# Introduction to modern lattice-based cryptography (Part II) 

## Damien Stehlé

LIP - CNRS/ENSL/INRIA/UCBL/U. Lyon

Singapore, June 2010

## Plan

1- Background on Euclidean lattices.
2- The SIS problem, or how to hash.
3- The LWE problem, or how to encrypt.
4- Cryptanalysis.
5- Advanced topics: IBE and FHE.

## The LWE problem

## a- Non structured LWE.

b- Structured LWE.
c- Encrypting with LWE.

## $\mathrm{LWE}_{\alpha, q}$ [Regev'05]

Let $\mathbf{s} \in \mathbb{Z}_{q}^{n}$. Let $\Sigma_{\mathbf{s}, \alpha}$ be the distribution corresponding to:
$(\mathbf{a} ;\langle\mathbf{a}, \mathbf{s}\rangle+e[q])$, with $\mathbf{a} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right), e \hookleftarrow \nu_{\alpha q}$ (small Gaussian).

## The Learning With Errors Problem - Comp-LWE ${ }_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_{q}^{n}$. Given arbitrarily many samples from $\Sigma_{\mathbf{s}, \alpha}$, find $\mathbf{s}$.


## LWE as a one-way function

- OWF: easy to evaluate and hard to invert.
- LWE's OWF: $\mathbf{s} \in \mathbb{Z}_{q}^{n} \mapsto A \mathbf{s}+\mathbf{e}[q]$.

A one-way function with trapdoor.

- Generate $A$ together with $T_{A}$.
- $T_{A} \cdot(A \mathbf{s}+\mathbf{e})=T_{A} \cdot \mathbf{e}[q]$.
- Both $T_{A}$ and $\mathbf{e}$ are small $\Rightarrow$ we know $T_{A} \cdot \mathbf{e}$ over $\mathbb{Z}$. We recover $\mathbf{e}$ and then $\mathbf{s}$ by linear algebra.
- Sufficient condition:

$$
\frac{q}{2}>\sqrt{n} \alpha q \cdot \max \left\|\mathbf{t}_{i}\right\| \Leftarrow n^{1.5} \alpha=\widetilde{o}(1) .
$$

## LWE as a lattice problem

## Comp-LWE ${ }_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_{q}^{n}$. Given $(A ; A \mathbf{s}+\mathbf{e}[q])$ with $A \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right)$ and $\mathbf{e} \hookleftarrow \nu_{\alpha q}^{m}$ for arbitrary $m$, find $\mathbf{s}$.

Let $L_{A}=\left\{\mathbf{b} \in \mathbb{Z}^{m}: \exists \mathbf{x} \in \mathbb{Z}_{q}^{n}, \mathbf{b}=A \mathbf{x}[q]\right\}$.

- $L_{A}$ is an $m$-dimensional lattice and $\widehat{L_{A}}=\frac{1}{q} A^{\perp}$.
- $\mathrm{BDD}_{\alpha, q}$ (bounded distance decoding):

Take $A \hookleftarrow U\left(\mathbb{Z}_{q}^{m \times n}\right), \mathbf{e} \hookleftarrow \nu_{\alpha q}^{m}$ and $\mathbf{b} \in L_{A}$ arbitrary. Given $A$ and $\mathbf{b}+\mathbf{e}$, find $\mathbf{b}$.

- If we can solve LWE, then we can solve BDD.


## How hard is LWE?

Quantum worst-case to average-case reduction ( $\gamma \approx n / \alpha$ )
Any efficient LWE algorithm succeeding with non-negligible probability leads to an efficient quantum SIVP algorithm.

- Efficient quantum computers make LWE more secure!
- [Peikert'09] de-quantumized the reduction, for large $q$.
- [SSTX'09]: simpler (but weaker) quantum reduction.


## How hard is $\mathrm{BDD}_{\alpha, q}$ ? Rough intuition.



$$
L \longrightarrow \hat{L}
$$

Fourier transform


- The Fourier transform of the distribution is implemented with the quantum Fourier transform.
- The input quantum state is built with the LWE oracle.
- The measurement gives a small SIS solution.


## Decisional LWE

$$
\Sigma_{\mathbf{s}, \alpha}: \quad(\mathbf{a} ;\langle\mathbf{a}, \mathbf{s}\rangle+e[q]) \text { with } \mathbf{a} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right), e \hookleftarrow \nu_{\alpha q} .
$$

## Comp-LWE ${ }_{\alpha}$

Let $\mathbf{s} \in \mathbb{Z}_{q}^{n}$. Given arbitrarily many samples from $\Sigma_{\mathbf{s}, \alpha}$, find $\mathbf{s}$.

## Dec-LWE ${ }_{\alpha}$

Let $\mathbf{s} \hookleftarrow U\left(\mathbb{Z}_{q}^{n}\right)$. Distinguish between (arbitrarily many) samples from $\Sigma_{s, \alpha}$ or from $U\left(\mathbb{Z}_{q}^{2}\right)$.

Dec-LWE and Comp-LWE efficiently reduce to each other.

## The LWE problem

a- Non structured LWE.
b- Structured LWE.
c- Encrypting with LWE.

## Ideal LWE

Let $R_{q}=\mathbb{Z}_{q}[x] /\left(x^{n}+1\right)$ with $n=2^{k}$ and $q$ prime.
Let $\Psi_{\leq \alpha q}$ be the set of ellipsoidal Gaussians $\left(\nu_{r_{i}}\right)_{i}$ in $\mathbb{R}^{n}$,
where each component has standard deviation $r_{i} \leq \alpha q$.
For $\psi \in \Psi_{\leq \alpha q}$ and $s \in R_{q}$, we define:
$\sum_{s, \psi}^{l d}: \quad(a ; a s+\mathbf{e}[q])$ with $a \hookleftarrow U\left(R_{q}\right), \mathbf{e} \hookleftarrow \psi$.
Comp-Id-LWE ${ }_{\alpha}$
Let $s \in R_{q}$ and $\psi \in \Psi_{\leq \alpha q}$. Given arbitrarily many samples from $\sum_{s, \psi}^{l d}$, find $s$.

- One sample from $\Sigma^{l d}$ encodes $n$ samples from $\Sigma$.
- But it costs about the same as 1 sample from $\Sigma$ : We use $R_{q}$ to multiply vectors, with FFT!
- Same matrix interpretation, but with negacylic blocks.


## Ideal LWE is hard

$\Sigma_{s, \psi}^{l d}: \quad(a ; a s+\mathbf{e}[q])$ with $a \hookleftarrow U\left(R_{q}\right), \mathbf{e} \hookleftarrow \psi$.
Comp-ld-LWE ${ }_{\alpha}$
Let $s \in R_{q}$ and $\psi \in \Psi_{\leq \alpha q}$. Given arbitrarily many samples from $\sum_{s, \psi}^{l d}$, find $s$.

Any efficient Id-LWE algo. succeeding with non-negligible probability leads to an efficient quantum Id-SIVP algo.

## A faster trapdoor one-way function

- Evaluation cost: $\widetilde{O}\left(n^{2}\right) \Rightarrow \widetilde{O}(n)$ bit operations.
- For the inversion, use the structured $T_{A}$ from Id-SIS.
- $T_{A} \cdot(A \mathbf{s}+\mathbf{e})=T_{A} \mathbf{e}$ over the integers. Multiply by $T_{A}^{-1}$ to recover $\mathbf{e}$, and then $\mathbf{s}$.
- Evaluation/inversion cost: $\widetilde{O}\left(n^{2}\right) \Rightarrow \widetilde{O}(n)$ bit operations.


## Decisional Ideal LWE

$\sum_{s, \psi}^{l d}: \quad(a ; a s+\mathbf{e}[q])$ with $a \hookleftarrow U\left(R_{q}\right), \mathbf{e} \hookleftarrow \psi$.

## Comp-Id-LWE ${ }_{\alpha}$

Let $s \in R_{q}$ and $\psi \in \Psi_{\leq \alpha q}$. Given arbitrarily many samples from $\sum_{s, \psi}^{l d}$, find $s$.

## Dec-Id-LWE ${ }_{\alpha}$

Let $s \hookleftarrow U\left(R_{q}\right)$ and $\psi \in \Psi_{\leq \alpha q}$, choosing the st. devs. from an exponential variate. Distinguish between (arbitrarily many) samples from $\sum_{s, \psi}^{l d}$ or from $U\left(R_{q}^{2}\right)$.

If $x^{n}+1$ has $n$ factors modulo $q$, then Dec-Id-LWE and Comp-Id-LWE efficiently reduce to each other.

## The LWE problem

a- Non structured LWE.
b- Structured LWE.
c- Encrypting with LWE.

## Encrypting with LWE



- Public key: $A \in \mathbb{Z}_{q}^{m \times n}, A^{\prime} \in \mathbb{Z}_{q}^{n \times n}$; secret key: $T_{A}$.
- Encryption: compute $\left[A \mathbf{s}+\mathbf{e} ; A^{\prime} \mathbf{s}+\mathbf{e}^{\prime}+\left\lfloor\frac{q}{2}\right\rfloor \cdot \mathbf{M}\right]$.
- Decryption: recover sfrom the first part of the ciphertext, using $T_{A}$; compute $A^{\prime}$ s to obtain $\mathbf{e}^{\prime}+\left\lfloor\frac{q}{2}\right\rfloor \mathbf{M}$; round to the closest multiple of $\left\lfloor\frac{q}{2}\right\rfloor$ to recover $\mathbf{M}$.

Any semantic attack leads to an algorithm for Dec-LWE.

## Encrypting with Id-LWE

We could do the same ... but there is much better.
$\sum_{s, \psi}^{l d}: \quad(a ; a s+e[q])$ with $a \hookleftarrow U\left(R_{q}\right), e \hookleftarrow \psi$.
Let $s \hookleftarrow U\left(R_{q}\right)$ and $\psi$ "small". Distinguishing between samples from $\sum_{s, \psi}^{l d}$ or from $U\left(R_{q}^{2}\right)$ is computationally infeasible.

Simplification: We can also take $s$ small. The transformation $\left(a_{i}, b_{i}\right) \hookrightarrow\left(a_{i}, b_{i}-a_{1}^{-1} b_{1}\right)$ maps:

$$
U\left(R_{q}^{2}\right) \text { to } U\left(R_{q}^{2}\right) \text { and } \sum_{U\left(R_{q}\right), \psi}^{l d} \text { to } \sum_{\psi, \psi}^{l d}
$$

## Encrypting with Id-LWE

$\sum_{s, \psi}^{l d}: \quad(a ; a s+e[q])$ with $a \hookleftarrow U\left(R_{q}\right), e \hookleftarrow \psi$.
Let $s$ and $\psi$ "small". Distinguishing between samples from $\sum_{s, \psi}^{l d}$ or from $U\left(R_{q}^{2}\right)$ is computationally infeasible.

- Secret key: $s$ (small); Public key: $a_{1}, a_{2}=a_{1} s+e$.
- Encryption: $\left(c_{1}, c_{2}\right)=\left(a_{1} t+e_{1}, a_{2} t+e_{2}+\left\lfloor\frac{q}{2}\right\rfloor M\right)$, with $t$ random and small.
- Decryption: $c_{2}-c_{1} s$ is "small $+\left\lfloor\frac{q}{2}\right\rfloor M^{\prime}$.
- CPA-secure assuming the hardness of Dec-Id-LWE.
- Key-sizes are quasi-optimal.
- Complexity and ciphertext expansion are quasi-optimal.


## This is EIGamal!!!

- Secret key: $s$ (small); Public key: $a_{1}, a_{2}=a_{1} s+e$.
- Encryption: $\left(c_{1}, c_{2}\right)=\left(a_{1} t+e_{1}, a_{2} t+e_{2}+\left\lfloor\frac{q}{2}\right\rfloor M\right)$, with $t$ random and small.
- Decryption: $c_{2}-c_{1} s$ is "small $+\left\lfloor\frac{q}{2}\right\rfloor M^{\prime}$.
- Secret key: $s$; Public key: $g_{1}, g_{2}=g_{1}^{s}$.
- Encryption: $\left(c_{1}, c_{2}\right)=\left(g_{1}^{t}, g_{2}^{t} M\right)$, with $t$ random.
- Decryption: $c_{2} / c_{1}^{s}$ is $M$.


## Plan

1- Background on Euclidean lattices.
2- The SIS problem, or how to hash.
3- The LWE problem, or how to encrypt.
4- Cryptanalysis.
5- Advanced topics: IBE and FHE.

## Attacking SIS/Id-SIS/LWE/Id-LWE

- The only known attack consists in finding a small vector/basis of the lattice $A^{\perp}=\left\{\mathbf{s} \in \mathbb{Z}^{m n}: \mathbf{s} A=\mathbf{0}[q]\right\}$.
- Generalized birthday attack: may be feasible if $m$ is large. Its cost is easily determined [MR'09].
- Lattice reduction: may be applied to a subset of the rows (trade-off between approximation factor and existence of short vectors).

But... although quite old (Lagrange, Gauss, Hermite, Minkowski, etc)... lattice reduction is not so well understood.

## Lattice reduction

- Principle: start from an arbitrary basis of the lattice, and progressively improve it.
- Quality of a basis: measured by the Gram-Schmidt Orth.

- $\mathbf{b}_{i}^{*}=\operatorname{argmin}\left\|\mathbf{b}_{i}+\sum_{j<i} \mathbb{R} \mathbf{b}_{j}\right\|$
- Quality measure: $\left(\left\|\mathbf{b}_{i}^{*}\right\|\right)_{i=1 . . n}$.

Why?

- The slower the $\left\|\mathbf{b}_{i}^{*}\right\|^{\prime}$ 's decrease, the more orthogonal.
- Their product is constant.
- If they decrease slowly, then $\mathbf{b}_{1}$ must be small.

Size-reduction: $\left|\left\langle\mathbf{b}_{i}, \mathbf{b}_{j}^{*}\right\rangle\right| \leq\left\|\mathbf{b}_{j}^{*}\right\|^{2} / 2$, for all $j<i$.
Ensures that $\max \left\|\mathbf{b}_{i}\right\| \leq \sqrt{n} \cdot \max \left\|\mathbf{b}_{i}^{*}\right\|$.

## Lenstra-Lenstra-Lovász reduction

A basis $\left(\mathbf{b}_{i}\right)_{i}$ is LLL-reduced if it is size-reduced and $\left\|\mathbf{b}_{i+1}^{*}\right\| \geq\left\|\mathbf{b}_{i}^{*}\right\| / 2$ for all $i$ (Lovász' condition).

LLL algorithm: size-reduce; if any, take an i violating Lovász' condition, swap vectors $i$ and $i+1$, and restart (else, stop).

The LLL algorithm runs in polynomial time, and the first output vector satisfies $\left\|\mathbf{b}_{1}\right\| \leq 2^{n} \cdot \lambda(L)$.

## HKZ

## Hermite-Korkine-Zolotarev reduction

A basis $\left(\mathbf{b}_{i}\right)_{i}$ is HKZ-reduced if it is size-reduced, if $\left\|\mathbf{b}_{1}\right\|=\lambda(L)$ and if after projection orthogonally to $\mathbf{b}_{1}$, the basis $\left(\mathbf{b}_{i}\right)_{i>1}$ is HKZ-reduced.

HKZ-reduction is polynomial-time equivalent to solving SVP.
Best algorithms:

- Kannan: deterministic, polynomial space, time $n^{O(n)}$.
- Ajtai et al: probabilistic, time and space $2^{O(n)}$.
- Micciancio-Voulgaris: deterministic, time and space $2^{O(n)}$.


## BKZ: a trade-off between LLL and HKZ



## Schnorr's hierarchy

## Lattice reduction rule of the thumb

For block-size $k$, reduction algorithms can achieve $\left\|\mathbf{b}_{1}\right\| \approx n^{O(n / k)} \cdot \lambda_{1}$ in time $\mathcal{P o l y}(n) \cdot 2^{O(k)}$.

For SIS, this gives the hardness condition $m^{O(m / k)} \gg \beta$.

- Seems satisfied by BKZ for small block-sizes.
- But the cost unexpectedly blows up with block-size $\approx 30$.


## Warnings

- The runtime of BKZ is not $\mathcal{P o l y}(n) \cdot 2^{O(k)}$.
- BKZ is the only available variant of Schnorr's hierarchy.


## Solving SVP in practice

Practical boundaries for solving SVP are still being improved.

- The Kannan-Fincke-Pohst enumeration is currently the most practical algorithm.
- Tree pruning, parallelisation, hardware implementation, ...
- In 2005, dimension 50?
- In 2007, dimension 70.
- In 2009, dimension 80.
- Now (Gama et al.'10), dimensions 110-120!


## Plan

1- Background on Euclidean lattices.
2- The SIS problem, or how to hash.
3- The LWE problem, or how to encrypt.
4- Cryptanalysis.
5- Advanced topics: IBE and FHE.

## Advanced topics

a- Identity-based encryption.
b- Fully homomorphic encryption.

## (H)IBE

- Identity-based encryption: encryption infrastructure in which a user's public key is uniquely determined by its identity; the user's private key is computed by a trusted authority, using a master key.
$\Rightarrow$ No need for a public key distribution infrastructure.
- Question first raised by Shamir in 1984.
- First realization by Boneh and Franklin in 2001, using bilinear pairings on elliptic curves.
- Hierarchical IBE: same as IBE, but each entity in level $k$ of a hierarchy can generate the private keys of all entities of lower levels in the hierarchy.


## HIBE using LWE

- Encode an identity id as a string of bits of length $\leq k$.
- An identity id is higher in the hierarchy than id ${ }^{\prime}$ if id is a prefix of $i d^{\prime}: \quad i d^{\prime}=(i d \| \cdot)$.
- The master has identity $\}$.
- Sample $A$ uniform in $\mathbb{Z}_{q}^{m \times n}$ together with a trapdoor $T_{A}$. These are the master's keys.
- Sample $\left(A_{1}^{0}, A_{1}^{1}\right), \ldots,\left(A_{k}^{0}, A_{k}^{1}\right)$ iid uniformly in $\mathbb{Z}_{q}^{m \times n}$.
- User id $=i_{1} \ldots i_{\ell}$ has public key $A_{i d}$, the vertical concatenation of $A, A_{1}^{i_{1}}, \ldots, A_{\ell}^{i \ell}$.
- $s k_{i d}$ is a short basis of $A_{i d}^{\perp}$.
- Encryption: same as with LWE.


## Private key extraction

- Suppose $i d^{\prime}=(i d \| \cdot)$. How does user id extract a private key for id' from his/her own private key?
- How to obtain a $T_{A_{i d}}$ from a $T_{A_{i d^{\prime}}}$ ?
- Writing the new rows as combinations of the previous ones suffices to obtain a basis of $A_{i d^{\prime}}^{\perp}$ with small GSO.



## Private key randomization

- But now $i d^{\prime}=(i d \| \cdot)$ now knows the private key of $i d!$
- id should randomize $T_{A_{i d^{\prime}}}$ before giving it to $i d^{\prime}$.
- Use the previous basis of $A_{i d^{\prime}}^{\perp}$ with small GSO to sample from $D_{A_{i d^{\prime}}^{\perp}, \sigma}$ for a small $\sigma$.
- With sufficiently many samples, we obtain a full rank set of short vectors in $A_{i d^{\prime}}^{\perp}$.
- Convert it into a short basis.
- The output distribution is independent of the initial basis.


## Cash et al, Eurocrypt'10

Assuming LWE is hard, this scheme is secure against selective-identity chosen plaintext attacks, in the standard model.

## More on IBE

Similar techniques lead to signatures that are secure in the standard model (without the random oracle).

## Very hot topic:

- Cash-Hofheinz-Kiltz-Peikert at Eurocrypt'10.
- Agrawal-Boneh-Boyen at Eurocrypt'10.
- Boyen at PKC'10.
- Agrawal-Boneh-Boyen at Crypto'10.


## Main open problems:

- Improving the efficiency (e.g., using Id-LWE?).
- The SVP approximation factor increases quickly with the number of levels in the hierarchy: $\gamma=n^{O(k)}$.
Can we avoid this?


## Recent developments

a- Identity-based encryption.
b- Fully homomorphic encryption.

## Homomorphic encryption

- Given $C_{1}=\mathcal{E}\left(M_{1}\right)$ and $C_{2}=\mathcal{E}\left(M_{2}\right)$, can we compute $\mathcal{E}\left(f\left(M_{1}, M_{2}\right)\right)$ for some/any $f$, without decrypting?
- E.g., for textbook RSA: $M_{1}^{e} \cdot M_{2}^{e}=\left(M_{1} \cdot M_{2}\right)^{e}[N]$.
- An encryption scheme is fully homomorphic if any function (given as a circuit) of any number of $M_{i}$ 's can be evaluated in the ciphertext domain:

$$
\forall k, \forall f, \exists g: \mathcal{D}\left[g\left(\mathcal{E}\left(M_{1}\right), \ldots, \mathcal{E}\left(M_{k}\right)\right)\right]=f\left(M_{1}, \ldots, M_{k}\right)
$$

- The bit-size of the output of $g$ must be independent of the circuit size of $f$.


## The 'holy grail' of cryptography

- The question was first asked by Rivest, Adleman and Dertouzous in 1978.
- Solved by Craig Gentry in 2009, using ideal lattices.

IBM announcement (25/06/09): An IBM Researcher has solved a thorny mathematical problem that has confounded scientists since the invention of public-key encryption several decades ago. The breakthrough, called "privacy homomorphism," or "fully homomorphic encryption," makes possible the deep and unlimited analysis of encrypted information [...] without sacrificing confidentiality.

Many applications:

- Use untrusted parties to run programs (cloud computing).
- Search over private data (PIR), etc.


## A somewhat homomorphic scheme

- Sample a good basis $B_{J}^{s k}$ of an ideal lattice $J$ : e.g., each basis vector has norm $\leq \mathcal{P o l y}(\lambda) \cdot \lambda_{1}(J)$.
- Let $B_{J}^{p k}$ be a bad basis of $B_{J}^{s k}$ (e.g., its HNF).
- To encrypt $\pi \in\{0,1\}$, take a small random $\rho \in \mathbb{Z}[x] /\left(x^{n}+1\right)$ and output

$$
\psi=\pi+2 \rho \bmod B_{J}^{p k}
$$

- Plaintext space: $\{0,1\}$, ciphertext space: $R / J$.
- Use Babai's rounding-off to decrypt:

$$
\psi-B_{J}^{s k}\left\lfloor\left(B_{J}^{s k}\right)^{-1} \psi\right\rceil \Rightarrow \pi+2 \rho .
$$

## Correctness and security

- Babai's rounding-off is correct as long as the distance to $J$ is $\leq \frac{\lambda_{1}(J)}{\mathcal{P} o l y(n)}=: r_{\text {Dec }}$.
- Correctness: it suffices that

$$
r_{E n c}:=\max _{\pi, \rho}\|\pi+2 \rho\| \leq 1+2 \max _{\rho}\|\rho\| \leq r_{\text {Dec }} .
$$

- Security: Finding a closest vector for a target within $r_{\text {Enc }}$ of $J$ must be hard (BDD).
- With lattice reduction, this can be done in time $\approx 2^{k}$ if $r_{\text {Enc }} \leq 2^{n / k} \cdot r_{\text {Dec }}$.


## More on security

> If $J$ and $B_{J}^{s k}$ are well chosen, if $\pi \in\{0,1\}$ and if $\rho$ is sampled from some discrete Gaussian, then this scheme can be made CPA secure under the assumption that Id-SVP ${ }_{\gamma}$ is hard to solve for quantum polynomial-time algorithms, for some small $\gamma$.

The proof includes a dimension-preserving worst-case to average-case reduction. The distribution for $J$ is the uniform distribution over the set of ideals with norm in [a, 2a].

## Why is it (somewhat) homomorphic?

- To encrypt $\pi \in\{0,1\}$, take a small random $\rho \in R$ and output $\psi=\pi+2 \rho \bmod B_{J}^{p k}$.
- $\psi_{i}=\pi_{i}+2 \rho_{i} \bmod B_{J}^{p k}$ for $i \in\{1,2\}$ implies, $\bmod J$ :

$$
\begin{aligned}
\psi_{1}+\psi_{2} & =\left(\pi_{1}+\pi_{2}\right)+2\left(\rho_{1}+\rho_{2}\right) \\
\psi_{1} \times \psi_{2} & =\left(\pi_{1} \times \pi_{2}\right)+2\left(\rho_{1} \times \pi_{2}+\rho_{2} \times \pi_{1}+2 \rho_{1} \times \rho_{2}\right)
\end{aligned}
$$

- Add/Mult modulo $B_{J}^{p k}$ on ciphertexts homomorphically performs Add/Mult modulo 2 on plaintexts.
- If we want to apply a mod-2 circuit to plaintexts, we replace it by an integer circuit, that we apply to ciphertexts modulo $B_{J}$.


## Why is it only "somewhat" homomorphic?

The more operations are applied the further away from J .

- $\operatorname{dist}\left(\mathbf{C}_{1}+\mathbf{C}_{2}, J\right) \leq \operatorname{dist}\left(\mathbf{C}_{1}, J\right)+\operatorname{dist}\left(\mathbf{C}_{2}, J\right)$.
- $\operatorname{dist}\left(\mathbf{C}_{1} \times \mathbf{C}_{2}, J\right) \leq K \cdot \operatorname{dist}\left(\mathbf{C}_{1}, J\right) \cdot \operatorname{dist}\left(\mathbf{C}_{2}, J\right)$, for some $K$.

Let $C$ be a mod 2 circuit with a corresponding integer circuit that evaluates $h\left(x_{1}, \ldots, x_{t}\right)$ of (total) degree $d$. Then $C$ is permitted if $t K^{d} r_{E n c}^{d} \leq r_{\text {Dec }}$. Equivalently:

$$
d \leq \frac{\log r_{D e c}}{\log \left(r_{E n c} \cdot K \cdot t\right)} .
$$

## Making the scheme fully homormophic

- If many operations have been applied and the ciphertext $\psi$ corresponding to plaintext $\pi$ is deemed too noisy, we try to "refresh" it.
- But we cannot decrypt using the secret key $s k_{1}$.
- Trick: encode $\psi$ further using a second public key $p k_{2}$, and decode homomorphically using $\mathcal{E}_{p k_{2}}\left(s k_{1}\right)$.

$$
\mathcal{D}_{s k_{2}}\left(\operatorname{Dec}\left(\mathcal{E}_{p k_{2}}(\psi), \mathcal{E}_{p k_{2}}\left(s k_{1}\right)\right)\right)=\operatorname{Dec}\left(\psi_{1}, s k_{1}\right)=\pi .
$$

- Refreshing as many times as required, we can apply any circuit privately.


## The decryption circuit

- Problem: Is the decryption circuit simple enough so that it can be itself be applied without refreshing?
- Decryption: $\psi-B_{J}^{s k}\left\lfloor\left(B_{J}^{s k}\right)^{-1} \psi\right\rceil$ provides $\pi+2 \rho$.
- This seems too complicated.
- We need to "squash" the decryption circuit.

Outline of Gentry's solution:

- There exists $\mathbf{v}_{J}^{s k}$ with: $\forall \psi: B_{J}^{s k}\left\lfloor\left(B_{J}^{s k}\right)^{-1} \psi\right\rceil=\left\lfloor\mathbf{v}_{J}^{s k} \psi\right\rceil$.
- Generate random public $\mathbf{v}_{i}$ 's with a secret sparse subset $S$ which sums to $\mathbf{v}_{J}^{s k}: \sum_{i \in S} \mathbf{v}_{i}=\mathbf{v}_{J}^{s k}$.
- The $\mathbf{v}_{i} \cdot \psi$ 's can be computed publicly, and then the decryption reduces to summing up the few relevant ones.


## More on FHE

Overall, Gentry gets FHE based on two security assumptions: SVP/BDD over ideal lattices and Sparse Subset Sum Problem.

## Very hot topic:

- Gentry, STOC'09 and CRYPTO'10.
- van Dijk-Gentry-Halevi, Eurocrypt'10.
- Smart-Vercauteren, PKC'10.
- S.-Steinfeld, IACR eprint: "ciphertext refreshing" costs $\widetilde{O}\left(k^{3}\right)$ bit operations, for security $2^{k}$.


## Open problems:

- Improving the efficiency further, in theory and practice.
- Removing the SSSP hardness assumption.


## Plan

1- Background on Euclidean lattices.
2- The SIS problem, or how to hash.
3- The LWE problem, or how to encrypt.
4- Cryptanalysis.
5- Advanced topics: IBE and FHE.

## Conclusion

- The schemes are becoming more and more efficient, in particular thanks to structured matrices / ideal lattices.
- More and more primitives can be built from lattice problems.
- The best attacks are becoming better understood.
- But still not many schemes are implemented.
- Lattice reduction can probably still be improved.
- Mainly one library used for crytanalysis (Shoup's NTL), and it is known to behave oddly [GN'08].


## Open problems

- NTRU remains faster than the provable schemes.

Can we prove its security?

- Can we improve the efficiency of the lattice-based primitives, e.g., signature in the standard model, (H)IBE, FHE, CCA-secure encryption, etc?
- What is the practicality of all these schemes?
- What are the actual limits of lattice reduction?


## More open problems

- Can quantum computers improve lattice algorithms?
- Are ideal lattices weaker than general lattices?
- Are there better algorithms than lattice reduction for SVP $_{\gamma}$ with $\gamma=\mathcal{P o l y}(n)$ ?
- Can we use lattice algorithms to factor integers or compute discrete logarithms?
- Which other primitives can be built from lattice problems? Can we do all those using discrete log and pairings?
- Can we adapt (some of) the techniques to linear codes?

