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Motivation

1. Better and cryptographically stronger pseudo-

random number generators (PRNG) as linear

constructions has been succefully attacked.

We recall that an attack on a PRNG is an

algorithm that observes several outputs of a

PRNG and then able to continue to generate

the same sequence with a nontrivial probability.

2. Possible new hash functions

3. Links with traditional questions in the theory

of algebraic dynamical systems such as degree

growth, periods, etc.



2

General setting

p: prime number

IFp: finite field of p elements.

F = {F1, . . . , Fm}: system of m polynomials/rational

functions in m variables over IFp

How do we iterate?

Define the k-th iteration of the functions Fi by the

recurrence relation

F
(0)
i = Xi, F

(k)
i = Fi(F

(k−1)
1 , . . . , F

(k−1)
m ),

where i = 1, . . . ,m and k = 1,2, . . ..



3

Our motivation:

Polynomial Pseudorandom Number Generators (PRNG)

Consider the PRNG defined by a recurrence rela-

tion in IFp

un+1,i = Fi(un,1, . . . , un,m), n = 0,1, . . . ,

with some initial values u0,1, . . . , u0,m, 0 ≤ un,i < p,

i = 1, . . . ,m, n = 0,1, . . ..

Using the vector notation

un = (un,1, . . . , un,m)

and

F = (F1(X1, . . . , Xm), . . . , Fm(X1, . . . , Xm)),

we have the recurrence relation

un+1 = F(un).

In particular, for any n, k ≥ 0 and i = 1, . . . ,m we

have

un+k = F(k)(un).



IFp = finite field =⇒ sequence of vectors (wn) is

eventually periodic with some period τ ≤ pm, that

is, for some

un+τ = un, n ≥ s.

We call

T = s+ τ ≤ pm

the trajectory length of the iterations of the initial

vector u0.

We assume in general that it is purely periodic,

i.e.,

un+τ = un, n = 0,1, . . . .

This is not really important, but for simplicity (mainly

notational) we consider this case!
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Quality of PRNG

Uniformity of distribution of PRNG

⇓

Estimating exponential sums

In our case:

Sa(N) =
N−1∑
n=0

e

 m∑
i=1

aiun,i

 ,
where

e(z) = exp(2πiz/p), a = (a1, . . . , am) ∈ ZZm.

Motivation: Good pseudorandom sequences should

have small values of |Sa(N)|!!! The smaller, the

better!

Informally: Trivial bound

|Sa(N)| ≤ N

(as it is a sum on N roots of unity).

We want a nontrivial bound

|Sa(N)| ≤ N∆

with some “saving” ∆ < 1.
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How do we estimate |Sa(N)|?

Standard technique of estimating |Sa(N)| reduces

it to estimating the exponential sum∣∣∣∣∣∣∣
∑

v∈IFmp

e

 m∑
i=1

ai(F
(k)
i (v)− F (l)

i (v))


∣∣∣∣∣∣∣ .

We can now try to apply Weil 1948:∣∣∣∣∣∣
p∑

x1,...,xm=1

e (F (x1, . . . , xm))

∣∣∣∣∣∣ < Dpm−1/2,

where F ∈ IFp[X1, . . . , Xm] is a nonconstant poly-

nomial of degree D.

Remarks:

• The degree plays an important role in the es-

timate of the exponential sum!

• We need linear independence of the iterations

F
(k)
i , k ≥ 1.

• In some special cases elementary methods re-

place the use of the Weil bound and give stronger

bounds!
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Degree growth

If f is a univariate polynomial of degree d, the

degree growth

deg f(k) = dk

is fully controlled and exponential (if d ≥ 2).

Question: How about the multivariate case?

Clearly the growth cannot be faster than exponen-

tial, but can it be slower?

YES!!

. . . and for us, generally speaking, the slower the

better.
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What systems do we study?

Ostafe and Shparlinski 2009–2011:

F = {F1, . . . , Fm}: system of m rational functions

in m variables over IFp of the form:

F1(X1, . . . , Xm) = X
e1
1 G1(X2, . . . , Xm) +H1(X2, . . . , Xm),

. . .

Fm−1(X1, . . . , Xm) = X
em−1
m−1Gm−1(Xm) +Hm−1(Xm),

Fm(X1, . . . , Xm) = gmX
em
m + hm,

where

ei ∈ {−1,1}, Gi, Hi ∈ IFp[Xi+1, . . . , Xm], gm, hm ∈ IFp. gm 6= 0.

ei = 1 : Gi has a unique leading monomial,

Gi(Xi+1, . . . , Xm) = giX
si,i+1
i+1 . . . X

si,m
m +G̃i(Xi+1, . . . , Xm),

gi 6= 0, degXj G̃i < si,j, degXj Hi ≤ si,j,1 ≤ i < j ≤ m

ei = −1 : Hi has a unique leading monomial

Hi(Xi+1, . . . , Xm) = hiX
si,i+1
i+1 . . . X

si,m
m +H̃i(Xi+1, . . . , Xm),

with

hi 6= 0, degXj H̃i < si,j, degXj Gi ≤ 2si,j,1 ≤ i < j ≤ m
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Lemma 1 For the above systems, if ei = 1,

F
(k)
i = XiGi,k(Xi+1, . . . , Xm) +Hi,k(Xi+1, . . . , Xm),

and if ei = −1,

F
(k)
i =

XiRi,k + Si,k

XiRi,k−1 + Si,k−1
, i = 1, . . . ,m, k = 0,1, . . . ,

where

Gi,k, Hi,k, Ri,k, Si,k ∈ IF(Xi+1, . . . , Xm), i = 1, . . . ,m−1.

In both cases,

degF (k)
i =

1

(m− i)!
km−isi,i+1 . . . sm−1,m + ψi(k),

ψi(T ) ∈ Q[T ], degψi < m− i, i = 1, . . . ,m− 1.

Conclusion: The degree grows

• polynomially in the number of iterations

• monotonically (beyond a certain point).

Remark: The above effect does not occur in the

univariate case.
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Question: Why are these polynomial and rational

systems important?

The above properties of the degree growth of the

degrees of the iterations of F has allowed to ob-

tain rather strong results about the distribution of

PRNG’s, much stronger than for arbitrary polyno-

mial generators.
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Why do we win?

• we estimate the exponential sum for ei = 1 for

all i = 1, . . . ,m,∣∣∣∣∣∣∣
∑

v∈IFmp

e

m−1∑
i=1

ai(F
(k)
i (v)− F (l)

i (v))


∣∣∣∣∣∣∣ ,

where, as before, e(z) = exp(2πiz/p) and

F
(k)
i − F (l)

i = Xi(Gi,k −Gi,l) +Hi,k −Hi,l.

• the case of rational functions will follow more

or less the same... but we have to take care

of the poles!!!

• slow degree growth of the polynomials

Remark: Slow, but not too slow!!! ... so that

Gi,k −Gi,l is nontrivial for k 6= l
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• the linearity of the polynomials Fi in Xi

Let as 6= 0 and ar = 0 for r < s

∑
v∈IFmp

e

m−1∑
i=1

ai(F
(k)
i (v)− F (l)

i (v))


= ps−1 ∑

vs+1,...,vm∈IFp

E(vs+1, . . . , vm)

∑
vs∈IFp

e
(
asvs

[
Gi,k −Gi,l

]
(vs+1, . . . , vm)

)

The last sum vanishes unless[
Gi,k −Gi,l

]
(vs+1, . . . , vm) = 0.

Remark: We do not use the Weil bound. In-

stead we evaluate exponential sums with linear

functions and estimate the number of zeros of

Gi,k−Gi,l, k 6= l: any nontrivial m-variate poly-

nomial of degree D has at most Dpm−1 zeros,

and thus we save p instead of p1/2 from the

Weil bound.

• If the polynomials Gi are constant, then the

estimate of the exponential sum does not de-

pend on the degree anymore!
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Wish list

All results at some point are based on an estimate

of exponential sums with

La,k,l(v) =
m−1∑
i=1

ai

(
F

(k)
i (v)− F (l)

i (v)
)

We want La,k,l(v) to be

• nontrivial (i.e. not to be a constant)

• exponential sums friendly:

(i) of small degree (to apply the Weil bound)

(ii) linear in some of the variables

(iii) to have a low dimensional locus of singular-

ity (to apply the Deligne bound, or Deligne-

like bounds by Katz, etc.)

Properties (i) and (ii) have been exploited in

the above constructions, a dream project is to

find a system with well-controlled property (iii)

and improve previous results.
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Maximal periods

Ostafe 2010: Let (un) be defined as above with

period τ ≤ pm. If ei = 1 for all i = 1, . . . ,m, then

τ = pm if and only if∏
v∈IFm−ip

Gi(v) = 1, gm = 1, degRi = (m−i)(p−1),

where

Ri = HiG
(2)
i . . . G

(pm−i)
i (mod I)

is of degree at most p − 1 in each variable and I
is the ideal generated by X

p
1 −X1, . . . , X

p
m −Xm.

Remark: The maximal period reduces to having

maximal period for a certain linear congruential

generator.

Example: m = 2, p ≡ 3 (mod 4),

F1 = X1(f(X2)2+(p+1)/4)+a and F2 = X2+b,

a, b ∈ IF∗p and f ∈ IFp[X] generates a permutation.
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Question: When do the systems of rational func-

tions defined above achieve maximal period?

Ostafe and Shparlinski 2011: The maximal pe-

riod reduces to describing the maximal period of

a certain linear congruential generator or a certain

Möbius transformation defined by the iterations of

Fi.

Define the sets

I+ = {1 ≤ i ≤ m : ei = 1}, I− = {1 ≤ i ≤ m : ei = −1}.

Assume that the sequence generated by the lower

m − i rational functions Fi+1, . . . , Fm in IFm−iq is

purely periodic with period τi+1, i = 1, . . . ,m − 1.

Then

F
(kτi+1)
i (u0) =f

(k)
i (u0,i), k ≥ 1,

where

fi(Y ) = Gi,τi+1
(u0)Y +Hi,τi+1

(u0)

if i ∈ I+, and fi is the Möbius transformation

fi(Y ) =
Ri,τi+1

(u0)Y + Si,τi+1
(u0)

Ri,τi+1−1(u0)Y + Si,τi+1−1(u0)

if i ∈ I−.
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We have maximal period when:

1. i ∈ I+, i < m,∏
v∈IFm−ip

Gi(v) = 1 and
∑

v∈IFm−ip

Ri(v) 6= 0;

2. i ∈ I−, i < m,

(a) if Ri,qm−i−1(u0) = 0, then

Ri,qm−i(u0) = Si,qm−i−1(u0),

Si,qm−i(u0)Si,qm−i−1(u0) 6= 0;

(b) if Ri,qm−i−1(u0) 6= 0, then

X2 −
Ri,qm−i(u0)

Ri,qm−i−1(u0)
X −

∏
v∈IFm−iq

G1(v)

Ri,qm−i−1(u0)

is a primitive polynomial over IFq;

3. if m ∈ I+, then gm = 1;

4. if m ∈ I−, then X2 − hmX − gm is a primitive

polynomial over IFq.



17

Hash functions and other algebraic properties

• Hash functions from polynomial dynamical sys-

tems

The idea comes from Charles, Goren and Lauter

2008: Hash functions from exapnader graphs

n, r positive integers, p =random n-bit prime

2r permutation polynomial systems F`, ` =

0, . . . ,2r − 1, not necessary distinct

w0 ∈ IFm+1
p random initial vector

Input: bit string Σ of length L

– pad Σ with at most r − 1 zeros on the left

to make sure that L is a multiple of r

– split Σ into blocks σj, j = 1, . . . , L/r, of

length r and see each block as an integer

` ∈ [0,2r − 1]

– Starting at the vector w0, apply the poly-

nomial systems F` iteratively => sequence

of vectors wj ∈ IFm+1
p

– Output wL/r the value of the hash function
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Question: What can we say about the collision

and preimage resistance?

• Can we find nontrivial lower bounds for the

number of monomials of the polynomials F (k)
i ,

for any i = 1, . . . ,m, k = 1,2, . . . over finite

fields?

Fuchs and Zannier 2009:

The number of monomials of the kth iterations

of a univariate rational function over C tends

to infinity with k.

Remark: This is not necessarily the case of

multivariate polynomials ...

Example: Let m = 4, F1 = X1 − X4(X3X1 +

X4X2), F2 = X2+X3(X3X1+X4X2), F3 = X3,

F4 = X4. Then, for any k ≥ 1,

F
(k)
1 = X1 − kX4(X3X1 +X4X2)

F
(k)
2 = X2 + kX3(X3X1 +X4X2).

So, the degree growth is constant, as the num-

ber of monomials at every iteration (over any

field)!!!
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There are situations (with a bit of dirty tricks

with the characteristic) when

– the degree grows exponentially,

– the number of monomials is constant, or

even decreases to a monomial

. . . at least over finite fields.

Example: Let m = 2, F1 = X
p
1 − X

p
2, F2 =

X
p
1 +X

p
2 over IFq, q = pm. Then

F
(k)
i =

 ci,kX
pk

jk
, k = even, jk ∈ {1,2}

di,k(Xpk

1 ±X
pk

2 ), k = odd
,

where ci,k, di,k ∈ IFq, i = 1,2.

Question: Can we achieve this without cheat-

ing?
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• The additive complexity of the polynomials

F
(k)
i , for any i = 1, . . . ,m, k = 1,2, . . ., is the

smallest number of ‘+’ signs in the formulas

evaluating these polynomials.

Note that the additive complexity can be much

smaller than the number of monomials.

Example:

f(X,Y ) = (X2+2Y )100(3X+Y 3)200+(X300+Y )10

is of total degree 3000 and thus has a very

long representation via the list of coefficients.

However, the additive complexity is 4 and thus

has a very concise representation/evaluation.

Construct polynomial systems with exponen-

tially degree growth, but with polynomial ad-

ditive complexity growth of their iterations. It

is possible...

Example: f(X) = (x− b)d + b, f(k)(X) = (X −
b)d

k
+ b, b ∈ IFq, d ≥ 2



21

Let’s talk about irreducibility!!!

At some point of the argument we need to esti-

mate the number of zeros of some linear com-

binations of several distinct iterates F
(k)
i (X) of

F1, . . . , Fm.

It is natural to start with studying the same iter-

ates. E.g.: can we say anything interesting about

the polynomials F (k)
i (X)? Are they irreducible for

any k?

NO RESULTS!

⇓

Let’s start with the univariate case

. . . still no general results yet

... except Gomez, Nicolas, Ostafe and Sadornil

2011, work in progress.

⇓

Let’s start with quadratic polynomials

. . . not too many results but there are some!!
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Irreducibility of iterations

For a field IF, f ∈ IF[X] is called stable if f(k) ir-

reducible for all k.

• Irreducibility is very common over Q. =⇒ over

IF = Q a “random” polynomial is expected to

be stable. Ahmadi, Luca, Ostafe and Shpar-

linski 2010: proved this for quadratic polyno-

mials.

• Over IFq irreducibility is rare: prob. ∼ 1/d for

a random polynomial of degree d. =⇒ We

expect very few stable polynomials (recall that

deg f(k) grows fast).

– Gomez Perez and Piñera Nicolas 2010: es-

timate on the number of stable quadratic

polynomials for odd q.

– Ahmadi, Luca, Ostafe and Shparlinski 2010:

No stable quadratic polynomial over IF2n; it

has nothing to do with char = 2 as x2 + t

is stable over IF2(t).
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Stability testing of quadratic polynomials over IFq

f(X) = aX2 + bX + c ∈ IFq[X], a 6= 0

γ = −b/2a the unique critical point of f

Critical orbit of f :

Orb(f) = {f(n)(γ) : n = 2,3, . . .}

∃t such that f(t)(γ) = f(s)(γ) for some positive
integer s < t.

tf =the smallest value of t with the above condi-
tion. Then:

Orb(f) = {f(n)(γ) : n = 2, . . . , tf}

Jones and Boston 2009:
f ∈ IFq[X] is stable if and only if the adjusted crit-
ical orbit

Orb(f) = {−f(γ)}
⋃

Orb(f)

contains no squares.

What is behind? Just Capelli ’s Lemma:

IK field, f, g ∈ IK[X], β ∈ IK any root of g. Then
g(f) irreducible over IK <=> g irreducible over IK
and f − β irreducible over IK(β).
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Trivially #Orb(f) ≤ q and thus one can test f ∈
IFq[X] for stability in q steps.

Ostafe and Shparlinski 2009:

Theorem 2 For any odd q and any stable quadratic

polynomial f ∈ IFq[X] we have

tf = O
(
q3/4

)
.

Corollary 3 For any odd q, a quadratic polyno-

mial f ∈ IFq[X] can be tested for stability in time

q3/4+o(1).
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Stability of arbitrary univariate polynomials over

IFq

Ahmadi, Luca, Ostafe and Shparlinski 2010: even

degree polynomials of the form F = g(f) where f

is a quadratic polynomial, and g is any polynomial

of degree d

Theorem 4 For any odd q and any stable polyno-

mial F = g(f) ∈ IFq[X], where f = aX2 + bX + c ∈
IFq[X] and g ∈ IFq[X] of degree d, we have

tF = O
(
q1−αd

)
,

where

αd =
log 2

2 log(4d)
.

We can say even more ...
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Gomez, Nicolas, Ostafe and Sadornil 2011 (work

in progress):

q odd, f ∈ IFq[X] stable with leading coefficient

a ∈ IF∗q, deg f ≥ 2

f ′ nonconstant, deg f ′ = k, ak+1 coefficient of

xk+1 in f , γi roots of f ′, i = 1, . . . , k

Then

1. if d = deg f is even,

{ak
k∏
i=1

f(n)(γi) | n > 1 }
⋃
{ (−1)

d
2ak

k∏
i=1

f(γi) }

contains only non squares in IFq;

2. if d = deg f is odd,

{ (−1)
(d−1)

2 +k(k+1)ak+1a
d−1∏
i=1

f(n)(γi) | n ≥ 1 }

contains only squares in IFq.

Question: Do we have the other implication too?

We don’t know yet ...
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What is behind this result?

... new ideas involving resultants of polynomials

and

Stickelberg 1897: f ∈ IFq[X], q odd, is a polyno-

mial of degree at least 2 and is the product of r

pairwise distinct irreducible polynomials over IFq.

Then r ≡ deg f (mod 2) if and only if Disc(f) is a

square in IFq.
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Questions:

• Is there an algorithm to check a quadratic poly-

nomial for stability in Q[X] in finitely many

steps?

• What about p = 2?

• Estimate the orbit length for an arbitrary poly-

nomial.

• Do there exist stable polynomials of even de-

gree over a field of characteristic 2?

• Can we say something about the stability of

multivariate polynomials?

Zaharescu 2005: some results about the irre-

ducibility of iterates of multivariate polynomi-

als, but not in the usual way, only with respect

to one variable.


