Introduction to modern lattice-based cryptography (Part II)

Damien Stehlé

LIP - CNRS/ENSL/INRIA/UCBL/U. Lyon

Singapore, June 2010

Plan

- 1- Background on Euclidean lattices.
- 2- The SIS problem, or how to hash.
- 3- The LWE problem, or how to encrypt.
- 4- Cryptanalysis.
- 5- Advanced topics: IBE and FHE.

The LWE problem

a- Non structured LWE.

- b- Structured LWE.
- c- Encrypting with LWE.

LWE_{α,q} [Regev'05]

Let $\mathbf{s} \in \mathbb{Z}_q^n$. Let $\Sigma_{\mathbf{s},\alpha}$ be the distribution corresponding to:

 $(\mathbf{a}; \langle \mathbf{a}, \mathbf{s} \rangle + e \ [q]), \text{ with } \mathbf{a} \hookrightarrow U(\mathbb{Z}_q^n), \ e \hookrightarrow \nu_{\alpha q} \text{ (small Gaussian)}.$

The Learning With Errors Problem — Comp-LWE $_{lpha}$

Let $\mathbf{s} \in \mathbb{Z}_q^n$. Given arbitrarily many samples from $\Sigma_{\mathbf{s},\alpha}$, find \mathbf{s} .

LWE as a one-way function

- OWF: easy to evaluate and hard to invert.
- LWE's OWF: $\mathbf{s} \in \mathbb{Z}_q^n \mapsto A\mathbf{s} + \mathbf{e} \ [q].$

A one-way function with trapdoor.

• Generate A together with T_A .

•
$$T_A \cdot (A\mathbf{s} + \mathbf{e}) = T_A \cdot \mathbf{e} \ [q].$$

- Both T_A and e are small ⇒ we know T_A · e over Z.
 We recover e and then s by linear algebra.
- Sufficient condition:

$$\frac{q}{2} > \sqrt{n} \alpha q \cdot \max \|\mathbf{t}_i\| \iff n^{1.5} \alpha = \widetilde{o}(1).$$

LWE as a lattice problem

$\mathsf{Comp}\text{-}\mathsf{LWE}_{\alpha}$

Let
$$\mathbf{s} \in \mathbb{Z}_q^n$$
. Given $(A; A\mathbf{s} + \mathbf{e} [q])$ with $A \leftrightarrow U(\mathbb{Z}_q^{m \times n})$ and $\mathbf{e} \leftarrow \nu_{\alpha q}^m$ for arbitrary m , find \mathbf{s} .

Let $L_A = \{ \mathbf{b} \in \mathbb{Z}^m : \exists \mathbf{x} \in \mathbb{Z}_q^n, \ \mathbf{b} = A\mathbf{x} \ [q] \}.$

- L_A is an *m*-dimensional lattice and $\widehat{L_A} = \frac{1}{a}A^{\perp}$.
- BDD_{α,q} (bounded distance decoding): Take A ↔ U(Z^{m×n}_q), e ↔ ν^m_{αq} and b ∈ L_A arbitrary. Given A and b + e, find b.
- If we can solve LWE, then we can solve BDD.

How hard is LWE?

Quantum worst-case to average-case reduction $(\gamma pprox n/lpha)$

Any efficient LWE algorithm succeeding with non-negligible probability leads to an efficient **quantum** SIVP algorithm.

- Efficient quantum computers make LWE more secure!
- [Peikert'09] de-quantumized the reduction, for large q.
- [SSTX'09]: simpler (but weaker) quantum reduction.

Advanced topics

Conclusion

How hard is $BDD_{\alpha,q}$? Rough intuition.

- The Fourier transform of the distribution is implemented with the quantum Fourier transform.
- The input quantum state is built with the LWE oracle.
- The measurement gives a small SIS solution.

Decisional LWE

$$\Sigma_{\mathbf{s},\alpha}: \quad \left(\mathbf{a}; \langle \mathbf{a}, \mathbf{s} \rangle + e \; [q]\right) \quad \text{with} \quad \mathbf{a} \hookleftarrow U(\mathbb{Z}_q^n), \; e \hookleftarrow \nu_{\alpha q}.$$

$\mathsf{Comp}\mathsf{-}\mathsf{LWE}_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_q^n$. Given arbitrarily many samples from $\Sigma_{\mathbf{s},\alpha}$, find \mathbf{s} .

$\mathsf{Dec}\text{-}\mathsf{LWE}_{\alpha}$

Let $\mathbf{s} \hookrightarrow U(\mathbb{Z}_q^n)$. Distinguish between (arbitrarily many) samples from $\Sigma_{\mathbf{s},\alpha}$ or from $U(\mathbb{Z}_q^2)$.

Dec-LWE and Comp-LWE efficiently reduce to each other.

The LWE problem

- a- Non structured LWE.
- b- Structured LWE.
- c- Encrypting with LWE.

Ideal LWE

Let
$$R_q = \mathbb{Z}_q[x]/(x^n + 1)$$
 with $n = 2^k$ and q prime.

Let $\Psi_{\leq \alpha q}$ be the set of ellipsoidal Gaussians $(\nu_{r_i})_i$ in \mathbb{R}^n , where each component has standard deviation $r_i \leq \alpha q$.

For $\psi \in \Psi_{\leq \alpha q}$ and $s \in R_q$, we define: $\sum_{s,\psi}^{ld}$: $(a; as + \mathbf{e} [q])$ with $a \leftarrow U(R_q), \mathbf{e} \leftarrow \psi$.

Comp-Id-LWE $_{\alpha}$

Let $s \in R_q$ and $\psi \in \Psi_{\leq \alpha q}$. Given arbitrarily many samples from $\Sigma_{s,\psi}^{Id}$, find s.

- One sample from Σ^{Id} encodes *n* samples from Σ .
- But it costs about the same as 1 sample from Σ: We use R_q to multiply vectors, with FFT!
- Same matrix interpretation, but with negacylic blocks.

Ideal LWE is hard

$$\Sigma_{s,\psi}^{ld}$$
: $(a; as + \mathbf{e} [q])$ with $a \leftarrow U(R_q), \mathbf{e} \leftarrow \psi$.

$\mathsf{Comp-Id-LWE}_\alpha$

Let $s \in R_q$ and $\psi \in \Psi_{\leq \alpha q}$. Given arbitrarily many samples from $\Sigma^{ld}_{s,\psi}$, find s.

Any efficient **Id-LWE** algo. succeeding with non-negligible probability leads to an efficient quantum **Id-SIVP** algo.

A faster trapdoor one-way function

- Evaluation cost: $\widetilde{O}(n^2) \Rightarrow \widetilde{O}(n)$ bit operations.
- For the inversion, use the structured T_A from Id-SIS.
- T_A · (As + e) = T_Ae over the integers. Multiply by T_A⁻¹ to recover e, and then s.
- Evaluation/inversion cost: $\widetilde{O}(n^2) \Rightarrow \widetilde{O}(n)$ bit operations.

Decisional Ideal LWE

$$\Sigma_{s,\psi}^{ld}$$
: $(a; as + \mathbf{e} [q])$ with $a \hookrightarrow U(R_q), \mathbf{e} \hookrightarrow \psi$.

Comp-Id-LWE $_{\alpha}$

Let $s \in R_q$ and $\psi \in \Psi_{\leq \alpha q}$. Given arbitrarily many samples from $\Sigma_{s,\psi}^{ld}$, find s.

$\mathsf{Dec}\operatorname{-}\mathsf{Id}\operatorname{-}\mathsf{LWE}_{\alpha}$

Let $s \leftrightarrow U(R_q)$ and $\psi \in \Psi_{\leq \alpha q}$, choosing the st. devs. from an exponential variate. Distinguish between (arbitrarily many) samples from $\Sigma_{s,\psi}^{Id}$ or from $U(R_q^2)$.

If $x^n + 1$ has *n* factors modulo *q*, then Dec-Id-LWE and Comp-Id-LWE efficiently reduce to each other.

Damien Stehlé

The LWE problem

- a- Non structured LWE.
- b- Structured LWE.
- c- Encrypting with LWE.

Encrypting with LWE

- Public key: $A \in \mathbb{Z}_{a}^{m \times n}, A' \in \mathbb{Z}_{a}^{n \times n}$; secret key: T_{A} .
- Encryption: compute $[A\mathbf{s} + \mathbf{e}; A'\mathbf{s} + \mathbf{e}' + \lfloor \frac{q}{2} \rfloor \cdot \mathbf{M}]$.
- Decryption: recover **s** from the first part of the ciphertext, using T_A ; compute $A'\mathbf{s}$ to obtain $\mathbf{e}' + \lfloor \frac{q}{2} \rfloor \mathbf{M}$; round to the closest multiple of $\lfloor \frac{q}{2} \rfloor$ to recover **M**.

Any semantic attack leads to an algorithm for Dec-LWE.

Damien Stehlé

Encrypting with Id-LWE

We could do the same ... but there is much better.

$$\Sigma^{ld}_{s,\psi}$$
: (a; as + e [q]) with $a \hookrightarrow U(R_q), e \hookrightarrow \psi$.

Let $s \leftrightarrow U(R_q)$ and ψ "small". Distinguishing between samples from $\sum_{s,\psi}^{ld}$ or from $U(R_q^2)$ is computationally infeasible.

Simplification: We can also take *s* small. The transformation $(a_i, b_i) \hookrightarrow (a_i, b_i - a_1^{-1}b_1)$ maps:

$$U(R_q^2)$$
 to $U(R_q^2)$ and $\Sigma_{U(R_q),\psi}^{Id}$ to $\Sigma_{\psi,\psi}^{Id}$.

Encrypting with Id-LWE

$$\Sigma_{s,\psi}^{ld}$$
: (a; as + e [q]) with $a \leftarrow U(R_q), e \leftarrow \psi$.

Let s and ψ "small". Distinguishing between samples from $\Sigma_{s,\psi}^{ld}$ or from $U(R_q^2)$ is computationally infeasible.

- Secret key: s (small); Public key: a_1 , $a_2 = a_1s + e$.
- Encryption: $(c_1, c_2) = (a_1t + e_1, a_2t + e_2 + \lfloor \frac{q}{2} \rfloor M)$, with t random and small.
- Decryption: $c_2 c_1 s$ is "small $+ \lfloor \frac{q}{2} \rfloor M$ ".
- CPA-secure assuming the hardness of Dec-Id-LWE.
- Key-sizes are quasi-optimal.
- Complexity and ciphertext expansion are quasi-optimal.

Damien Stehlé

This is ElGamal!!!

- Secret key: s (small); Public key: a_1 , $a_2 = a_1s + e$.
- Encryption: $(c_1, c_2) = (a_1t + e_1, a_2t + e_2 + \lfloor \frac{q}{2} \rfloor M)$, with t random and small.
- Decryption: $c_2 c_1 s$ is "small $+ \lfloor \frac{q}{2} \rfloor M$ ".
- Secret key: s; Public key: g_1 , $g_2 = g_1^s$.
- Encryption: $(c_1, c_2) = (g_1^t, g_2^t M)$, with t random.
- Decryption: c_2/c_1^s is M.

Plan

- 1- Background on Euclidean lattices.
- 2- The SIS problem, or how to hash.
- 3- The LWE problem, or how to encrypt.

4- Cryptanalysis.

5- Advanced topics: IBE and FHE.

Attacking SIS/Id-SIS/LWE/Id-LWE

- The only known attack consists in finding a small vector/basis of the lattice $A^{\perp} = \{ \mathbf{s} \in \mathbb{Z}^{mn} : \mathbf{s}A = \mathbf{0} \ [q] \}.$
- Generalized birthday attack: may be feasible if *m* is large. Its cost is easily determined [MR'09].
- Lattice reduction: may be applied to a subset of the rows (trade-off between approximation factor and existence of short vectors).
- But... although quite old (Lagrange, Gauss, Hermite, Minkowski, etc)... lattice reduction is not so well understood.

- - Principle: start from an arbitrary basis of the lattice, and progressively improve it.
 - Quality of a basis: measured by the Gram-Schmidt Orth.

•
$$\mathbf{b}_i^* = \operatorname{argmin} \| \mathbf{b}_i + \sum_{j < i} \mathbb{R} \mathbf{b}_j$$

• Quality measure:
$$(\|\mathbf{b}_i^*\|)_{i=1..n}$$
.

Whv?

- The slower the $\|\mathbf{b}_i^*\|$'s decrease, the more orthogonal.
- Their product is constant.
- If they decrease slowly, then \mathbf{b}_1 must be small.

LWE	Cryptanalysis	Advanced topics	Conclusion

Size-reduction:
$$|\langle \mathbf{b}_i, \mathbf{b}_j^* \rangle| \le ||\mathbf{b}_j^*||^2/2$$
, for all $j < i$.
Ensures that $\max ||\mathbf{b}_i|| \le \sqrt{n} \cdot \max ||\mathbf{b}_i^*||$.

Lenstra-Lenstra-Lovász reduction

A basis $(\mathbf{b}_i)_i$ is LLL-reduced if it is size-reduced and $\|\mathbf{b}_{i+1}^*\| \ge \|\mathbf{b}_i^*\|/2$ for all *i* (Lovász' condition).

LLL algorithm: size-reduce; if any, take an i violating Lovász' condition, swap vectors i and i + 1, and restart (else, stop).

The LLL algorithm runs in polynomial time, and the first output vector satisfies $\|\mathbf{b}_1\| \leq 2^n \cdot \lambda(L)$.

HKZ

Hermite-Korkine-Zolotarev reduction

A basis $(\mathbf{b}_i)_i$ is HKZ-reduced if it is size-reduced, if $\|\mathbf{b}_1\| = \lambda(L)$ and if after projection orthogonally to \mathbf{b}_1 , the basis $(\mathbf{b}_i)_{i>1}$ is HKZ-reduced.

HKZ-reduction is polynomial-time equivalent to solving SVP. Best algorithms:

- Kannan: deterministic, polynomial space, time $n^{O(n)}$.
- Ajtai et al: probabilistic, time and space $2^{O(n)}$.
- Micciancio-Voulgaris: deterministic, time and space $2^{O(n)}$.

25/49

BKZ: a trade-off between LLL and HKZ

Schnorr's hierarchy

Lattice reduction rule of the thumb

For block-size k, reduction algorithms can achieve $\|\mathbf{b}_1\| \approx n^{O(n/k)} \cdot \lambda_1$ in time $\mathcal{P}oly(n) \cdot 2^{O(k)}$.

For SIS, this gives the hardness condition $m^{O(m/k)} \gg \beta$.

- Seems satisfied by BKZ for small block-sizes.
- But the cost unexpectedly blows up with block-size \approx 30.

Warnings

- The runtime of BKZ is not $\mathcal{P}oly(n) \cdot 2^{O(k)}$.
- BKZ is the only available variant of Schnorr's hierarchy.

Damien Stehlé

Solving SVP in practice

Practical boundaries for solving SVP are still being improved.

- The Kannan-Fincke-Pohst enumeration is currently the most practical algorithm.
- Tree pruning, parallelisation, hardware implementation, ...
- In 2005, dimension 50?
- In 2007, dimension 70.
- In 2009, dimension 80.
- Now (Gama et al.'10), dimensions 110-120!

Plan

- 1- Background on Euclidean lattices.
- 2- The SIS problem, or how to hash.
- 3- The LWE problem, or how to encrypt.
- 4- Cryptanalysis.
- 5- Advanced topics: IBE and FHE.

Advanced topics

a- Identity-based encryption.

b- Fully homomorphic encryption.

 Identity-based encryption: encryption infrastructure in which a user's public key is uniquely determined by its identity; the user's private key is computed by a trusted authority, using a master key.

 \Rightarrow No need for a public key distribution infrastructure.

- Question first raised by Shamir in 1984.
- First realization by Boneh and Franklin in 2001, using bilinear pairings on elliptic curves.
- Hierarchical IBE: same as IBE, but each entity in level *k* of a hierarchy can generate the private keys of all entities of lower levels in the hierarchy.

HIBE using LWE

- Encode an identity *id* as a string of bits of length $\leq k$.
- An identity *id* is higher in the hierarchy than *id'* if *id* is a prefix of *id'*: *id'* = (*id*∥·).
- The master has identity {}.
- Sample A uniform in Z^{m×n}_q together with a trapdoor T_A. These are the master's keys.
- Sample $(A_1^0, A_1^1), \ldots, (A_k^0, A_k^1)$ iid uniformly in $\mathbb{Z}_q^{m \times n}$.
- User *id* = *i*₁ ... *i*_ℓ has public key *A*_{*id*}, the vertical concatenation of *A*, *A*^{*i*₁}₁, ..., *A*^{*i*_ℓ}_ℓ.
- sk_{id} is a short basis of A_{id}^{\perp} .
- Encryption: same as with LWE.

Private key extraction

- Suppose id' = (id∥·). How does user id extract a private key for id' from his/her own private key?
- How to obtain a $T_{A_{id}}$ from a $T_{A_{id'}}$?
- Writing the new rows as combinations of the previous ones suffices to obtain a basis of A[⊥]_{id}, with small GSO.

Private key randomization

- But now $id' = (id\|\cdot)$ now knows the private key of id!
- *id* should randomize $T_{A_{id'}}$ before giving it to *id'*.
- Use the previous basis of $A_{id'}^{\perp}$ with small GSO to sample from $D_{A_{id'}^{\perp},\sigma}$ for a small σ .
- With sufficiently many samples, we obtain a full rank set of short vectors in A[⊥]_{id}.
- Convert it into a short basis.
- The output distribution is independent of the initial basis.

Cash et al, Eurocrypt'10

Assuming LWE is hard, this scheme is secure against selective-identity chosen plaintext attacks, in the standard model.

Damien Stehlé

More on IBE

Similar techniques lead to signatures that are secure in the standard model (without the random oracle).

Very hot topic:

- Cash-Hofheinz-Kiltz-Peikert at Eurocrypt'10.
- Agrawal-Boneh-Boyen at Eurocrypt'10.
- Boyen at PKC'10.
- Agrawal-Boneh-Boyen at Crypto'10.

Main open problems:

- Improving the efficiency (e.g., using Id-LWE?).
- The SVP approximation factor increases quickly with the number of levels in the hierarchy: γ = n^{O(k)}.
 Can we avoid this?

Recent developments

- a- Identity-based encryption.
- **b** Fully homomorphic encryption.

Homomorphic encryption

- Given $C_1 = \mathcal{E}(M_1)$ and $C_2 = \mathcal{E}(M_2)$, can we compute $\mathcal{E}(f(M_1, M_2))$ for some/any f, without decrypting?
- E.g., for textbook RSA: $M_1^e \cdot M_2^e = (M_1 \cdot M_2)^e$ [N].
- An encryption scheme is fully homomorphic if any function (given as a circuit) of any number of M_i 's can be evaluated in the ciphertext domain:

 $\forall k, \forall f, \exists g : \mathcal{D}[g(\mathcal{E}(M_1), \ldots, \mathcal{E}(M_k))] = f(M_1, \ldots, M_k).$

• The bit-size of the output of *g* must be independent of the circuit size of *f*.

The 'holy grail' of cryptography

- The question was first asked by Rivest, Adleman and Dertouzous in 1978.
- Solved by Craig Gentry in 2009, using ideal lattices.

IBM announcement (25/06/09): An IBM Researcher has solved a thorny mathematical problem that has confounded scientists since the invention of public-key encryption several decades ago. The breakthrough, called "privacy homomorphism," or "fully homomorphic encryption," makes possible the deep and unlimited analysis of encrypted information [...] without sacrificing confidentiality.

Many applications:

- Use untrusted parties to run programs (cloud computing).
- Search over private data (PIR), etc.

Damien Stehlé

A somewhat homomorphic scheme

- Sample a good basis B^{sk}_J of an ideal lattice J:
 e.g., each basis vector has norm ≤ Poly(λ) · λ₁(J).
- Let B_J^{pk} be a bad basis of B_J^{sk} (e.g., its HNF).
- To encrypt $\pi \in \{0,1\}$, take a small random $ho \in \mathbb{Z}[x]/(x^n+1)$ and output

$$\psi = \pi + 2\rho \mod B_J^{pk}$$
.

- Plaintext space: $\{0,1\}$, ciphertext space: R/J.
- Use Babai's rounding-off to decrypt:

$$\psi - B_J^{sk} \lfloor (B_J^{sk})^{-1} \psi \rceil \implies \pi + 2 \rho.$$

Correctness and security

- Babai's rounding-off is correct as long as the distance to J is ≤ ^{λ₁(J)}/_{Poly(n)} =: r_{Dec}.
- Correctness: it suffices that

$$r_{\textit{Enc}} := \max_{\pi,\rho} \|\pi + 2\rho\| \le 1 + 2\max_{\rho} \|\rho\| \le r_{\textit{Dec}}.$$

- Security: Finding a closest vector for a target within *r_{Enc}* of *J* must be hard (BDD).
- With lattice reduction, this can be done in time ≈ 2^k if r_{Enc} ≤ 2^{n/k} · r_{Dec}.

More on security

If J and B_J^{sk} are well chosen, if $\pi \in \{0,1\}$ and if ρ is sampled from some discrete Gaussian, then this scheme can be made CPA secure under the assumption that Id-SVP $_{\gamma}$ is hard to solve for quantum polynomial-time algorithms, for some small γ .

The proof includes a dimension-preserving worst-case to average-case reduction. The distribution for J is the uniform distribution over the set of ideals with norm in [a, 2a].

Why is it (somewhat) homomorphic?

- To encrypt $\pi \in \{0, 1\}$, take a small random $\rho \in R$ and output $\psi = \pi + 2\rho \mod B_I^{pk}$.
- $\psi_i = \pi_i + 2\rho_i \mod B_J^{pk}$ for $i \in \{1, 2\}$ implies, mod J:

$$\begin{aligned} \psi_1 + \psi_2 &= (\pi_1 + \pi_2) + 2(\rho_1 + \rho_2), \\ \psi_1 \times \psi_2 &= (\pi_1 \times \pi_2) + 2(\rho_1 \times \pi_2 + \rho_2 \times \pi_1 + 2\rho_1 \times \rho_2). \end{aligned}$$

- Add/Mult modulo B^{pk}_J on ciphertexts homomorphically performs Add/Mult modulo 2 on plaintexts.
- If we want to apply a mod-2 circuit to plaintexts, we replace it by an integer circuit, that we apply to ciphertexts modulo B_J.

Why is it only "somewhat" homomorphic?

The more operations are applied the further away from J.

- $dist(\mathbf{C}_1 + \mathbf{C}_2, J) \leq dist(\mathbf{C}_1, J) + dist(\mathbf{C}_2, J).$
- dist(C₁ × C₂, J) ≤ K · dist(C₁, J) · dist(C₂, J), for some K.

Let *C* be a mod 2 circuit with a corresponding integer circuit that evaluates $h(x_1, \ldots, x_t)$ of (total) degree *d*. Then *C* is permitted if $tK^d r_{Enc}^d \leq r_{Dec}$. Equivalently:

$$d \leq rac{\log r_{Dec}}{\log(r_{Enc} \cdot K \cdot t)}.$$

Making the scheme fully homormophic

- If many operations have been applied and the ciphertext ψ corresponding to plaintext π is deemed too noisy, we try to "refresh" it.
- But we cannot decrypt using the secret key sk_1 .
- Trick: encode ψ further using a second public key pk₂, and decode homomorphically using E_{pk2}(sk₁).

 $\mathcal{D}_{sk_2}\left(\mathsf{Dec}(\mathcal{E}_{\mathsf{pk}_2}(\psi), \mathcal{E}_{\mathsf{pk}_2}(sk_1))\right) = \mathsf{Dec}(\psi_1, sk_1) = \pi.$

• Refreshing as many times as required, we can apply any circuit privately.

The decryption circuit

- Problem: Is the decryption circuit simple enough so that it can be itself be applied without refreshing?
- Decryption: $\psi B_J^{sk} \lfloor (B_J^{sk})^{-1} \psi \rceil$ provides $\pi + 2\rho$.
- This seems too complicated.
- We need to "squash" the decryption circuit.

Outline of Gentry's solution:

- There exists \mathbf{v}_{J}^{sk} with: $\forall \psi : B_{J}^{sk} \lfloor (B_{J}^{sk})^{-1} \psi \rceil = \lfloor \mathbf{v}_{J}^{sk} \psi \rceil$.
- Generate random public \mathbf{v}_i 's with a secret sparse subset S which sums to \mathbf{v}_j^{sk} : $\sum_{i \in S} \mathbf{v}_i = \mathbf{v}_j^{sk}$.
- The v_i · ψ's can be computed publicly, and then the decryption reduces to summing up the few relevant ones.

More on FHE

Overall, Gentry gets FHE based on two security assumptions: SVP/BDD over ideal lattices and Sparse Subset Sum Problem.

Very hot topic:

- Gentry, STOC'09 and CRYPTO'10.
- van Dijk-Gentry-Halevi, Eurocrypt'10.
- Smart-Vercauteren, PKC'10.
- S.-Steinfeld, IACR eprint: "ciphertext refreshing" costs O(k³) bit operations, for security 2^k.

Open problems:

- Improving the efficiency further, in theory and practice.
- Removing the SSSP hardness assumption.

Plan

- 1- Background on Euclidean lattices.
- 2- The SIS problem, or how to hash.
- 3- The LWE problem, or how to encrypt.
- 4- Cryptanalysis.
- 5- Advanced topics: IBE and FHE.

Conclusion

- The schemes are becoming more and more efficient, in particular thanks to structured matrices / ideal lattices.
- More and more primitives can be built from lattice problems.
- The best attacks are becoming better understood.
- But still not many schemes are implemented.
- Lattice reduction can probably still be improved.
- Mainly one library used for crytanalysis (Shoup's NTL), and it is known to behave oddly [GN'08].

Open problems

- NTRU remains faster than the provable schemes. Can we prove its security?
- Can we improve the efficiency of the lattice-based primitives, e.g., signature in the standard model, (H)IBE, FHE, CCA-secure encryption, etc?
- What is the practicality of all these schemes?
- What are the actual limits of lattice reduction?

More open problems

- Can quantum computers improve lattice algorithms?
- Are ideal lattices weaker than general lattices?
- Are there better algorithms than lattice reduction for SVP_γ with γ = Poly(n)?
- Can we use lattice algorithms to factor integers or compute discrete logarithms?
- Which other primitives can be built from lattice problems? Can we do all those using discrete log and pairings?
- Can we adapt (some of) the techniques to linear codes?