Minimal polynomial over \mathbb{F}_q of linear recurring sequence over \mathbb{F}_{q^m}

Fang-Wei Fu

Chern Institute of Mathematics, Nankai University, Tianjin, China

8 Sept 2010 Joint Work with Zhi-Han Gao

Fang-Wei Fu (Nankai University)

Minimal Polynomial of Sequence

8 Sept 2010 NTU Singapore 1 / 31

Contents

- Some basic concepts
- Linear recurring sequences
- Polynomial ring automorphism
- Minimal polynomials over \mathbb{F}_q and \mathbb{F}_{q^m}
- Remarks on the lower bound of Meidl and Özbudak

Some basic concepts

- \$\mathbb{F}_{q^m}\$ is a finite field with \$q^m\$ elements, which contains a subfield \$\mathbb{F}_q\$ with \$q\$ elements.
- \$\mathcal{S} = (s_0, s_1, \ldots, s_n, \ldots)\$ is a linear recurring sequence over \$\mathbb{F}_{q^m}\$. The monic polynomial

$$f(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + x^n \in \mathbb{F}_{q^m}[x]$$

is called a characteristic polynomial over \mathbb{F}_{q^m} of \mathcal{S} if

$$a_0s_k + a_1s_{k+1} + a_2s_{k+2} + \dots + a_{n-1}s_{k+n-1} + s_{k+n} = 0$$
, for all $k \ge 0$.

Fang-Wei Fu (Nankai University)

Minimal Polynomial of Sequence 8 Security 8

Some basic concepts

- If the characteristic polynomial f(x) is a polynomial over F_q, that is, all a_i ∈ F_q, we call f(x) a characteristic polynomial over F_q of S.
- The minimal polynomial over \$\mathbb{F}_{q^m}\$ (resp. \$\mathbb{F}_q\$) of \$\mathcal{S}\$ is the uniquely determined characteristic polynomial over \$\mathbb{F}_{q^m}\$ (resp. \$\mathbb{F}_q\$) of \$\mathcal{S}\$ with least degree. The linear complexity over \$\mathbb{F}_{q^m}\$ (resp. \$\mathbb{F}_q\$) of \$\mathcal{S}\$ is the degree of the minimal polynomial over \$\mathbb{F}_{q^m}\$ (resp. \$\mathbb{F}_q\$) of \$\mathcal{S}\$.

- Let h(x) be the minimal polynomial over \mathbb{F}_{q^m} of \mathcal{S} .
- Let H(x) be the minimal polynomial over \mathbb{F}_q of \mathcal{S} .
- It is known that h(x)|f(x) for any characteristic polynomial f(x) over 𝔽_{q^m} of 𝔅, especially h(x)|H(x).
- Similarly, we have H(x)|f(x) for any characteristic polynomial f(x) over 𝔽_q of 𝔅.

- Some analogous definitions on m-fold multisequence
 S^(m) = (S₁, S₂, ..., S_m) over F_q, that is, each S_i is a sequence over F_q.
- The monic polynomial g(x) ∈ 𝔽_q[x] is called a joint characteristic polynomial of S^(m) if g(x) is a characteristic polynomial of S_j for each 1 ≤ j ≤ m.
- The joint minimal polynomial of **S**^(m) is the uniquely determined joint characteristic polynomial of **S**^(m) with least degree, and the joint linear complexity of **S**^(m) is the degree of the joint minimal polynomial of **S**^(m).

- Since \mathbb{F}_{q^m} and \mathbb{F}_q^m are isomorphic vector spaces over the finite field \mathbb{F}_q , a linear recurring sequence \mathcal{S} over \mathbb{F}_{q^m} is identified with an *m*-fold multisequence $\mathbf{S}^{(m)}$ over \mathbb{F}_q .
- The joint minimal polynomial and joint linear complexity of the m-fold multisequence S^(m) are the minimal polynomial and linear complexity over F_q of S, respectively.
- Recently, motivated by the study of vectorized stream cipher systems or word-based stream cipher systems, the joint linear complexity and joint minimal polynomial of multisequences have been investigated.

Linear recurring sequences

Let f(x) be a monic polynomial over 𝔽_q. Denote (f(x)) the set of all linear recurring sequences over 𝔽_q with characteristic polynomial f(x). Note that (f(x)) is a vector space over 𝔽_q with dimension deg(f(x)).

Theorem (Lidl-Niederreiter Book)

Let $f_1(x), \ldots, f_k(x)$ be monic polynomials over \mathbb{F}_q . If $f_1(x), \ldots, f_k(x)$ are pairwise relatively prime, then the vector space $\mathcal{M}(f_1(x) \cdots f_k(x))$ is the direct sum of the subspaces $\mathcal{M}(f_1(x)), \cdots, \mathcal{M}(f_k(x))$, that is

$$\mathcal{M}(f_1(x)\cdots f_k(x)) = \mathcal{M}(f_1(x)) + \cdots + \mathcal{M}(f_k(x)).$$

Fang-Wei Fu (Nankai University)

Theorem (Composition of sequence I, Lidl-Niederreiter Book)

Let S_1, S_2, \ldots, S_k be linear recurring sequences over \mathbb{F}_q . The minimal polynomials over \mathbb{F}_q of S_1, S_2, \ldots, S_k are $h_1(x), h_2(x), \ldots, h_k(x)$ respectively. If $h_1(x), h_2(x), \ldots, h_k(x)$ are pairwise relatively prime, then the minimal polynomial over \mathbb{F}_q of $\sum_{i=1}^k S_i$ is the product of $h_1(x), h_2(x), \ldots, h_k(x)$.

It is easy to extend this result to the following case:

Lemma (Composition of sequence II)

Let S_1, S_2, \ldots, S_k be linear recurring sequences over \mathbb{F}_{q^m} . The minimal polynomials over \mathbb{F}_q of S_1, S_2, \ldots, S_k are $H_1(x), H_2(x), \ldots, H_k(x)$ respectively. If $H_1(x), H_2(x), \ldots, H_k(x)$ are pairwise relatively prime over \mathbb{F}_q , then the minimal polynomial over \mathbb{F}_q of $\sum_{i=1}^k S_i$ is the product of $H_1(x), H_2(x), \ldots, H_k(x)$.

Fang-Wei Fu (Nankai University)

Minimal Polynomial of Sequence 8 Sept 2010 NTU Singapore 10 / 31

Using these results, we could obtain the following lemma on the decomposition of linear recurring sequence:

Lemma (Decomposition of sequence)

Let S be a linear recurring sequence over \mathbb{F}_q . The minimal polynomial over \mathbb{F}_q of S is given by $h(x) = h_1(x)h_2(x)\cdots h_k(x)$ where $h_1(x), h_2(x), \ldots, h_k(x)$ are monic polynomials over \mathbb{F}_q . If $h_1(x), h_2(x), \ldots, h_k(x)$ are pairwise relatively prime, then there uniquely exist sequences S_1, S_2, \ldots, S_k over \mathbb{F}_q such that

$$S=S_1+S_2+\cdots+S_k$$

and the minimal polynomials over \mathbb{F}_q of S_1, S_2, \ldots, S_k are $h_1(x), h_2(x), \ldots, h_k(x)$ respectively.

Fang-Wei Fu (Nankai University)

11 / 31

Polynomial ring automorphism

Definition

We define σ to be a mapping from the polynomial ring $\mathbb{F}_{q^m}[x]$ to itself as follows: For $f(x) = a_0 + a_1x + \cdots + a_nx^n \in \mathbb{F}_{q^m}[x]$,

$$\sigma: \mathbb{F}_{q^m}[x] \longrightarrow \mathbb{F}_{q^m}[x],$$

$$f(x) \longrightarrow \sigma(f(x))$$

where $\sigma(f(x)) = a_0^q + a_1^q x + \cdots + a_n^q x^n$.

Fang-Wei Fu (Nankai University)

Minimal Polynomial of Sequence 8 Sept 2010 NTU

- σ is a ring automorphism of $\mathbb{F}_{q^m}[x]$.
- $\sigma(f(x)g(x)) = \sigma(f(x))\sigma(g(x))$, for any $f(x), g(x) \in \mathbb{F}_{q^m}[x]$.
- Denote $\sigma^{(k)}$ the *k*th usual composition of σ . And $\sigma^{(0)}$ is the identity mapping by custom.
- $\sigma^{(m)}(f(x)) = f(x).$
- Denote k(f) the minimum positive integer k such that $\sigma^{(k)}(f(x)) = f(x)$.

Lemma

For any $f(x) \in \mathbb{F}_{q^m}[x]$ and positive integer *I*, $\sigma^{(I)}(f(x)) = f(x)$ if and only if k(f)|I.

Lemma

Let f(x) be a polynomial over \mathbb{F}_{q^m} . Then $\sigma(f(x))$ is irreducible over \mathbb{F}_{q^m} if and only if f(x) is irreducible over \mathbb{F}_{q^m} .

Equivalence relation $\stackrel{\sigma}{\sim}$

Define an equivalence relation $\stackrel{\sigma}{\sim}$ on $\mathbb{F}_{q^m}[x]$: $f(x) \stackrel{\sigma}{\sim} g(x)$ if and only if there exists positive integer j such that $\sigma^{(j)}(f(x)) = g(x)$. The equivalence classes induced by this equivalence relation $\stackrel{\sigma}{\sim}$ are called σ -equivalence classes.

Theorem

Let f(x) be a monic irreducible polynomial in $\mathbb{F}_{q^m}[x]$, then the product

$$f(x)\sigma(f(x))\sigma^{(2)}(f(x))\cdots\sigma^{(k(f)-1)}(f(x))$$

is an irreducible polynomial in $\mathbb{F}_q[x]$.

Denote

$$R(f(x)) = f(x)\sigma(f(x))\cdots\sigma^{(k(f)-1)}(f(x)),$$

which is monic irreducible in $\mathbb{F}_q[x]$.

Fang-Wei Fu (Nankai University)

Minimal Polynomial of Sequence 8 Sept 2010 NTU Singapore 16 / 31

Theorem (Lidl-Niederreiter Book, Theorem 3.46)

Let f(x) be a monic irreducible polynomial over \mathbb{F}_q and $n = \deg(f(x))$. Let m be a positive integer. Denote $u = \gcd(n, m)$. Then the canonical factorization of f(x) into monic irreducibles over \mathbb{F}_{q^m} is of the form

$$f(x) = f_1(x)f_2(x)\cdots f_u(x)$$

where $f_1(x), f_2(x), \ldots, f_u(x)$ are distinct monic irreducible polynomials over \mathbb{F}_{q^m} with

$$\deg(f_1) = \deg(f_2) = \cdots = \deg(f_u) = n/u.$$

Fang-Wei Fu (Nankai University)

Minimal Polynomial of Sequence 8 Sept 2010 NTU Singapore

17 / 31

We give a refined theorem based on our result:

Theorem

Let f(x) be a monic irreducible polynomial over \mathbb{F}_q and $n = \deg(f(x))$. Let m be a positive integer. Denote $u = \gcd(n, m)$. Then the canonical factorization of f(x) into monic irreducibles over \mathbb{F}_{q^m} is given by

$$f(x) = h(x)\sigma(h(x))\cdots\sigma^{(k(h)-1)}(h(x))$$

where h(x) is a monic irreducible polynomial over \mathbb{F}_{q^m} and k(h) = u.

Fang-Wei Fu (Nankai University)

Minimal Polynomial of Sequence 8 Sept 2010 NTU Singapore 18 / 31

Minimal polynomials over \mathbb{F}_q and \mathbb{F}_{q^m}

Theorem

Let S be a linear recurring sequence over \mathbb{F}_{q^m} with minimal polynomial $h(x) \in \mathbb{F}_{q^m}[x]$. Assume that the canonical factorization of h(x) in $\mathbb{F}_{q^m}[x]$ is given by

$$h(x) = \prod_{j=1}^{l} P_{j0}^{e_{j0}} P_{j1}^{e_{j1}} \cdots P_{jl_j}^{e_{jl_j}}$$

where $\{P_{uv}\}$ are distinct monic irreducible polynomials in $\mathbb{F}_{q^m}[x]$, $P_{j0}, P_{j1}, \ldots, P_{ji_j}$ are in the same σ -equivalence class and P_{uv} , P_{tw} are in the different σ -equivalence classes when $u \neq t$. Then the minimal polynomial over \mathbb{F}_q of S is given by $H(x) = \prod_{j=1}^l R(P_{j0})^{e_j}$ where $e_j = \max\{e_{j0}, e_{j1}, \ldots, e_{ji_j}\}$ for $1 \leq j \leq l$.

Fang-Wei Fu (Nankai University)

Sketch of the proof:

• Decomposition of \mathcal{S} :

$$S = S_1 + S_2 + \cdots + S_l$$

satisfying that the minimal polynomial over \mathbb{F}_{q^m} of S_j is $P_{j0}^{e_{j0}}P_{j1}^{e_{j1}}\cdots P_{ji_j}^{e_{ji_j}}$ for $1 \leq j \leq l$.

• The minimal polynomial $H_j(x)$ over \mathbb{F}_q of \mathcal{S}_j is $R(P_{j0})^{e_j}$.

Composition of irreducible polynomial

- For any $0 \le u \ne v \le l$, we claim that $R(P_{u0})^{e_u}$ and $R(P_{v0})^{e_v}$ are relatively prime.
- The minimal polynomial over \mathbb{F}_q of $\mathcal{S} = \sum_{j=1}^{l} \mathcal{S}_j$ is the product of $H_1(x), H_2(x), \ldots, H_l(x)$, i.e., $H(x) = \prod_{j=1}^{l} R(P_{j0})^{e_j}$.

Composition of sequenc

Note that $\deg(R(P_{j0})) = k(P_{j0}) \deg(P_{j0})$.

Corollary

The linear complexity over \mathbb{F}_q of S is given by

$$L_{\mathbb{F}_q}(\mathcal{S}) = \sum_{j=1}^{l} e_j k(P_{j0}) \deg(P_{j0})$$

where k(f) is defined in previous section.

Fang-Wei Fu (Nankai University)

Minimal Polynomial of Sequence 8 Sept 2010 NTU Singapore 21 / 31

Theorem (Relation between the minimal polynomials) Let f(x) be a polynomial over \mathbb{F}_q with deg $(f) \ge 1$. Suppose that

$$f = r_1^{e_1} r_2^{e_2} \cdots r_l^{e_l}, \quad e_1, e_2, \dots, e_l > 0$$

is the canonical factorization of f into monic irreducibles over \mathbb{F}_q . Denote $n_i = \deg(r_i)$. Suppose that the canonical factorization of $r_i(x)$ into monic irreducibles over \mathbb{F}_{q^m} is given by

$$r_i(x) = P_i(x)\sigma^{(1)}(P_i(x))\cdots\sigma^{(u_i-1)}(P_i(x))$$

where $u_i = \gcd(n_i, m) = k(P_i(x))$. Let S be a linear recurring sequence over \mathbb{F}_{q^m} . Then, the minimal polynomial over \mathbb{F}_q of S is f(x) if and only if the minimal polynomial h(x) over \mathbb{F}_{q^m} of S is of the following form: $h(x) = \prod_{i=1}^{l} P_i^{e_{i0}} \sigma^{(1)}(P_i)^{e_{i1}} \cdots \sigma^{(u_i-1)}(P_i)^{e_{iu_i-1}}$ where $0 \le e_{ij} \le e_i$ and $\max\{e_{i0}, e_{i1}, \dots, e_{iu_i-1}\} = e_i$ for every $i = 1, 2, \dots, l$.

Fang-Wei Fu (Nankai University)

We give an example to illustrate the above theorem and corollary:

- Let $\mathbb{F}_2 \subseteq \mathbb{F}_4$ and let α be a root of $x^2 + x + 1$ in \mathbb{F}_4 . So, $\mathbb{F}_4 = \{0, 1, \alpha, 1 + \alpha\}.$
- Let S be a periodic sequence over 𝔽₄ with the least period 15.
 The first period terms of S are given by

$$\alpha^2, \alpha, \alpha, \alpha^2, \alpha^2, \alpha^2, \mathbf{0}, \alpha, \alpha^2, \alpha, \mathbf{0}, \alpha, \mathbf{0}, \mathbf{0}, \mathbf{1}.$$

• The minimal polynomial over \mathbb{F}_4 of S is $x^3 + \alpha^2 x^2 + \alpha^2$.

• We first factor $x^3 + \alpha^2 x^2 + \alpha^2$ into irreducible polynomials over \mathbb{F}_4 :

$$x^3 + \alpha^2 x^2 + \alpha^2 = (x + \alpha)(x^2 + x + \alpha).$$

Note that

$$\sigma(x+\alpha) = x + \alpha^2, \quad \sigma^{(2)}(x+\alpha) = x + \alpha,$$

$$\sigma(x^2 + x + \alpha) = x^2 + x + \alpha^2, \quad \sigma^{(2)}(x^2 + x + \alpha) = x^2 + x + \alpha.$$

• $k(x+\alpha) = 2, \quad k(x^2 + x + \alpha) = 2.$

Fang-Wei Fu (Nankai University)

Minimal Polynomial of Sequence 8 Sept 2010 NTU Singapore 24 / 31

 \bullet The minimal polynomial over \mathbb{F}_2 of $\mathcal S$ is

$$(x+\alpha)\sigma(x+\alpha)(x^2+x+\alpha)\sigma(x^2+x+\alpha) = (x^2+x+1)(x^4+x+1) = x^6+x^5+x^4+x^3+1.$$

• The linear complexity over \mathbb{F}_2 of \mathcal{S} is

$$L = 1 \times k(x + \alpha) \times \deg(x + \alpha)$$

+1 × k(x² + x + \alpha) × deg(x² + x + \alpha)
= 2 + 2 × 2 = 6.

Remarks on the lower bound of Meidl and Özbudak

Meidl and Özbudak derived a lower bound on the linear complexity over \mathbb{F}_{q^m} of a linear recurring sequence S over \mathbb{F}_{q^m} with given minimal polynomial g(x) over \mathbb{F}_q .

The lower bound of Meidl and Ozbudak

Let f(x) be a monic polynomial in $\mathbb{F}_q[x]$ with the canonical factorization into irreducible polynomials over \mathbb{F}_q given by

$$f = r_1^{e_1} r_2^{e_2} \dots r_k^{e_k}, \quad e_1, e_2, \dots, e_k > 0.$$

Suppose that S is a linear recurring sequence over \mathbb{F}_{q^m} and the minimal polynomial over \mathbb{F}_q of S is f(x). Then, the linear complexity $L_{\mathbb{F}_{q^m}}(S)$ over \mathbb{F}_{q^m} of S is lower bounded by

$$L_{\mathbb{F}_{q^m}}(\mathcal{S}) \geq \sum_{i=1}^k e_i rac{n_i}{\gcd(n_i,m)}$$

where $n_i = \deg(r_i)$ for i = 1, 2, ..., k.

We show that this lower bound is tight if and only if the minimal polynomial over \mathbb{F}_{q^m} of S is in a certain form.

Sufficient and necessary condition

Furthermore, suppose that the canonical factorization of $r_i(x)$ into monic irreducibles over \mathbb{F}_{q^m} is given by

$$r_i(x) = P_i(x)\sigma^{(1)}(P_i(x))\ldots\sigma^{(u_i-1)}(P_i(x))$$

where $u_i = \text{gcd}(n_i, m)$ for i = 1, 2, ..., k. Then, the lower bound is tight if and only if the minimal polynomial h(x) over \mathbb{F}_{q^m} of S is of the following form:

$$h(x) = \prod_{i=1}^k \sigma^{(j_i)}(P_i)^{e_i}$$

where $0 \leq j_i \leq u_i - 1$ for $i = 1, 2, \dots, k$.

Conclusions

- We introduce and give some basic concepts and results on linear recurring sequences.
- We introduce a ring automorphism of the polynomial ring $\mathbb{F}_{q^m}[x]$ and derive some results on this polynomial ring automorphism that are crucial to establish the main results.
- We give a new proof for the lower bound of Meidl and Özbudak and give the necessary and sufficient condition for this lower bound to be tight.

Fang-Wei Fu (Nankai University)

Minimal Polynomial of Sequence 8 Sept 2010 NTU Singapore

29 / 31

References

- R. Lidl, H. Niederreiter, Finite Fields, Addison-Wesley Publishing Company, Massachusetts, 1983.
- W. Meidl, F. Özbudak, Linear complexity over \mathbb{F}_q and over \mathbb{F}_{q^m} for linear recurring sequences, Finite Fields Appl. 15 (2009) 110–124.
- Z.-H. Gao and F.-W. Fu, The minimal polynomial over \mathbb{F}_q of linear recurring sequence over \mathbb{F}_{q^m} , Finite Fields Appl. 15 (2009) 774–784.

Thank you for your attention!

Fang-Wei Fu (Nankai University)

Minimal Polynomial of Sequence 8

8 Sept 2010 NTU Singapore 31 / 31