in $\mathbb{F}G$.

iv)
$$v = bv^{(-1)}$$
 for some unit b in $\mathbb{F}G$.

$$\mathbf{v}) \ \mathbb{F}G\mathbf{v} = \mathbb{F}G\mathbf{v}^{(-1)}.$$

vi) $\mathbb{F}Gv$ is reversible with respect to \mathcal{L} .

Corollary (Massey'64)

The cyclic code generated by a monic polynomial g(X) is reversible if and only if g(X) is self-reciprocal.

S. Jitman

ヘロト ヘアト ヘアト

Complementary-Dual Checkable Codes

 $\mathbb{F}Gu$ is complementary dual if $\mathbb{F}Gu \cap (\mathbb{F}Gu)^{\perp} = \{0\}$. Assume that $p \nmid n$. Then $\mathbb{F}G$ is code-checkable since the Sylow *p*-subgroup of *G* is trivial.

Theorem

Let \mathbb{F} Gu be checkable with a check element v and \mathcal{L} a list of G satisfying (1). Then the following statements are equivalent.

- i) $\mathbb{F}Gu$ is a complementary dual code.
- ii) \mathbb{F} Gu is a reversible code with respect to \mathcal{L} .
- iii) $\mathbb{F}Gv$ is a reversible code with respect to \mathcal{L} .
- iv) $\mathbb{F}Gv$ is a complementary dual code.

Corollary (Yang & Massey'94)

Then a cyclic code of length n over \mathbb{F} is a complementary dual code if and only if it is reversible.

S. Jitman

୬୯୯ 14/20

Complementary-Dual Checkable Codes

 $\mathbb{F}Gu$ is complementary dual if $\mathbb{F}Gu \cap (\mathbb{F}Gu)^{\perp} = \{0\}$. Assume that $p \nmid n$. Then $\mathbb{F}G$ is code-checkable since the Sylow *p*-subgroup of *G* is trivial.

Theorem

Let \mathbb{F} Gu be checkable with a check element v and \mathcal{L} a list of G satisfying (1). Then the following statements are equivalent.

- i) $\mathbb{F}Gu$ is a complementary dual code.
- ii) \mathbb{F} Gu is a reversible code with respect to \mathcal{L} .
- iii) $\mathbb{F}Gv$ is a reversible code with respect to \mathcal{L} .
- iv) $\mathbb{F}Gv$ is a complementary dual code.

Corollary (Yang & Massey'94)

Then a cyclic code of length n over \mathbb{F} is a complementary dual code if and only if it is reversible.

S. Jitman

୬୯୯ 14/20

Complementary-Dual Checkable Codes

 $\mathbb{F}Gu$ is complementary dual if $\mathbb{F}Gu \cap (\mathbb{F}Gu)^{\perp} = \{0\}$. Assume that $p \nmid n$. Then $\mathbb{F}G$ is code-checkable since the Sylow *p*-subgroup of *G* is trivial.

Theorem

Let $\mathbb{F}Gu$ be checkable with a check element v and \mathcal{L} a list of G satisfying (1). Then the following statements are equivalent.

- i) $\mathbb{F}Gu$ is a complementary dual code.
- ii) \mathbb{F} Gu is a reversible code with respect to \mathcal{L} .
- iii) $\mathbb{F}Gv$ is a reversible code with respect to \mathcal{L} .
- iv) $\mathbb{F}Gv$ is a complementary dual code.

Corollary (Yang & Massey'94)

Then a cyclic code of length n over \mathbb{F} is a complementary dual code if and only if it is reversible.

Trivial MDS Checkable Codes

Lemma

Given a finite field \mathbb{F} and a finite abelian group G, then the element $\sum_{g \in G} g$ is always a zero-divisor in the group ring $\mathbb{F}G$.

Corollary

If a Sylow p-subgroup of G is cyclic, then there exist checkable [n, 1, n] and [n, n - 1, 2] MDS codes from $\mathbb{F}G$.

Remark

Since
$$(\sum_{g \in G} g)^{(-1)} = (\sum_{g \in G} g)$$
, the $[n, 1, n]$ MDS code generated by $\sum_{g \in G} g$
and its dual are reversible.
Moreover, if $p \nmid n$, then they are complementary dual.

Trivial MDS Checkable Codes

Lemma

Given a finite field \mathbb{F} and a finite abelian group G, then the element $\sum_{g \in G} g$ is always a zero-divisor in the group ring $\mathbb{F}G$.

Corollary

If a Sylow p-subgroup of G is cyclic, then there exist checkable [n, 1, n] and [n, n - 1, 2] MDS codes from $\mathbb{F}G$.

Remark

Since $(\sum_{g \in G} g)^{(-1)} = (\sum_{g \in G} g)$, the [n, 1, n] MDS code generated by $\sum_{g \in G} g$ and its dual are reversible. Moreover, if $p \nmid n$, then they are complementary dual.

Trivial MDS Checkable Codes

Lemma

Given a finite field \mathbb{F} and a finite abelian group G, then the element $\sum_{g \in G} g$ is always a zero-divisor in the group ring $\mathbb{F}G$.

Corollary

If a Sylow p-subgroup of G is cyclic, then there exist checkable [n, 1, n] and [n, n - 1, 2] MDS codes from $\mathbb{F}G$.

Remark

Since
$$(\sum_{g \in G} g)^{(-1)} = (\sum_{g \in G} g)$$
, the $[n, 1, n]$ MDS code generated by $\sum_{g \in G} g$
and its dual are reversible.
Moreover, if $p \nmid n$, then they are complementary dual.

Good Checkable Codes

Many Good Codes

2 4 New Codes

The code C_{36} derived from $\mathbb{F}_5(C_6 \times C_6)$ is generated by

 $u_{36} = (021242402043131423014123232100132334)$

with check element

 $v_{36} = (100004000410431304002224330013242110).$

 C_{36} is an optimal $[36, 28, 6]_5$ code.

Shortening C_{36} at the 1*st* position, we obtain an optimal $[35, 27, 6]_5$ code.

Shortening C_{36} at the 1*st* and 2*nd* positions, we obtain an optimal [34, 26, 6]₅ code

Good Checkable Codes

- Many Good Codes
- 2 4 New Codes

The code \mathcal{C}_{36} derived from $\mathbb{F}_5(\mathit{C}_6 \times \mathit{C}_6)$ is generated by

 $u_{36} = (021242402043131423014123232100132334)$

with check element

 $v_{36} = (100004000410431304002224330013242110).$

 \mathcal{C}_{36} is an optimal $[36,28,6]_5$ code.

Shortening C_{36} at the 1*st* position, we obtain an optimal $[35, 27, 6]_5$ code.

Shortening \mathcal{C}_{36} at the 1 st and 2 nd positions, we obtain an optimal $[34, 26, 6]_5$ code

The code C_{72} derived from $\mathbb{F}_5(C_6 \times C_{12})$ is generated by

 $u_{72} = (312411232330313143111221222301122414030013401133430420133323011301020100),$ with check element

 $v_{72} = (10000000441004102234010043124424101300211324012401114201004023203011413).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

17/20

The C_{72} is an $[72, 62, 6]_5$ code.

Conclusion

- **1** a notion of checkable codes and code-checkable group rings.
- 2 necessary and sufficient conditions for a group ring $\mathbb{F}G$ to be code-checkable.
- Ithe dual of checkable codes.
- reversible and complementary dual checkable codes.
- 5 many good codes and 4 new codes.

Open Problems

- lacksquare generalize other properties of cyclic codes to codes in $\mathbb{F}G.$
- study self-orthogonal codes.
- extend this concept to RG, where R is a finite commutative ring and G is a finite group.

Conclusion

- **1** a notion of checkable codes and code-checkable group rings.
- 2 necessary and sufficient conditions for a group ring $\mathbb{F}G$ to be code-checkable.
- Ithe dual of checkable codes.
- reversible and complementary dual checkable codes.
- 5 many good codes and 4 new codes.

Open Problems

- lacksquare generalize other properties of cyclic codes to codes in $\mathbb{F}G.$
- study self-orthogonal codes.
- extend this concept to RG, where R is a finite commutative ring and G is a finite group.

Conclusion

- **1** a notion of checkable codes and code-checkable group rings.
- 2 necessary and sufficient conditions for a group ring $\mathbb{F}G$ to be code-checkable.
- Ithe dual of checkable codes.
- reversible and complementary dual checkable codes.
- 3 many good codes and 4 new codes.

Open Problems

- lacksquare generalize other properties of cyclic codes to codes in $\mathbb{F}G.$
- study self-orthogonal codes.
- extend this concept to RG, where R is a finite commutative ring and G is a finite group.

Conclusion

- **1** a notion of checkable codes and code-checkable group rings.
- 2 necessary and sufficient conditions for a group ring $\mathbb{F}G$ to be code-checkable.
- It the dual of checkable codes.
- reversible and complementary dual checkable codes.
 - many good codes and 4 new codes.

Open Problems

- lacksquare generalize other properties of cyclic codes to codes in $\mathbb{F}G$.
- study self-orthogonal codes.
- extend this concept to RG, where R is a finite commutative ring and G is a finite group.

Conclusion

- **1** a notion of checkable codes and code-checkable group rings.
- 2 necessary and sufficient conditions for a group ring $\mathbb{F}G$ to be code-checkable.
- Ithe dual of checkable codes.
- reversible and complementary dual checkable codes.
- S many good codes and 4 new codes.

- I generalize other properties of cyclic codes to codes in $\mathbb{F}G$.
- 2 study self-orthogonal codes.
- extend this concept to *RG*, where *R* is a finite commutative ring and *G* is a finite group.

Conclusion

- **1** a notion of checkable codes and code-checkable group rings.
- 2 necessary and sufficient conditions for a group ring $\mathbb{F}G$ to be code-checkable.
- Ithe dual of checkable codes.
- reversible and complementary dual checkable codes.
- S many good codes and 4 new codes.

- **1** generalize other properties of cyclic codes to codes in $\mathbb{F}G$.
 - study self-orthogonal codes.
 - extend this concept to *RG*, where *R* is a finite commutative ring and *G* is a finite group.

Conclusion

- **1** a notion of checkable codes and code-checkable group rings.
- 2 necessary and sufficient conditions for a group ring $\mathbb{F}G$ to be code-checkable.
- Ithe dual of checkable codes.
- reversible and complementary dual checkable codes.
- S many good codes and 4 new codes.

- **1** generalize other properties of cyclic codes to codes in $\mathbb{F}G$.
- 2 study self-orthogonal codes.
 - extend this concept to *RG*, where *R* is a finite commutative ring and *G* is a finite group.

Conclusion

- **1** a notion of checkable codes and code-checkable group rings.
- 2 necessary and sufficient conditions for a group ring $\mathbb{F}G$ to be code-checkable.
- It the dual of checkable codes.
- reversible and complementary dual checkable codes.
- S many good codes and 4 new codes.

- **1** generalize other properties of cyclic codes to codes in $\mathbb{F}G$.
- 2 study self-orthogonal codes.
- extend this concept to RG, where R is a finite commutative ring and G is a finite group.

Reference

S. Jitman, S. Ling, H. Liu, and X. Xie, "Checkable codes from group rings", available online : http://arxiv.org/pdf/1012.5498, 2010.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Ξ.

19/20

Thank You!

▲口 → ▲圖 → ▲ 国 → ▲ 国 →