Introduction to modern lattice-based cryptography (Part I)

Damien Stehlé

LIP - CNRS/ENSL/INRIA/UCBL/U. Lyon

Singapore, June 2010

Modern lattice-based cryptography

- Cryptography: the science of information hiding.
- "Lattice-based": the schemes involve Euclidean lattices.
- Standard lattice problems provably reduce to attacks against those schemes.
- Modern: we won't be interested in GGH and NTRU. More recent schemes offer similar performance with rigorous security guarantees.

Why lattice-based cryptography?

(why not business as usual, with factoring and discrete log?)

- LBC provides unmatched security properties: its security stems from worst-case hardness assumptions.
- LBC seems to remain secure even against quantum computers.
- LBC is asymptotically extremely efficient.
- LBC is simple and flexible: this leads to easier design of complicated cryptographic functions.
- Diversity fosters cross-pollination.

Goal of this course

To give an overview of recent developments in LBC, and a flavour of the techniques/results.

Disclaimer: This is not a practical crypto course.
Contents: Complexity theory, distributions, quantum computing, cryptography, structured matrices, lattices.

Highlights: Worst-case to average-case reductions, encryption with quasi-optimal complexity, fully homomorphic encryption.

Bibliography

- The LLL Algorithm. Survey and Applications.
P. Nguyen and B. Vallée (Eds.), Springer.
- The Learning with Errors Problem. Survey by O. Regev.
- Lattice-based Cryptography. Survey by D. Micciancio and O. Regev.
- Webpage of C. Peikert (including slides of several talks).

Plan

1- Background on Euclidean lattices.
2- The SIS problem, or how to hash.
3- The LWE problem, or how to encrypt.
4- Cryptanalysis.
5- Advanced topics: IBE and FHE.

Plan

1- Background on Euclidean lattices.
2- The SIS problem, or how to hash.
3- The LWE problem, or how to encrypt.
4- Cryptanalysis.
5- Advanced topics: IBE and FHE.

Background on Euclidean lattices

a- Arbitrary lattices.

b- Ideal lattices.
c- Lattice Gaussians.

(Arbitrary) lattices

Lattice \equiv discrete subgroup of \mathbb{R}^{n}

$$
\equiv\left\{\sum_{i \leq n} x_{i} \mathbf{b}_{i}: x_{i} \in \mathbb{Z}\right\}
$$

If the \mathbf{b}_{i} 's are linearly independent, they are called a basis.

Bases are not unique, but they can be obtained from each other by integer transforms of determinant ± 1 :

$$
\left[\begin{array}{cc}
-2 & 1 \\
10 & 6
\end{array}\right]=\left[\begin{array}{cc}
4 & -3 \\
2 & 4
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]
$$

Lattice invariants

First minimum:
$\lambda=\min (\|\mathbf{b}\|: \mathbf{b} \in L \backslash \mathbf{0})$.
Successive minima:
$\lambda_{k}=\min (r: \operatorname{dim} \operatorname{span}(L \cap \mathcal{B}(r)) \geq k)$.
Lattice volume:
$\operatorname{vol} L=\left|\operatorname{det}\left(\mathbf{b}_{i}\right)_{i}\right|$, for any basis.
Minkowski theorem (1889):
$\lambda(L) \leq \sqrt{n} \cdot(\operatorname{vol} L)^{1 / n}$.

SVP and SIVP

The Shortest Vector Problem: SVP ${ }_{\gamma}$

Given a basis of L, find $\mathbf{b} \in L \backslash \mathbf{0}$ such that: $\quad\|\mathbf{b}\| \leq \gamma \cdot \lambda(L)$.

The Shortest Independent Vectors Problem: SIVP γ_{γ}

Given a basis of L, find $\mathbf{b}_{1}, \ldots, \mathbf{b}_{n} \in L$ lin. indep. such that: $\max \left\|\mathbf{b}_{i}\right\| \leq \gamma \cdot \lambda_{n}(L)$.

- NP-hard when $\gamma=O(1)$ (under randomized red.).
- In lattice-based crypto: $\gamma=\mathcal{P}$ oly (n) (most often).
- Solvable in polynomial time when $\gamma=2^{\widetilde{O}(n)}$.

CVP

The Closest Vector Problem: CVP ${ }_{\gamma}$

Given a basis of L and a target $\mathbf{t} \in \mathbb{Q}^{n}$, find $\mathbf{b} \in L$ such that:

$$
\|\mathbf{b}-\mathbf{t}\| \leq \gamma \cdot \min (\|\mathbf{c}-\mathbf{t}\|: \mathbf{c} \in L)
$$

- NP-hard when $\gamma=O(1)$.

Gram-Schmidt Orthogonalisation

- A lattice may have infinitely many bases.
- Quality of a basis: measured by the GSO.

- $\mathbf{b}_{i}^{*}=\operatorname{argmin}\left\|\mathbf{b}_{i}+\sum_{j<i} \mathbb{R} \mathbf{b}_{j}\right\|$
- Quality measure: $\max _{i}\left\|\mathbf{b}_{i}^{*}\right\|$.

Properties of the GSO

GSO and basis vectors:

- For any $i,\left\|\mathbf{b}_{i}^{*}\right\| \leq\left\|\mathbf{b}_{i}\right\|$.
- Size-reduction: any basis can be efficiently transformed so that: $\max \left\|\mathbf{b}_{i}\right\| \leq \sqrt{n} \cdot \max \left\|\mathbf{b}_{i}^{*}\right\|$.

GSO and lattice invariants:

- $\operatorname{vol} L=\prod\left\|\mathbf{b}_{i}^{*}\right\|$, for any basis $\left(\mathbf{b}_{i}\right)$.
- Also, $\lambda(L) \geq \min \left\|\mathbf{b}_{i}^{*}\right\|$.

From short vectors to a short basis

- Let $\left(\mathbf{b}_{i}\right)_{i}$ be a basis of a lattice L.
- Let $\left(\mathbf{s}_{i}\right)_{i}$ in L be linearly independent with small GSO.
- Can we compute a basis of L with small GSO?
- Write $\left(\mathbf{s}_{i}\right)_{i}=\left(\mathbf{b}_{i}\right)_{i} \cdot T$, with $T \in \mathbb{Z}^{n \times n}$.
- Triangularize T, i.e., $T=U \cdot T^{\prime}$ with $|\operatorname{det} U|=1$ and $T^{\prime} \in \mathbb{Z}^{n \times n}$ upper triangular. Let $\left(\mathbf{c}_{i}\right)_{i}=\left(\mathbf{b}_{i}\right)_{i} \cdot U$.
- $\left(\mathbf{c}_{i}\right)_{i}$ is a basis of L and $\left(\mathbf{s}_{i}\right)_{i}=\left(\mathbf{c}_{i}\right)_{i} \cdot T^{\prime}$.
- Since T^{\prime} is upper triangular: $\forall i,\left\|\mathbf{c}_{i}^{*}\right\| \leq\left\|\mathbf{s}_{i}^{*}\right\|$.

With a size-reduction, we get: $\max \left\|\mathbf{c}_{\boldsymbol{i}}\right\| \leq \sqrt{n} \cdot \max \left\|\mathbf{s}_{i}\right\|$.

The dual lattice

- The dual of L is

$$
\hat{L}=\{\hat{\mathbf{b}}: \forall \mathbf{b} \in L,\langle\hat{\mathbf{b}}, \mathbf{b}\rangle \in \mathbb{Z}\} .
$$

- B basis matrix of $L \Longrightarrow B^{-T}$ basis matrix of \hat{L}.
- Let $B^{\prime}=\operatorname{reverse}\left(B^{-T}\right)$. Then $\frac{1}{\left\|\mathbf{b}_{n-i+1}^{\prime *}\right\|}=\left\|\mathbf{b}_{i}^{*}\right\|$. Therefore:

$$
\frac{1}{\min \left\|\mathbf{b}_{i}^{\prime *}\right\|}=\max \left\|\mathbf{b}_{i}^{*}\right\| .
$$

Background on lattices

a- Arbitrary lattices.
b- Ideal lattices.
c- Lattice Gaussians.

Ideal lattices

A lattice L is ideal if membership is preserved under negacyclic shifts of the coordinates:

$$
\begin{aligned}
& \left(\begin{array}{ccccccc}
b_{0} & b_{1} & b_{2} & b_{3} & \ldots & b_{n-2} & b_{n-1}
\end{array}\right) \\
\Rightarrow & \left(\begin{array}{ccccc}
\\
-b_{n-1} & b_{0} & b_{1} & b_{2} & \ldots \\
b_{n-3} & b_{n-2} &) & \in L \\
\Rightarrow & \left(\begin{array}{ccc}
-b_{n-2} & -b_{n-1} & b_{0} \\
b_{1} & \ldots & b_{n-4}
\end{array} b_{n-3}\right) & \in L \\
\Rightarrow & \left(\begin{array}{l}
-b_{n-3}
\end{array}-b_{n-2}\right. & -b_{n-1} & b_{0} & \ldots \\
b_{n-5} & b_{n-4}
\end{array}\right) \quad \in L
\end{aligned}
$$

A lattice L is ideal if it is an ideal of $\mathbb{Z}[x] /\left(x^{n}+1\right)$.
Easy property: all minima of an ideal lattice are equal.

$$
\lambda_{1}(L)=\lambda_{2}(L)=\ldots=\lambda_{n}(L)
$$

How special are ideal lattices?

Advantages

- The negacyclic structure allows one to save space. Warning: an ideal lattice may have no negacyclic basis.
- We can multiply vectors together.
- Fast polynomial arithmetic.

Drawbacks

- NP-hardness results not valid anymore.
- Decisional SVP becomes easier.

But no known computational advantage for Id-SVP/Id-SIVP.

Decisional SVP becomes easier

- Decisional SVP $_{\gamma}$ consists in approximating $\lambda(L)$.
- Minkowski: $\lambda \leq \sqrt{n} \cdot(\operatorname{vol} L)^{1 / n}$.
- Let $\left(\mathbf{b}_{i}\right)_{i}$ be a basis, and $\left(\mathbf{s}_{i}\right)_{i}$ be lin. indep. vectors reaching the λ_{i} 's: $\quad\left\|\mathbf{s}_{i}\right\|=\lambda_{i}=\lambda$.
- Since $\left(\mathbf{s}_{i}\right)_{i}=\left(\mathbf{b}_{i}\right)_{i} \cdot T$, with $T \in \mathbb{Z}^{n \times n}$:

$$
\operatorname{vol} L=\left|\operatorname{det}\left(\mathbf{b}_{i}\right)\right| \leq\left|\operatorname{det}\left(\mathbf{s}_{i}\right)\right| \leq \prod\left\|\mathbf{s}_{i}\right\|=\lambda^{n} .
$$

- Overall: $\quad 1 \leq \frac{\lambda}{(\operatorname{vol} L)^{1 / n}} \leq \sqrt{n}$.

Ideal lattices are famous objects

- A lattice L is ideal if it is an ideal of $\mathbb{Z}[x] /\left(x^{n}+1\right)$.
- We choose $n=2^{k}$, making $x^{n}+1$ irreducible.
- We play with the $2 n$-th cyclotomic number field.
- We could use other number fields.
- These ideals have been studied for decades in the field of algebraic number theory.

Background on lattices

a- Arbitrary lattices.
b- Ideal lattices.
c- Lattice Gaussians.

A handy distribution: the discrete Gaussian

A handy distribution: the discrete Gaussian

A discrete Gaussian is a discretization of a continuous Gaussian, with support being a lattice.

A handy distribution: the discrete Gaussian

For $\mathbf{b} \in \mathbb{R}^{n}$ and $\mathbf{c} \in \mathbb{R}^{n}$:

$$
\rho_{\sigma, \mathbf{c}}(\mathbf{b}):=e^{-\pi \frac{\|b-c\|^{2}}{\sigma^{2}}} .
$$

σ is the standard deviation.

For $L \subseteq \mathbb{R}^{n}$ and $\mathbf{c} \in \mathbb{R}^{n}: \rho_{\sigma, \mathbf{c}}(L)=\sum_{\mathbf{b} \in L} \rho_{\sigma, \mathbf{c}}(\mathbf{b})$ is finite.
Discrete n-dimensional Gaussian:

$$
\forall \mathbf{b} \in L: D_{L, \sigma, \mathbf{c}}(\mathbf{b})=\frac{\rho_{\sigma, \mathbf{c}}(\mathbf{b})}{\rho_{\sigma, \mathbf{c}}(L)}
$$

Why are discrete Gaussians interesting?

- This is a lattice invariant.
- We can do Fourier analysis for lattice distributions, and (discrete) Gaussians interact nicely with (discrete) Fourier transforms.
- Many properties carry over from continuous Gaussians to discrete Gaussians. E.g.:

$$
\forall \sigma \geq 1: \rho_{\sigma}(L \backslash \mathcal{B}(\mathbf{0}, 2 \sigma \sqrt{n})) \leq 2^{-n-1} \cdot \rho_{\sigma}(L)
$$

(i.e., the probability of getting a large vector is tiny)

- Discrete Gaussians can be sampled from efficiently.

The smoothing parameter

- Define $\eta(L)$ as the smallest σ such that $\rho_{1 / \sigma}(\hat{L} \backslash \mathbf{0}) \leq 2^{-n}$.
- Intuition: If the standard deviation is larger than η, then discrete Gaussians behave like continuous ones.
- If $\sigma \geq \eta$, then $\rho_{\sigma, \mathbf{c}}(L)$ is quasi-constant:

$$
\forall \mathbf{c} \in \mathbb{R}^{n}: \rho_{\sigma, \mathbf{c}}(L) \in \sigma^{n} \cdot(\operatorname{vol} \hat{L}) \cdot\left[1 \pm 2^{-n}\right] .
$$

- If $\left(\mathbf{b}_{i}\right)_{i}$ is a basis of L :

$$
\eta(L) \leq \sqrt{n} \cdot \max \left\|\mathbf{b}_{i}^{*}\right\| .
$$

- Consequence: $\quad \eta \leq n \cdot \lambda_{n}$.

Proof that $\eta(L) \leq \sqrt{n} \cdot \max \left\|\mathbf{b}_{i}^{*}\right\|$

- First: $\eta(L) \leq \sqrt{n} / \lambda(\hat{L})$.

$$
\begin{aligned}
\rho_{1 / \sigma}(\hat{L} \backslash \mathbf{0}) & =\rho(\sigma \hat{L} \backslash \mathcal{B}(\mathbf{0}, 2 \sqrt{n})) \\
& \leq 2^{-n-1} \rho(\sigma \hat{L}) \\
& =2^{-n-1} \rho_{1 / \sigma}(\hat{L}) \\
& \leq 2^{-n} .
\end{aligned}
$$

- Second: $1 / \lambda(\hat{L}) \leq \max \left\|\mathbf{b}_{i}^{*}\right\|$. With $B^{\prime}=\operatorname{reverse}\left(B^{-T}\right)$:

$$
\lambda(\hat{L}) \geq \min \left\|\mathbf{b}_{i}^{\prime *}\right\| \text { and } \frac{1}{\min \left\|\mathbf{b}_{i}^{* *}\right\|}=\max \left\|\mathbf{b}_{i}^{*}\right\| .
$$

Sampling from $D_{L, \sigma}$ (Gentry et al.'08)

There exists an efficient algorithm s.t. given as inputs a basis $\left(\mathbf{b}_{i}\right)_{i}$ of a lattice $L, \mathbf{c} \in \mathbb{Q}^{n}$ and $\sigma \geq \sqrt{n} \max \left\|\mathbf{b}_{i}^{*}\right\|$, produces vectors of L with distribution within statistical distance 2^{-n} of $D_{L, \sigma, \mathrm{c}}$:

$$
\sum_{\mathbf{b} \in L}\left|\operatorname{Pr}[\mathbf{b}]-D_{L, \sigma, \mathbf{c}}(\mathbf{b})\right| \leq 2^{-n} .
$$

- This may not exactly produce $D_{L, \sigma, \mathbf{c}}$, but no algorithm can see the difference with advantage $\geq \frac{1}{2}+2^{-n}$.
- Being able to sample from $D_{L, \sigma, \mathrm{c}}$ with small σ is (almost) equivalent to having a small basis.
- But samples from $D_{L, \sigma, c}$ do not provide information on the utilized small basis.

Plan

1- Background on Euclidean lattices.
2- The SIS problem, or how to hash.
3- The LWE problem, or how to encrypt.
4- Cryptanalysis.
5- Advanced topics: IBE and FHE.

The SIS problem

a- Non structured SIS.

b- Structured SIS.
c- A trapdoor for SIS.

$\mathrm{SIS}_{\beta, q, m}$ [Ajtai'96]

The Small Integer Solution Problem

Given a uniform $A \in \mathbb{Z}_{q}^{m \times n}$, find $\mathbf{s} \in \mathbb{Z}^{m} \backslash \mathbf{0}$ such that:

$$
\|\boldsymbol{s}\| \leq \beta \text { and } \mathbf{s} A=\mathbf{0} \bmod q .
$$

Many interpretations:

- Small codeword problem.
- Short lattice vector problem:

$$
A^{\perp}=\left\{\mathbf{s} \in \mathbb{Z}^{m}: \mathbf{s} A=\mathbf{0}[q]\right\} .
$$

Cryptographic application of SIS

- Hash: an efficiently computable function $H: \mathcal{D} \mapsto \mathcal{R}$ with $|\mathcal{R}| \ll|\mathcal{D}|$ is collision resistant if finding $x \neq x^{\prime}$ in \mathcal{D} such that $H(x)=H\left(x^{\prime}\right)$ is computationally hard.
- Applications: message integrity, password verification, file identification, digital signature, etc.
- SIS-based hash: s $\in\{0,1\}^{m} \mapsto \mathbf{s} \cdot A[q]$.
- By linearity, SIS reduces to finding a collision.
- Compression ratio: $\frac{m}{n \log q}$.

How hard is SIS? A unique level of security.

Worst-case to average-case reduction ($\gamma \approx n \beta$)

Any efficient SIS algorithm succeeding with non-negligible probability leads to an efficient SIVP algorithm.

Intuition:

- Start with a short basis of the lattice $L \subseteq \mathbb{Z}^{n}$.
- Sample m short random lattice points.
- Look at their coordinates wrt the basis, modulo q.
- A SIS solution provides a shorter vector of L.
- Repeat to get a basis shorter than the initial one.
- Repeat to get shorter and shorter bases of L.

The $D_{L, \sigma}$ sampler provides valid SIS inputs

- We start with a basis $\left(\mathbf{b}_{i}\right)$ with $B=\left\|\mathbf{b}_{i}\right\|$.
- Use the sampler with $\sigma=\sqrt{n} B$. Let $\left(\mathbf{c}_{j}\right)_{j \leq m}$ be the samples.
- With high probability: $\forall j,\left\|\mathbf{c}_{j}\right\| \leq \sqrt{n} \sigma=n B$.
- Are their coordinates wrt the \mathbf{b}_{i} 's uniform mod q ?
- Yes, because $D_{L, \sigma} \bmod q L$ is (quasi)-uniform:
$D_{q L, \sigma, \mathbf{c}}$ is (quasi)-independent of $\mathbf{c} \in L$, when $\sigma \geq \eta(q L)=q \cdot \eta(L)$.

Sufficient condition: $B \geq q \sqrt{n} \lambda_{n}$.

Shortness of the output vectors

- The \mathbf{c}_{j} 's satisfy $\left\|\mathbf{c}_{j}\right\| \leq n B$.

Let \mathbf{x}_{j} be their coordinates vectors, reduced $\bmod q$.

- The SIS oracle finds $\mathbf{s} \in \mathbb{Z}^{m}$ with $\sum s_{j} \mathbf{x}_{j}=\mathbf{0}$ [q] and $0<\|\mathbf{s}\| \leq \beta$.
- Take $\mathbf{c}=\frac{1}{q} \sum s_{j} \mathbf{c}_{j}: \mathbf{c} \in L$ and $\|\mathbf{c}\| \leq \frac{\beta n^{2} B}{q}$.
- If q is large enough, we obtain a shorter lattice vector.
- By analyzing $D_{L, \sigma}$ further, one can prove that by iterating, w.h.p. we can find a full rank set of short lattice vectors.
- We can convert the latter into a short basis.

Sufficient condition: $\frac{\beta n^{2} B}{q} \leq \frac{B}{2}$.

The SIS problem

a- Non structured SIS.
b- Structured SIS.
c- A trapdoor for SIS.

Id-SIS, graphically

S

- Each block is negacyclic.
- The ith row is: $x^{i} \cdot a(x) \bmod x^{n}+1$.
- The structure allows us to decrease m by a factor n.
- Structured matrices \equiv polynomials \equiv fast algorithms.

Ideal SIS, algebraically

SIS

Given a uniform $A \in \mathbb{Z}_{q}^{m \times n}$, find $\mathbf{s} \in \mathbb{Z}^{m} \backslash \mathbf{0}$ such that:

$$
\|\mathbf{s}\| \leq \beta \text { and } \mathbf{s} A=\mathbf{0} \bmod q .
$$

Let $R=\frac{\mathbb{Z}[x]}{x^{n}+1}$ and $R_{q}=\frac{\mathbb{Z}_{q}[x]}{x^{n}+1}$, with $n=2^{k}$ and q prime.

Id-SIS

Given $a_{1}, \ldots, a_{m} \hookleftarrow U\left(R_{q}\right)$, find $s_{1}, \ldots, s_{m} \in R$ not all 0 s.t.:

$$
\|\mathbf{s}\| \leq \beta \text { and } \sum s_{i} a_{i}=0 \bmod \left(q, x^{n}+1\right) .
$$

Worst-case to average-case reduction

Any efficient Id-SIS algorithm succeeding with non-negligible probability leads to an efficient Id-SIVP algorithm.

Efficient hashing

- SIS hash: $\mathbf{s} \in\{0,1\}^{m} \mapsto \mathbf{s} \cdot A[q]$.
- Id-SIS hash: $s_{1}, \ldots, s_{m} \in\{0,1\}[x]$ of degrees $<n$ are mapped to $\sum s_{i}(x) a_{i}(x)\left[q, x^{n}+1\right]$.
- If $2 n \mid q-1$, then $x^{n}+1$ splits completely $\bmod q$. \Rightarrow Fast Discrete Fourier Transform mod q.
- Storage: $\widetilde{O}\left(n^{2}\right) \rightarrow \widetilde{O}(n)$; complexity: $\widetilde{O}\left(n^{2}\right) \rightarrow \widetilde{O}(n)$.

This is SWIFFT and it was proposed to the SHA-3 contest. With $n=2^{6}, m=2^{4}, q \approx 2^{8}$: A can be stored on $\approx 2^{13}$ bits.

The SIS problem

a- Non structured SIS.
b- Structured SIS.
c- A trapdoor for SIS.

A uniform A with a good basis for A^{\perp}

If $m=\widetilde{\Omega}(n)$, we can efficiently sample $A \in \mathbb{Z}_{q}^{m \times n}$ and T_{A} s.t.

- The statistical distance from A to uniform is $2^{-\Omega(n)}$.
- The rows of T_{A} are small: $\max \left\|\mathbf{t}_{i}^{*}\right\|=\widetilde{O}(\sqrt{n})$.
- $T_{A} \in \mathbb{Z}^{m \times m}$ is a basis of A^{\perp}.

Regularity principle:

- Assume $\left(\mathbf{a}_{i}\right)_{i \leq k}$ are iid uniform.
- Take $\left(x_{i}\right)_{i}$ iid uniform in $\{-1,0,1\}$.
- Then $\mathbf{a}_{k+1}=\sum_{i \leq k} x_{i} \mathbf{a}_{i}$ is close to uniform.

A trapdoor for (inhomogeneous) SIS

- Suppose we have $\mathbf{u} \in \mathbb{Z}_{q}^{n}, A$ and T_{A}. How do we find a small $\mathbf{s} \in \mathbb{Z}^{m}$ such that $\mathbf{s} A=\mathbf{u}[q]$?
- With linear algebra, find $\mathbf{c} \in \mathbb{Z}^{m}$ such that $\mathbf{c} A=\mathbf{u}[q]$.
- It suffices to find a vector \mathbf{b} of A^{\perp} that is close to \mathbf{c} :

$$
\|\mathbf{c}-\mathbf{b}\| \text { is small and }(\mathbf{c}-\mathbf{b}) A=\mathbf{u}[q] .
$$

- Use the sampler from $D_{L, \sigma, c}$ with:

$$
\sigma=\sqrt{n} \cdot \max \left\|\mathbf{t}_{i}^{*}\right\|=\widetilde{O}(n) .
$$

- We have $\|\mathbf{c}-\mathbf{b}\| \leq \sigma \sqrt{n}=\widetilde{O}\left(n^{1.5}\right)$ w.h.p.
- And we do not leak any information about the trapdoor!

Cryptographic application: hash-and-sign

- Signature: to ensure the authenticity of a document.
- Signer's public key: A; private key: T_{A}.
- To sign M, use the trapdoor to find \mathbf{s} short with $\mathbf{s} A=\mathcal{H}(M \| r)$, where \mathcal{H} is a public random oracle.
- To verify (M, \mathbf{s}, r), see whether $\mathbf{s} A=\mathcal{H}(M \| r)$ and $\|\mathbf{s}\|$ small.
- Can be made at least as hard to break as to solve SIS, in the random oracle model.

A trapdoor for Id-SIS

The trapdoor can be adapted to the structured case:

- Compact trapdoor: $\widetilde{O}\left(n^{2}\right) \rightarrow \widetilde{O}(n)$ bits.
- Verifying the signature boils down to FFT mod q.
- [Peikert'10] can be used to sign in quasi-linear time.

