Minimal polynomial over \mathbb{F}_{q} of linear recurring sequence over $\mathbb{F}_{q^{m}}$

Fang-Wei Fu

Chern Institute of Mathematics, Nankai University, Tianjin, China

8 Sept 2010
Joint Work with Zhi-Han Gao

Contents

- Some basic concepts
- Linear recurring sequences
- Polynomial ring automorphism
- Minimal polynomials over \mathbb{F}_{q} and $\mathbb{F}_{q^{m}}$
- Remarks on the lower bound of Meidl and Özbudak

Some basic concepts

- $\mathbb{F}_{q^{m}}$ is a finite field with q^{m} elements, which contains a subfield \mathbb{F}_{q} with q elements.
- $\mathcal{S}=\left(s_{0}, s_{1}, \ldots, s_{n}, \ldots\right)$ is a linear recurring sequence over $\mathbb{F}_{q^{m}}$. The monic polynomial

$$
f(x)=a_{0}+a_{1} x+\cdots+a_{n-1} x^{n-1}+x^{n} \in \mathbb{F}_{q^{m}}[x]
$$

is called a characteristic polynomial over $\mathbb{F}_{q^{m}}$ of \mathcal{S} if
$a_{0} s_{k}+a_{1} s_{k+1}+a_{2} s_{k+2}+\cdots+a_{n-1} s_{k+n-1}+s_{k+n}=0, \quad$ for all $k \geq 0$.

Some basic concepts

- If the characteristic polynomial $f(x)$ is a polynomial over \mathbb{F}_{q}, that is, all $a_{i} \in \mathbb{F}_{q}$, we call $f(x)$ a characteristic polynomial over \mathbb{F}_{q} of \mathcal{S}.
- The minimal polynomial over $\mathbb{F}_{q^{m}}\left(\right.$ resp. $\left.\mathbb{F}_{q}\right)$ of \mathcal{S} is the uniquely determined characteristic polynomial over $\mathbb{F}_{q^{m}}\left(\right.$ resp. $\left.\mathbb{F}_{q}\right)$ of \mathcal{S} with least degree. The linear complexity over $\mathbb{F}_{q^{m}}\left(\right.$ resp. $\left.\mathbb{F}_{q}\right)$ of \mathcal{S} is the degree of the minimal polynomial over $\mathbb{F}_{q^{m}}\left(\right.$ resp. $\left.\mathbb{F}_{q}\right)$ of \mathcal{S}.
- Let $h(x)$ be the minimal polynomial over $\mathbb{F}_{q^{m}}$ of \mathcal{S}.
- Let $H(x)$ be the minimal polynomial over \mathbb{F}_{q} of \mathcal{S}.
- It is known that $h(x) \mid f(x)$ for any characteristic polynomial $f(x)$ over $\mathbb{F}_{q^{m}}$ of \mathcal{S}, especially $h(x) \mid H(x)$.
- Similarly, we have $H(x) \mid f(x)$ for any characteristic polynomial $f(x)$ over \mathbb{F}_{q} of \mathcal{S}.
- Some analogous definitions on m-fold multisequence $\mathbf{S}^{(m)}=\left(S_{1}, S_{2}, \ldots, S_{m}\right)$ over \mathbb{F}_{q}, that is, each S_{i} is a sequence over \mathbb{F}_{q}.
- The monic polynomial $g(x) \in \mathbb{F}_{q}[x]$ is called a joint characteristic polynomial of $\mathbf{S}^{(m)}$ if $g(x)$ is a characteristic polynomial of S_{j} for each $1 \leq j \leq m$.
- The joint minimal polynomial of $\mathbf{S}^{(m)}$ is the uniquely determined joint characteristic polynomial of $\mathbf{S}^{(m)}$ with least degree, and the joint linear complexity of $\mathbf{S}^{(m)}$ is the degree of the joint minimal polynomial of $\mathbf{S}^{(m)}$.
- Since $\mathbb{F}_{q^{m}}$ and \mathbb{F}_{q}^{m} are isomorphic vector spaces over the finite field \mathbb{F}_{q}, a linear recurring sequence \mathcal{S} over $\mathbb{F}_{q^{m}}$ is identified with an m-fold multisequence $\mathbf{S}^{(m)}$ over \mathbb{F}_{q}.
- The joint minimal polynomial and joint linear complexity of the m-fold multisequence $\mathbf{S}^{(m)}$ are the minimal polynomial and linear complexity over \mathbb{F}_{q} of \mathcal{S}, respectively.
- Recently, motivated by the study of vectorized stream cipher systems or word-based stream cipher systems, the joint linear complexity and joint minimal polynomial of multisequences have been investigated.

Linear recurring sequences

- Let $f(x)$ be a monic polynomial over \mathbb{F}_{q}. Denote $\mathcal{M}(f(x))$ the set of all linear recurring sequences over \mathbb{F}_{q} with characteristic polynomial $f(x)$. Note that $\mathcal{M}(f(x))$ is a vector space over \mathbb{F}_{q} with dimension $\operatorname{deg}(f(x))$.

Theorem (Lidl-Niederreiter Book)

Let $f_{1}(x), \ldots, f_{k}(x)$ be monic polynomials over \mathbb{F}_{q}. If $f_{1}(x), \ldots, f_{k}(x)$ are pairwise relatively prime, then the vector space $\mathcal{M}\left(f_{1}(x) \cdots f_{k}(x)\right)$ is the direct sum of the subspaces $\mathcal{M}\left(f_{1}(x)\right), \cdots, \mathcal{M}\left(f_{k}(x)\right)$, that is

$$
\mathcal{M}\left(f_{1}(x) \cdots f_{k}(x)\right)=\mathcal{M}\left(f_{1}(x)\right) \dot{+} \cdots+\mathcal{M}\left(f_{k}(x)\right) .
$$

Theorem (Composition of sequence I, Lidl-Niederreiter Book)

Let $S_{1}, S_{2}, \ldots, S_{k}$ be linear recurring sequences over \mathbb{F}_{q}. The minimal polynomials over \mathbb{F}_{q} of $S_{1}, S_{2}, \ldots, S_{k}$ are $h_{1}(x), h_{2}(x), \ldots, h_{k}(x)$ respectively. If $h_{1}(x), h_{2}(x), \ldots, h_{k}(x)$ are pairwise relatively prime, then the minimal polynomial over \mathbb{F}_{q} of $\sum_{i=1}^{k} S_{i}$ is the product of $h_{1}(x), h_{2}(x), \ldots, h_{k}(x)$.

It is easy to extend this result to the following case:

Lemma (Composition of sequence II)

Let $\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{k}$ be linear recurring sequences over $\mathbb{F}_{q^{m}}$. The minimal polynomials over \mathbb{F}_{q} of $\mathcal{S}_{1}, \mathcal{S}_{2}, \ldots, \mathcal{S}_{k}$ are $H_{1}(x), H_{2}(x), \ldots, H_{k}(x)$ respectively. If $H_{1}(x), H_{2}(x), \ldots, H_{k}(x)$ are pairwise relatively prime over \mathbb{F}_{q}, then the minimal polynomial over \mathbb{F}_{q} of $\sum_{i=1}^{k} \mathcal{S}_{i}$ is the product of $H_{1}(x), H_{2}(x), \ldots, H_{k}(x)$.

Using these results, we could obtain the following lemma on the decomposition of linear recurring sequence:

Lemma (Decomposition of sequence)

Let S be a linear recurring sequence over \mathbb{F}_{q}. The minimal polynomial over \mathbb{F}_{q} of S is given by $h(x)=h_{1}(x) h_{2}(x) \cdots h_{k}(x)$ where $h_{1}(x), h_{2}(x), \ldots, h_{k}(x)$ are monic polynomials over \mathbb{F}_{q}. If $h_{1}(x), h_{2}(x), \ldots, h_{k}(x)$ are pairwise relatively prime, then there uniquely exist sequences $S_{1}, S_{2}, \ldots, S_{k}$ over \mathbb{F}_{q} such that

$$
S=S_{1}+S_{2}+\cdots+S_{k}
$$

and the minimal polynomials over \mathbb{F}_{q} of $S_{1}, S_{2}, \ldots, S_{k}$ are $h_{1}(x), h_{2}(x), \ldots, h_{k}(x)$ respectively.

Polynomial ring automorphism

Definition

We define σ to be a mapping from the polynomial ring $\mathbb{F}_{q^{m}}[x]$ to itself as follows: For $f(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n} \in \mathbb{F}_{q^{m}}[x]$,

$$
\begin{gathered}
\sigma: \mathbb{F}_{q^{m}}[x] \longrightarrow \mathbb{F}_{q^{m}}[x], \\
f(x) \longrightarrow \sigma(f(x))
\end{gathered}
$$

where $\sigma(f(x))=a_{0}^{q}+a_{1}^{q} x+\cdots+a_{n}^{q} x^{n}$.

- σ is a ring automorphism of $\mathbb{F}_{q^{m}}[x]$.
- $\sigma(f(x) g(x))=\sigma(f(x)) \sigma(g(x))$, for any $f(x), g(x) \in \mathbb{F}_{q^{m}}[x]$.
- Denote $\sigma^{(k)}$ the k th usual composition of σ. And $\sigma^{(0)}$ is the identity mapping by custom.
- $\sigma^{(m)}(f(x))=f(x)$.
- Denote $k(f)$ the minimum positive integer k such that $\sigma^{(k)}(f(x))=f(x)$.

Lemma

For any $f(x) \in \mathbb{F}_{q^{m}}[x]$ and positive integer $I, \sigma^{(1)}(f(x))=f(x)$ if and only if $k(f) \mid$.

Lemma

Let $f(x)$ be a polynomial over $\mathbb{F}_{q^{m}}$. Then $\sigma(f(x))$ is irreducible over $\mathbb{F}_{q^{m}}$ if and only if $f(x)$ is irreducible over $\mathbb{F}_{q^{m}}$.

Equivalence relation $\stackrel{\sigma}{\sim}$

Define an equivalence relation $\stackrel{\sigma}{\sim}$ on $\mathbb{F}_{q^{m}}[x]: f(x) \stackrel{\sigma}{\sim} g(x)$ if and only if there exists positive integer j such that $\sigma^{(j)}(f(x))=g(x)$. The equivalence classes induced by this equivalence relation $\stackrel{\dot{\sim}}{\sim}$ are called σ-equivalence classes.

Theorem

Let $f(x)$ be a monic irreducible polynomial in $\mathbb{F}_{q^{m}}[x]$, then the product

$$
f(x) \sigma(f(x)) \sigma^{(2)}(f(x)) \cdots \sigma^{(k(f)-1)}(f(x))
$$

is an irreducible polynomial in $\mathbb{F}_{q}[x]$.
Denote

$$
R(f(x))=f(x) \sigma(f(x)) \cdots \sigma^{(k(f)-1)}(f(x)),
$$

which is monic irreducible in $\mathbb{F}_{q}[x]$.

Theorem (Lidl-Niederreiter Book, Theorem 3.46)

Let $f(x)$ be a monic irreducible polynomial over \mathbb{F}_{q} and $n=\operatorname{deg}(f(x))$. Let m be a positive integer. Denote $u=\operatorname{gcd}(n, m)$. Then the canonical factorization of $f(x)$ into monic irreducibles over $\mathbb{F}_{q^{m}}$ is of the form

$$
f(x)=f_{1}(x) f_{2}(x) \cdots f_{u}(x)
$$

where $f_{1}(x), f_{2}(x), \ldots, f_{u}(x)$ are distinct monic irreducible polynomials over $\mathbb{F}_{q^{m}}$ with

$$
\operatorname{deg}\left(f_{1}\right)=\operatorname{deg}\left(f_{2}\right)=\cdots=\operatorname{deg}\left(f_{u}\right)=n / u .
$$

We give a refined theorem based on our result:

Theorem

Let $f(x)$ be a monic irreducible polynomial over \mathbb{F}_{q} and $n=\operatorname{deg}(f(x))$. Let m be a positive integer. Denote $u=\operatorname{gcd}(n, m)$. Then the canonical factorization of $f(x)$ into monic irreducibles over $\mathbb{F}_{q^{m}}$ is given by

$$
f(x)=h(x) \sigma(h(x)) \cdots \sigma^{(k(h)-1)}(h(x))
$$

where $h(x)$ is a monic irreducible polynomial over $\mathbb{F}_{q^{m}}$ and $k(h)=u$.

Minimal polynomials over \mathbb{F}_{q} and $\mathbb{F}_{q^{m}}$

Theorem

Let \mathcal{S} be a linear recurring sequence over $\mathbb{F}_{q^{m}}$ with minimal polynomial $h(x) \in \mathbb{F}_{q^{m}}[x]$. Assume that the canonical factorization of $h(x)$ in $\mathbb{F}_{q^{m}}[x]$ is given by

$$
h(x)=\prod_{j=1}^{l} P_{j 0}^{e_{j 0}} P_{j 1}^{e_{j 1}} \cdots P_{j j_{j}}^{e_{j j}}
$$

where $\left\{P_{u v}\right\}$ are distinct monic irreducible polynomials in $\mathbb{F}_{q^{m}}[x]$, $P_{j 0}, P_{j 1}, \ldots, P_{j i j}$ are in the same σ-equivalence class and $P_{u v}, P_{t w}$ are in the different σ-equivalence classes when $u \neq t$. Then the minimal polynomial over \mathbb{F}_{q} of \mathcal{S} is given by $H(x)=\prod_{j=1}^{l} R\left(P_{j 0}\right)^{e_{j}}$ where $e_{j}=\max \left\{e_{j 0}, e_{j 1}, \ldots, e_{j j_{j}}\right\}$ for $1 \leq j \leq 1$.

Sketch of the proof:

- Decomposition of \mathcal{S} :

$$
\mathcal{S}=\mathcal{S}_{1}+\mathcal{S}_{2}+\cdots+\mathcal{S}_{1}
$$

satisfying that the minimal polynomial over $\mathbb{F}_{q^{m}}$ of \mathcal{S}_{j} is $P_{j 0}^{e_{j 0}} P_{j 1}^{e_{j 1}} \cdots P_{j j_{j}}^{e_{f_{j j} j}}$ for $1 \leq j \leq 1$.

- The minimal polynomial $H_{j}(x)$ over \mathbb{F}_{q} of \mathcal{S}_{j} is $R\left(P_{j 0}\right)^{e_{j}}$.
- For any $0 \leq u \neq v \leq I$, we claim that $R\left(P_{u 0}\right)^{e_{u}}$ and $R\left(P_{v 0}\right)^{e_{v}}$ are relatively prime.
- The minimal polynomial over \mathbb{F}_{q} of $\mathcal{S}=\sum_{j=1}^{\prime} \mathcal{S}_{j}$ is the product of $H_{1}(x), H_{2}(x), \ldots, H_{l}(x)$, i.e., $H(x)=\prod_{j=1}^{l} R\left(P_{j 0}\right)^{e_{j}}$.

Note that $\operatorname{deg}\left(R\left(P_{j 0}\right)\right)=k\left(P_{j 0}\right) \operatorname{deg}\left(P_{j 0}\right)$.

Corollary

The linear complexity over \mathbb{F}_{q} of \mathcal{S} is given by

$$
L_{\mathbb{F}_{q}}(\mathcal{S})=\sum_{j=1}^{\prime} e_{j} k\left(P_{j 0}\right) \operatorname{deg}\left(P_{j 0}\right)
$$

where $k(f)$ is defined in previous section.

Theorem (Relation between the minimal polynomials)

Let $f(x)$ be a polynomial over \mathbb{F}_{q} with $\operatorname{deg}(f) \geq 1$. Suppose that

$$
f=r_{1}^{e_{1}} r_{2}^{e_{2}} \cdots r_{1}^{e_{1}}, \quad e_{1}, e_{2}, \ldots, e_{l}>0
$$

is the canonical factorization of f into monic irreducibles over \mathbb{F}_{q}. Denote $n_{i}=\operatorname{deg}\left(r_{i}\right)$. Suppose that the canonical factorization of $r_{i}(x)$ into monic irreducibles over $\mathbb{F}_{q^{m}}$ is given by

$$
r_{i}(x)=P_{i}(x) \sigma^{(1)}\left(P_{i}(x)\right) \cdots \sigma^{\left(u_{i}-1\right)}\left(P_{i}(x)\right)
$$

where $u_{i}=\operatorname{gcd}\left(n_{i}, m\right)=k\left(P_{i}(x)\right)$. Let \mathcal{S} be a linear recurring sequence over $\mathbb{F}_{q^{m}}$. Then, the minimal polynomial over \mathbb{F}_{q} of \mathcal{S} is $f(x)$ if and only if the minimal polynomial $h(x)$ over $\mathbb{F}_{q^{m}}$ of \mathcal{S} is of the following form: $h(x)=\prod_{i=1}^{1} P_{i}^{e_{i j}} \sigma^{(1)}\left(P_{i}\right)^{e_{i 1}} \cdots \sigma^{\left(u_{i}-1\right)}\left(P_{i}\right)^{e_{e_{i}-1}}$ where $0 \leq e_{i j} \leq e_{i}$ and $\max \left\{e_{i 0}, e_{i 1}, \ldots, e_{i_{i}-1}\right\}=e_{i}$ for every $i=1,2, \ldots, l$.

We give an example to illustrate the above theorem and corollary:

- Let $\mathbb{F}_{2} \subseteq \mathbb{F}_{4}$ and let α be a root of $x^{2}+x+1$ in \mathbb{F}_{4}. So, $\mathbb{F}_{4}=\{0,1, \alpha, 1+\alpha\}$.
- Let \mathcal{S} be a periodic sequence over \mathbb{F}_{4} with the least period 15 . The first period terms of \mathcal{S} are given by

$$
\alpha^{2}, \alpha, \alpha, \alpha^{2}, \alpha^{2}, \alpha^{2}, 0, \alpha, \alpha^{2}, \alpha, 0, \alpha, 0,0,1 .
$$

- The minimal polynomial over \mathbb{F}_{4} of \mathcal{S} is $x^{3}+\alpha^{2} x^{2}+\alpha^{2}$.
- We first factor $x^{3}+\alpha^{2} x^{2}+\alpha^{2}$ into irreducible polynomials over \mathbb{F}_{4} :

$$
x^{3}+\alpha^{2} x^{2}+\alpha^{2}=(x+\alpha)\left(x^{2}+x+\alpha\right)
$$

- Note that

$$
\begin{gathered}
\sigma(x+\alpha)=x+\alpha^{2}, \quad \sigma^{(2)}(x+\alpha)=x+\alpha \\
\sigma\left(x^{2}+x+\alpha\right)=x^{2}+x+\alpha^{2}, \\
\sigma^{(2)}\left(x^{2}+x+\alpha\right)=x^{2}+x+\alpha
\end{gathered}
$$

- $k(x+\alpha)=2, \quad k\left(x^{2}+x+\alpha\right)=2$.
- The minimal polynomial over \mathbb{F}_{2} of \mathcal{S} is

$$
\begin{aligned}
& (x+\alpha) \sigma(x+\alpha)\left(x^{2}+x+\alpha\right) \sigma\left(x^{2}+x+\alpha\right) \\
= & \left(x^{2}+x+1\right)\left(x^{4}+x+1\right)=x^{6}+x^{5}+x^{4}+x^{3}+1
\end{aligned}
$$

- The linear complexity over \mathbb{F}_{2} of \mathcal{S} is

$$
\begin{aligned}
L= & 1 \times k(x+\alpha) \times \operatorname{deg}(x+\alpha) \\
& +1 \times k\left(x^{2}+x+\alpha\right) \times \operatorname{deg}\left(x^{2}+x+\alpha\right) \\
= & 2+2 \times 2=6
\end{aligned}
$$

Remarks on the lower bound of Meidl and Özbudak

Meidl and Özbudak derived a lower bound on the linear complexity over $\mathbb{F}_{q^{m}}$ of a linear recurring sequence \mathcal{S} over $\mathbb{F}_{q^{m}}$ with given minimal polynomial $g(x)$ over \mathbb{F}_{q}.

The lower bound of Meidl and Özbudak

Let $f(x)$ be a monic polynomial in $\mathbb{F}_{q}[x]$ with the canonical factorization into irreducible polynomials over \mathbb{F}_{q} given by

$$
f=r_{1}^{e_{1}} r_{2}^{e_{2}} \ldots r_{k}^{e_{k}}, \quad e_{1}, e_{2}, \ldots, e_{k}>0
$$

Suppose that \mathcal{S} is a linear recurring sequence over $\mathbb{F}_{q^{m}}$ and the minimal polynomial over \mathbb{F}_{q} of \mathcal{S} is $f(x)$. Then, the linear complexity $L_{\mathbb{F}_{q^{m}}}(\mathcal{S})$ over $\mathbb{F}_{q^{m}}$ of \mathcal{S} is lower bounded by

$$
\iota_{\mathbb{F}_{q^{m}}}(\mathcal{S}) \geq \sum_{i=1}^{k} e_{i} \frac{n_{i}}{\operatorname{gcd}\left(n_{i}, m\right)}
$$

where $n_{i}=\operatorname{deg}\left(r_{i}\right)$ for $i=1,2, \ldots, k$.

We show that this lower bound is tight if and only if the minimal polynomial over $\mathbb{F}_{q^{m}}$ of \mathcal{S} is in a certain form.

Sufficient and necessary condition

Furthermore, suppose that the canonical factorization of $r_{i}(x)$ into monic irreducibles over $\mathbb{F}_{q^{m}}$ is given by

$$
r_{i}(x)=P_{i}(x) \sigma^{(1)}\left(P_{i}(x)\right) \ldots \sigma^{\left(u_{i}-1\right)}\left(P_{i}(x)\right)
$$

where $u_{i}=\operatorname{gcd}\left(n_{i}, m\right)$ for $i=1,2, \ldots, k$. Then, the lower bound is tight if and only if the minimal polynomial $h(x)$ over $\mathbb{F}_{q^{m}}$ of \mathcal{S} is of the following form:

$$
h(x)=\prod_{i=1}^{k} \sigma^{\left(j_{i}\right)}\left(P_{i}\right)^{e_{i}}
$$

where $0 \leq j_{i} \leq u_{i}-1$ for $i=1,2, \ldots, k$.

Conclusions

- We introduce and give some basic concepts and results on linear recurring sequences.
- We introduce a ring automorphism of the polynomial ring $\mathbb{F}_{q^{m}}[x]$ and derive some results on this polynomial ring automorphism that are crucial to establish the main results.
- We determine the minimal polynomial and linear complexity over \mathbb{F}_{q} of a linear recurring sequence \mathcal{S} over $\mathbb{F}_{q^{m}}$ with minimal polynomial $h(x)$ over $\mathbb{F}_{q^{m}}$.
- We give a new proof for the lower bound of Meidl and Özbudak and give the necessary and sufficient condition for this lower bound to be tight.

References

围 R. Lidl, H. Niederreiter, Finite Fields, Addison-Wesley Publishing Company, Massachusetts, 1983.
冨 W. Meidl, F. Özbudak, Linear complexity over \mathbb{F}_{q} and over $\mathbb{F}_{q^{m}}$ for linear recurring sequences, Finite Fields Appl. 15 (2009) 110-124.
R Z.-H. Gao and F.-W. Fu, The minimal polynomial over \mathbb{F}_{q} of linear recurring sequence over $\mathbb{F}_{q^{m}}$, Finite Fields Appl. 15 (2009) 774-784.

Thank you for your attention!

