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Motivation

1. Better and cryptographically stronger pseudo-
random number generators (PRNG) as linear
constructions has been succefully attacked.

We recall that an attack on a PRNG is an
algorithm that observes several outputs of a
PRNG and then able to continue to generate
the same sequence with a nontrivial probability.

2. Possible new hash functions

3. Links with traditional questions in the theory
of algebraic dynamical systems such as degree
growth, periods, etc.



p: prime number
IF,: finite field of p elements.

F ={F1,...,Fn}: system of m polynomials/rational
functions in m variables over I,

How do we iterate?

Define the k-th iteration of the functions F; by the
recurrence relation

FO=x;, P =rE*D L FY),

where:=1,....mand k=1,2,....



Polynomial Pseudorandom Number Generators (PRNG)

Consider the PRNG defined by a recurrence rela-
tion in IFy

un—l—l,’i:F’i(un,17°°°7un,m>7 n=O,1,...,

with some initial values ug 1,...,ugm, 0 < uy; < p,

1=1,....m, n=0,1,....

Using the vector notation
un = (Up.1,- -, Un,m)
and
F — (F]_(X]_, ... ,Xm), “ e ey Fm(Xl, ... ,Xm)),

we have the recurrence relation

u,4+1 = F(un).

In particular, for any n,k >0 and = 1,...,m we
have

Up+k = F(k) (un).



F, = finite field == sequence of vectors (wy) is
eventually periodic with some period 7 < p™, that
is, for some

U, 4 = Up, n > s.

We call
T=s+7<p"

the trajectory length of the iterations of the initial
vector up.

We assume in general that it is purely periodic,
i.e.,

U,4r=up, n=0,1,....

This is not really important, but for simplicity (mainly
notational) we consider this case!



Uniformity of distribution of PRNG

U

Estimating exponential sums

In our case:

N—-1 m
Sa(N) = ) e (Z az'un,z') :
i=1

n=0

where

e(z) = exp(27miz/p), a=(a1,...,am) € Z™.

Motivation: Good pseudorandom sequences should
have small values of |Sa(N)|!I! The smaller, the
better!

Informally: Trivial bound

[Sa(N)| < N

(as it is @a sum on N roots of unity).

We want a nontrivial bound

[Sa(N)| < NA

with some “saving” A < 1.
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How do we estimate |Sa(N)|?

Standard technique of estimating |Sa(/NV)| reduces
it to estimating the exponential sum

Y e (i a;(FF (v) — F}l)(v))) |

VE]F]T =1

We can now try to apply Weil 1948:

p
> e(F(a1,...,2m))| < Dp™TY2,
T1yeeey =
where F' € Fp[Xq,...,Xm] is @ nonconstant poly-

nomial of degree D.

Remarks:

e [ he degree plays an important role in the es-
timate of the exponential sum!

e \We need linear independence of the iterations
FR) > 1.

e In some special cases elementary methods re-
place the use of the Weil bound and give stronger
bounds!



If f is a univariate polynomial of degree d, the
degree growth

deg 1) = g*

is fully controlled and exponential (if d > 2).

Question: How about the multivariate case?

Clearly the growth cannot be faster than exponen-
tial, but can it be slower?

YES!!

...and for us, generally speaking, the slower the
better.
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What systems do we study?

Ostafe and Shparlinski 2009—-2011:
F ={Fq,...,Fn}: system of m rational functions
in m variables over IF, of the form:

F1(X1,...,Xm) = X{'G1(Xo,..., Xm) + H1 (X2, ..., Xm),

Fro1(X1y- 0, Xm) = X" G 1(Xm) + Hypm1(Xm),

where

e; € {—1,1}, G;, H; E]FP[XZ'—I—la"'?Xm]? gm, hm € IFp.

e; =1 : G; has a unique leading monomial,

Sii Si,m —~
Gi(Xi—I—la .. ,Xm) = gz'X,L-_I’_f_l oo X _I_GZ(Xz—I—la . ,Xm),

—

9; 70, degy G;<s;; degx H;<s;;1<i<j<m

e; = —1 : H; has a unique leading monomial

Sii Si.m 7
H(Xiq1,- 0 Xm) = hiXH’_iH X H (X a1y Xm),
with

—_—

hi 70, degx H; <s;j;, degx G;<2s;51<i<j<m



Lemma 1 For the above systems, ife; =1,

k
Fz( ) — XiGi,k(Xi—l—lv . ,Xm) -+ H’i,k(X’i+17 ... ,Xm>,

and if e; = —1,

k XiR; |+ Sik
FZ(): -~ : ) _17 7m7k20717 ’
XiR; -1+ Si k-1
where

Gi,ka Hz',ka Ri,k7 Si,k: c ]F(Xi—l—la ce ,Xm), 1=1,...,m—1.
In both cases,

k 1 i
degFi() = (m_i),km 'Si 41+ Sm—1,m T ¥i(k),

v,(T) € Q[T], degy; <m —1i, i=1,...,m— 1.

Conclusion: The degree grows

e polynomially in the number of iterations
e monotonically (beyond a certain point).

Remark: The above effect does not occur in the
univariate case.
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Question: Why are these polynomial and rational

systems important?

The above properties of the degree growth of the
degrees of the iterations of F has allowed to ob-
tain rather strong results about the distribution of
PRNG's, much stronger than for arbitrary polyno-
mial generators.
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Why do we win?

e Wwe estimate the exponential sum for ¢; = 1 for

all e =1,...,m,

m—1
> e(z az-(Fi(’“)(V)—Fi(l)(V))> ,

veFy  \i=1

where, as before, e(z) = exp(2wiz/p) and
k l
FR _ FY = X(Gi o — Giy) + Hijy— Hyy.
e the case of rational functions will follow more

or less the same... but we have to take care
of the polesl!l!!

e slow degree growth of the polynomials

Remark: Slow, but not too slow!!l ... so that
G; 1 — Gy is nontrivial for k 7= 1
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the linearity of the polynomials F; in X;

Let as # 0 and ar =0 for r <s

> e (mzl a;(FM (v) — F§l><v>>>

VE]F;)” =1

— s—1 Z E(?)S_|_1,...,’Um)
’US_I_]_,...,’UmG]]:p

). e (as’Us [Gi,k - Gi,l] (Vs41- - ,vm))
vs€Fp

The last sum vanishes unless
[Gi,k — Gi,l} (Vs415---5vm) = 0.

Remark: We do not use the Weil bound. In-
stead we evaluate exponential sums with linear
functions and estimate the number of zeros of
GM—G“, k #= [. any nontrivial m-variate poly-
nomial of degree D has at most me_l Zeros,
and thus we save p instead of pl/2 from the
Weil bound.

If the polynomials G; are constant, then the
estimate of the exponential sum does not de-
pend on the degree anymore!
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All results at some point are based on an estimate
of exponential sums with

m—1

L™ = 3 ai (FP W) - FO))

1=1

We want L, (v) to be
e nontrivial (i.e. not to be a constant)

e exponential sums friendly:
(i) of small degree (to apply the Weil bound)
(ii) linear in some of the variables

(iii) to have a low dimensional locus of singular-
ity (to apply the Deligne bound, or Deligne-
like bounds by Katz, etc.)

Properties (i) and (ii) have been exploited in
the above constructions, a dream project is to
find a system with well-controlled property (iii)
and improve previous results.
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Maximal periods

Ostafe 2010: Let (up) be defined as above with
period 7 < p". If e, =1 for all : = 1,...,m, then
=p" if and only if

VE]FgL_i
where
R, =H,G? .. ¢ (mod 1)

is of degree at most p — 1 in each variable and 7
is the ideal generated by X% — X1,..., X%, — Xm.

Remark: The maximal period reduces to having
maximal period for a certain linear congruential
generator.

Example: m =2, p=3 (mod 4),

F1 = X1(f(X2)°+(p+1)/4)+a and  Fr = Xp+b,
a,b e ]F;; and f € Fp[X] generates a permutation.




15
Question: When do the systems of rational func-
tions defined above achieve maximal period?

Ostafe and Shparlinski 2011: The maximal pe-
riod reduces to describing the maximal period of
a certain linear congruential generator or a certain
MOoObius transformation defined by the iterations of
F;.

Define the sets
I+={1§i§m:ei=1}, I_Z{].S'L'Sm:ei:

Assume that the sequence generated by the lower

m — i rational functions Fji1,...,Fp, in F'7 is
purely periodic with period 7,41, 1 = 1,...,m — 1.
Then

FRH) (o) =M (ug ), k> 1,
where

fi(Y) = Gi,TZ~_|_1(uO)Y + Hz',TH_l(uO)

if € I, and f; is the MObius transformation

Ri,TZ'_I_]_(uO)Y _I_ S’i,Ti+1(uO)
Rir_ 1-1(ug)Y 4 S; 7, —1(uo)

fi(Y) =

if e l_.

~1).
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We have maximal period when:

1. iEI_|_, 1 < m,
I Gi(v)=1 and > Ri(v) #0;

VE]FgL_i VE]ng’_Z

2.1€1_, 1 <m,
(a) if Ri,qm—z’_l(u()) = 0, then
R; ;m-i(ug) = S; ;m-i_1(uo),
(b) if Ri,qm—i—l(uO) 73 0, then

Ri,qm—i_l(uo) Ri’qm—i_l(uo)

is a primitive polynomial over IFg;

3. ifme Iy, then gm = 1,

4. if m € I_, then X2 — hyjn X — gm is a primitive
polynomial over IFg.
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Hash functions and other algebraic properties

e Hash functions from polynomial dynamical sys-
tems

Theidea comes from Charles, Goren and Lauter
2008: Hash functions from exapnader graphs

n, r positive integers, p =random n-bit prime

2" permutation polynomial systems F,, ¢ =
0,...,2" — 1, not necessary distinct

wo € FI't1 random initial vector

Input: bit string > of length L

— pad X with at most » — 1 zeros on the left
to make sure that L is a multiple of r

— split X into blocks o;, 5 = 1,...,L/r, of
length » and see each block as an integer
¢ c[0,2" — 1]

— Starting at the vector wg, apply the poly-
nomial systems F, iteratively => sequence
of vectors w; € Fj'tt

— Output wy /. the value of the hash function
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Question: What can we say about the collision
and preimage resistance?

Can we find nontrivial lower bounds for the
number of monomials of the polynomials Fi(k),
for any +t = 1,....m, £k = 1,2,... over finite
fields?

Fuchs and Zannier 2009:

The number of monomials of the kth iterations
of a univariate rational function over C tends
to infinity with k.

Remark: This is not necessarily the case of
multivariate polynomials ...

Example: Let m = 4, F; = X1 — Xa(X3X1 +
X4X5), Fo = Xo+X3(X3X1+X3X5), I3 = X3,
Fp = X4. Then, for any k> 1,

Fl(k) = X1 — kX4(X3X1 + X3 X5)
k
B = X5 4 kX3(X3X1 + X4X2).
So, the degree growth is constant, as the num-

ber of monomials at every iteration (over any
field)!!!
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There are situations (with a bit of dirty tricks
with the characteristic) when

— the degree grows exponentially,

— the number of monomials is constant, or
even decreases to a monomial

... at least over finite fields.

Example: Let m = 2, I} = X — X5, Fb =
X7+ X5 over Fy, ¢ =p™. Then

k
F(k) _ Cz’,kX;)k ,k k k = even,j. € {1,2}
1
d; ((X] £X5), k=odd
where ¢; j,d; 1 € Fg, 1 =1,2.

Question: Can we achieve this without cheat-
ing?
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The additive complexity of the polynomials
F,L.(k), forany it =1,...,m, k= 1,2,..., is the
smallest number of ‘4’ signs in the formulas
evaluating these polynomials.

Note that the additive complexity can be much
smaller than the number of monomials.

Example:

FOX,Y) = (X242Y) 103X +V3) 2004 (X304 v) 10

is of total degree 3000 and thus has a very
long representation via the list of coefficients.
However, the additive complexity is 4 and thus
has a very concise representation/evaluation.

Construct polynomial systems with exponen-
tially degree growth, but with polynomial ad-
ditive complexity growth of their iterations. It
IS possible...

Example: f(X) = (z—b)44+b, fE(X)=(X—
)" +b, beFy, d> 2
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At some point of the argument we need to esti-
mate the number of zeros of some linear com-
binations of several distinct iterates FZ.(M(X) of
F,..., Fp.

It is natural to start with studying the same iter-
ates. E.g.: can we say anything interesting about
the polynomials Fz-(k)(X)? Are they irreducible for
any k7

NO RESULTS!

U

Let's start with the univariate case
... Still no general results yet

except Gomez, Nicolas, Ostafe and Sadornil
2011, work in progress.

U

Let's start with quadratic polynomials
... hot too many results but there are somel!
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Irreducibility of iterations

For a field F, f € F[X] is called stable if f(*) jr-
reducible for all k.

e Irreducibility is very common over Q. — over
IF =Q a “random’” polynomial is expected to
be stable. Ahmadi, Luca, Ostafe and Shpar-
linski 2010: proved this for quadratic polyno-
mials.

e Over IF, irreducibility is rare: prob. ~ 1/d for
a random polynomial of degree d. —— We
expect very few stable polynomials (recall that
deg f(k) grows fast).

— Gomez Perez and Pinera Nicolas 2010: es-
timate on the number of stable quadratic
polynomials for odd gq.

— Ahmadi, Luca, Ostafe and Shparlinski 2010:
No stable quadratic polynomial over IFon; it
has nothing to do with char = 2 as z2 + ¢
is stable over F»(t).
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Stability testing of quadratic polynomials over I,

f(X)=aX?+bX +ceFy[X],a#0
v = —b/2a the unique critical point of f

Critical orbit of f:

orb(f) = {fM() :n=2,3,...}

3¢t such that f()(y) = £()(5) for some positive
integer s < t.

tf —the smallest value of t with the above condi-
tion. Then:

Orb(f) = {f™M() : n=2,...,tf}

Jones and Boston 2009:
f € Fy[X] is stable if and only if the adjusted crit-
ical orbit

Orb(f) = {-f(m}JOorb(f)

contains no squares.
What is behind? Just Capelli 's Lemma:
K field, f,g € K[X], 8 € K any root of g. Then

g(f) irreducible over IK <=> ¢ irreducible over K
and f — 3 irreducible over IK(3).
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Trivially #Orb(f) < q and thus one can test f €
IF,[X] for stability in g steps.

Ostafe and Shparlinski 2009:

Theorem 2 Forany oddq and any stable quadratic
polynomial f € F4[X] we have

tf = O(q3/4).

Corollary 3 For any odd q, a quadratic polyno-

mial f € IF4[X] can be tested for stability in time
q3/4+0(1)_
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Stability of arbitrary univariate polynomials over
Fq

Ahmadi, Luca, Ostafe and Shparlinski 2010: even
degree polynomials of the form F' = g(f) where f
IS @ quadratic polynomial, and g is any polynomial
of degree d

Theorem 4 For any odd q and any stable polyno-
mial F = g(f) € F¢[X], where f = aX? +bX +c €
F,[X] and g € IF4[X] of degree d, we have

tp =0 (¢ ),
where
log 2
g — .
17 210g(4d)

We can say even more ...
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Gomez, Nicolas, Ostafe and Sadornil 2011 (work
in progress):

g odd, f € F,[X] stable with leading coefficient
aclFy, degf>2
f' nonconstant, deg f’ = k, ap4; coefficient of

2T in f, v, roots of f/, i =1,...,k

T hen

1. if d =deg f is even,

k k
(I ™G In>1Y UL (D2 ] fOn) )
=1 1=1

contains only non squares in IFg;

2. if d =deg f is odd,

(d—1)
2

d—1
TR(k+1)agr1a I FM ) [n>11
i—1

contains only squares in IFg.

{(=1)

Question: Do we have the other implication too?
We don’'t know vyet ...
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What is behind this result?

new ideas involving resultants of polynomials
and

Stickelberg 1897: f € F4[X], ¢ odd, is a polyno-
mial of degree at least 2 and is the product of r
pairwise distinct irreducible polynomials over IFq.
Then r =deg f (mod 2) if and only if Disc(f) is a
square in IFg.
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Questions:

e Is there an algorithm to check a quadratic poly-
nomial for stability in Q[X] in finitely many
steps”?

e What about p = 27

e Estimate the orbit length for an arbitrary poly-
nomial.

e DO there exist stable polynomials of even de-
gree over a field of characteristic 27

e Can we say something about the stability of
multivariate polynomials?

Zaharescu 2005: some results about the irre-
ducibility of iterates of multivariate polynomi-
als, but not in the usual way, only with respect
to one variable.



