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Modern lattice-based cryptography

Cryptography: the science of information hiding.

“Lattice-based”: the schemes involve Euclidean lattices.

Standard lattice problems provably reduce to attacks against
those schemes.

Modern: we won’t be interested in GGH and NTRU.
More recent schemes offer similar performance with rigorous
security guarantees.
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Why lattice-based cryptography?

(why not business as usual, with factoring and discrete log?)

LBC provides unmatched security properties:
its security stems from worst-case hardness assumptions.

LBC seems to remain secure even against quantum computers.

LBC is asymptotically extremely efficient.

LBC is simple and flexible: this leads to easier design of
complicated cryptographic functions.

Diversity fosters cross-pollination.
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Goal of this course

To give an overview of recent developments in LBC, and a flavour
of the techniques/results.

Disclaimer: This is not a practical crypto course.

Contents: Complexity theory, distributions, quantum computing,
cryptography, structured matrices, lattices.

Highlights: Worst-case to average-case reductions, encryption
with quasi-optimal complexity, fully homomorphic encryption.

Damien Stehlé Introduction to modern lattice-based cryptography (Part I) 22/06/2010 4/45



Introduction Lattices SIS

Bibliography

The LLL Algorithm. Survey and Applications.
P. Nguyen and B. Vallée (Eds.), Springer.

The Learning with Errors Problem. Survey by O. Regev.

Lattice-based Cryptography. Survey by D. Micciancio and
O. Regev.

Webpage of C. Peikert (including slides of several talks).
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Plan

1- Background on Euclidean lattices.

2- The SIS problem, or how to hash.

3- The LWE problem, or how to encrypt.

4- Cryptanalysis.

5- Advanced topics: IBE and FHE.
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Damien Stehlé Introduction to modern lattice-based cryptography (Part I) 22/06/2010 7/45



Introduction Lattices SIS

Background on Euclidean lattices

a- Arbitrary lattices.

b- Ideal lattices.

c- Lattice Gaussians.
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(Arbitrary) lattices

Lattice ≡ discrete subgroup of Rn

≡ {∑i≤n xibi : xi ∈ Z}

If the bi ’s are linearly independent,
they are called a basis.

Bases are not unique, but they can
be obtained from each other by integer
transforms of determinant ±1:

[
−2 1
10 6

]
=

[
4 −3
2 4

]
·
[

1 1
2 1

]
.
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Lattice invariants

First minimum:
λ = min(‖b‖ : b ∈ L \ 0).

Successive minima:
λk = min(r : dim span(L ∩ B(r)) ≥ k).

Lattice volume:
vol L = | det(bi )i |, for any basis.

Minkowski theorem (1889):
λ(L) ≤ √

n · (vol L)1/n.
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SVP and SIVP

The Shortest Vector Problem: SVPγ

Given a basis of L, find b ∈ L \ 0 such that: ‖b‖ ≤ γ · λ(L).

The Shortest Independent Vectors Problem: SIVPγ

Given a basis of L, find b1, . . . ,bn ∈ L lin. indep. such that:
max ‖bi‖ ≤ γ · λn(L).

NP-hard when γ = O(1) (under randomized red.).

In lattice-based crypto: γ = Poly(n) (most often).

Solvable in polynomial time when γ = 2
eO(n).
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CVP

The Closest Vector Problem: CVPγ

Given a basis of L and a target t ∈ Qn, find b ∈ L such that:
‖b − t‖ ≤ γ · min(‖c − t‖ : c ∈ L).

NP-hard when γ = O(1).
In lattice-based crypto: γ = Poly(n) (most often).Damien Stehlé Introduction to modern lattice-based cryptography (Part I) 22/06/2010 12/45
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Gram-Schmidt Orthogonalisation

A lattice may have infinitely many bases.

Quality of a basis: measured by the GSO.

b1

b2

b∗
2

b3

b∗
3

b∗
i = argmin‖bi +

∑
j<i Rbj‖

Quality measure: maxi ‖b∗
i ‖.
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Properties of the GSO

GSO and basis vectors:

For any i , ‖b∗
i ‖ ≤ ‖bi‖.

Size-reduction: any basis can be efficiently transformed so
that: max ‖bi‖ ≤ √

n · max ‖b∗
i ‖.

GSO and lattice invariants:

vol L =
∏ ‖b∗

i ‖, for any basis (bi ).

Also, λ(L) ≥ min ‖b∗
i ‖.
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From short vectors to a short basis

Let (bi )i be a basis of a lattice L.

Let (si )i in L be linearly independent with small GSO.

Can we compute a basis of L with small GSO?

Write (si )i = (bi )i · T , with T ∈ Zn×n.

Triangularize T , i.e., T = U · T ′ with | detU| = 1
and T ′ ∈ Zn×n upper triangular. Let (ci )i = (bi )i · U.

(ci )i is a basis of L and (si )i = (ci )i · T ′.

Since T ′ is upper triangular: ∀i , ‖c∗i ‖ ≤ ‖s∗i ‖.

With a size-reduction, we get: max ‖ci‖ ≤ √
n · max ‖si‖.
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The dual lattice

The dual of L is

L̂ =
{
b̂ : ∀b ∈ L, 〈b̂,b〉 ∈ Z

}
.

B basis matrix of L =⇒ B−T basis matrix of L̂.

Let B ′ = reverse(B−T ). Then 1
‖b′∗

n−i+1‖
= ‖b∗

i ‖. Therefore:

1

min ‖b′∗
i ‖

= max ‖b∗
i ‖.

Damien Stehlé Introduction to modern lattice-based cryptography (Part I) 22/06/2010 16/45



Introduction Lattices SIS

Background on lattices

a- Arbitrary lattices.

b- Ideal lattices.

c- Lattice Gaussians.
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Ideal lattices

A lattice L is ideal if membership is preserved under negacyclic
shifts of the coordinates:

( b0 b1 b2 b3 . . . bn−2 bn−1 ) ∈ L

⇒ ( −bn−1 b0 b1 b2 . . . bn−3 bn−2 ) ∈ L

⇒ ( −bn−2 −bn−1 b0 b1 . . . bn−4 bn−3 ) ∈ L

⇒ ( −bn−3 −bn−2 −bn−1 b0 . . . bn−5 bn−4 ) ∈ L

A lattice L is ideal if it is an ideal of Z[x ]/(xn + 1).

Easy property: all minima of an ideal lattice are equal.

λ1(L) = λ2(L) = . . . = λn(L).
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How special are ideal lattices?

Advantages

The negacyclic structure allows one to save space.
Warning: an ideal lattice may have no negacyclic basis.

We can multiply vectors together.

Fast polynomial arithmetic.

Drawbacks

NP-hardness results not valid anymore.

Decisional SVP becomes easier.

But no known computational advantage for Id-SVP/Id-SIVP.
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Decisional SVP becomes easier

Decisional SVPγ consists in approximating λ(L).

Minkowski: λ ≤ √
n · (vol L)1/n.

Let (bi )i be a basis, and (si )i be lin. indep. vectors reaching
the λi ’s: ‖si‖ = λi = λ.

Since (si )i = (bi )i · T , with T ∈ Zn×n:

vol L = | det(bi )| ≤ | det(si )| ≤
∏

‖si‖ = λn.

Overall: 1 ≤ λ

(vol L)1/n
≤

√
n.
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Ideal lattices are famous objects

A lattice L is ideal if it is an ideal of Z[x ]/(xn + 1).

We choose n = 2k , making xn + 1 irreducible.

We play with the 2n-th cyclotomic number field.

We could use other number fields.

These ideals have been studied for decades in the field of
algebraic number theory.
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Background on lattices

a- Arbitrary lattices.

b- Ideal lattices.

c- Lattice Gaussians.
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A handy distribution: the discrete Gaussian
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A handy distribution: the discrete Gaussian

A discrete Gaussian is a discretization of a continuous Gaussian,
with support being a lattice.
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A handy distribution: the discrete Gaussian

For b ∈ Rn and c ∈ Rn:

ρσ,c(b) := e
−π

‖b−c‖2

σ
2 .

σ is the standard deviation.

For L ⊆ Rn and c ∈ Rn: ρσ,c(L) =
∑

b∈L ρσ,c(b) is finite.
Discrete n-dimensional Gaussian:

∀b ∈ L : DL,σ,c(b) =
ρσ,c(b)

ρσ,c(L)
.

Damien Stehlé Introduction to modern lattice-based cryptography (Part I) 22/06/2010 25/45



Introduction Lattices SIS

Why are discrete Gaussians interesting?

This is a lattice invariant.

We can do Fourier analysis for lattice distributions, and
(discrete) Gaussians interact nicely with (discrete) Fourier
transforms.

Many properties carry over from continuous Gaussians to
discrete Gaussians. E.g.:

∀σ ≥ 1 : ρσ(L \ B(0, 2σ
√

n)) ≤ 2−n−1 · ρσ(L).

(i.e., the probability of getting a large vector is tiny)

Discrete Gaussians can be sampled from efficiently.
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The smoothing parameter

Define η(L) as the smallest σ such that ρ1/σ(L̂ \ 0) ≤ 2−n.

Intuition: If the standard deviation is larger than η,
then discrete Gaussians behave like continuous ones.

If σ ≥ η, then ρσ,c(L) is quasi-constant:

∀c ∈ Rn : ρσ,c(L) ∈ σn · (vol L̂) ·
[
1 ± 2−n

]
.

If (bi )i is a basis of L:

η(L) ≤
√

n · max ‖b∗
i ‖.

Consequence: η ≤ n · λn.
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Proof that η(L) ≤ √
n · max ‖b∗

i ‖

First: η(L) ≤ √
n/λ(L̂).

ρ1/σ(L̂ \ 0) = ρ(σL̂ \ B(0, 2
√

n))

≤ 2−n−1ρ(σL̂)

= 2−n−1ρ1/σ(L̂)

≤ 2−n.

Second: 1/λ(L̂) ≤ max ‖b∗
i ‖. With B ′ = reverse(B−T ):

λ(L̂) ≥ min ‖b′∗
i ‖ and

1

min ‖b′∗
i ‖

= max ‖b∗
i ‖.
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Sampling from DL,σ (Gentry et al.’08)

There exists an efficient algorithm s.t. given as inputs a basis (bi )i
of a lattice L, c ∈ Qn and σ ≥ √

n max ‖b∗
i ‖, produces vectors of L

with distribution within statistical distance 2−n of DL,σ,c:

∑

b∈L

|Pr[b] − DL,σ,c(b)| ≤ 2−n.

This may not exactly produce DL,σ,c, but no algorithm can see
the difference with advantage ≥ 1

2 + 2−n.

Being able to sample from DL,σ,c with small σ is (almost)
equivalent to having a small basis.

But samples from DL,σ,c do not provide information on the
utilized small basis.
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Plan

1- Background on Euclidean lattices.

2- The SIS problem, or how to hash.

3- The LWE problem, or how to encrypt.

4- Cryptanalysis.

5- Advanced topics: IBE and FHE.
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The SIS problem

a- Non structured SIS.

b- Structured SIS.

c- A trapdoor for SIS.
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SISβ,q,m [Ajtai’96]

The Small Integer Solution Problem

Given a uniform A ∈ Zm×n
q , find s ∈ Zm \ 0 such that:

‖s‖ ≤ β and sA = 0 mod q.

s 0

A

=

n

m

(n log n)

[q]

(P(n))

Many interpretations:

Small codeword problem.

Short lattice vector problem:
A⊥ = {s ∈ Zm : sA = 0 [q]}.
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Cryptographic application of SIS

Hash: an efficiently computable function H : D 7→ R
with |R| ≪ |D| is collision resistant if finding x 6= x ′ in D
such that H(x) = H(x ′) is computationally hard.

Applications: message integrity, password verification,
file identification, digital signature, etc.

SIS-based hash: s ∈ {0, 1}m 7→ s · A [q].

By linearity, SIS reduces to finding a collision.

Compression ratio:
m

n log q
.
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How hard is SIS? A unique level of security.

Worst-case to average-case reduction (γ ≈ nβ)

Any efficient SIS algorithm succeeding with non-negligible
probability leads to an efficient SIVP algorithm.

Intuition:

Start with a short basis of the lattice L ⊆ Zn.

Sample m short random lattice points.

Look at their coordinates wrt the basis, modulo q.

A SIS solution provides a shorter vector of L.

Repeat to get a basis shorter than the initial one.

Repeat to get shorter and shorter bases of L.
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The DL,σ sampler provides valid SIS inputs

We start with a basis (bi ) with B = ‖bi‖.
Use the sampler with σ =

√
nB. Let (cj)j≤m be the samples.

With high probability: ∀j , ‖cj‖ ≤ √
nσ = nB.

Are their coordinates wrt the bi ’s uniform mod q?

Yes, because DL,σ mod qL is (quasi)-uniform:
DqL,σ,c is (quasi)-independent of c ∈ L,
when σ ≥ η(qL) = q · η(L).

Sufficient condition: B ≥ q
√

nλn.
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Shortness of the output vectors

The cj ’s satisfy ‖cj‖ ≤ nB.
Let xj be their coordinates vectors, reduced mod q.

The SIS oracle finds s ∈ Zm with
∑

sjxj = 0 [q]
and 0 < ‖s‖ ≤ β.

Take c = 1
q

∑
sjcj : c ∈ L and ‖c‖ ≤ βn2B

q
.

If q is large enough, we obtain a shorter lattice vector.

By analyzing DL,σ further, one can prove that by iterating,
w.h.p. we can find a full rank set of short lattice vectors.

We can convert the latter into a short basis.

Sufficient condition:
βn2B

q
≤ B

2
.
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The SIS problem

a- Non structured SIS.

b- Structured SIS.

c- A trapdoor for SIS.
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Id-SIS, graphically
s

A

m rows
⇒
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s1 s2 sm. . .

m blocks ...

Each block is negacyclic.

The ith row is: x i · a(x) mod xn + 1.

The structure allows us to decrease m by a factor n.

Structured matrices ≡ polynomials ≡ fast algorithms.
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Ideal SIS, algebraically

SIS

Given a uniform A ∈ Zm×n
q , find s ∈ Zm \ 0 such that:

‖s‖ ≤ β and sA = 0 mod q.

Let R = Z[x]
xn+1 and Rq =

Zq [x]
xn+1 , with n = 2k and q prime.

Id-SIS

Given a1, . . . , am ←֓ U(Rq), find s1, . . . , sm ∈ R not all 0 s.t.:
‖s‖ ≤ β and

∑
siai = 0 mod (q, xn + 1).

Worst-case to average-case reduction

Any efficient Id-SIS algorithm succeeding with non-negligible
probability leads to an efficient Id-SIVP algorithm.
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Efficient hashing

SIS hash: s ∈ {0, 1}m 7→ s · A [q].

Id-SIS hash: s1, . . . , sm ∈ {0, 1}[x ] of degrees < n are mapped
to

∑
si (x)ai (x) [q, xn + 1].

If 2n|q − 1, then xn + 1 splits completely mod q.
⇒ Fast Discrete Fourier Transform mod q.

Storage: Õ(n2) → Õ(n); complexity: Õ(n2) → Õ(n).

This is SWIFFT and it was proposed to the SHA-3 contest.
With n = 26, m = 24, q ≈ 28: A can be stored on ≈ 213 bits.
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The SIS problem

a- Non structured SIS.

b- Structured SIS.

c- A trapdoor for SIS.
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A uniform A with a good basis for A
⊥

If m = Ω̃(n), we can efficiently sample A ∈ Zm×n
q and TA s.t.

The statistical distance from A to uniform is 2−Ω(n).

The rows of TA are small: max ‖t∗i ‖ = Õ(
√

n).

TA ∈ Zm×m is a basis of A⊥.

TA 0A =

(small)

Regularity principle:

Assume (ai )i≤k are iid uniform.

Take (xi )i iid uniform in {−1, 0, 1}.
Then ak+1 =

∑
i≤k xiai is close to

uniform.
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A trapdoor for (inhomogeneous) SIS

Suppose we have u ∈ Zn
q, A and TA.

How do we find a small s ∈ Zm such that sA = u [q] ?

With linear algebra, find c ∈ Zm such that cA = u [q].

It suffices to find a vector b of A⊥ that is close to c:
‖c − b‖ is small and (c − b)A = u [q].

Use the sampler from DL,σ,c with:

σ =
√

n · max ‖t∗i ‖ = Õ(n).

We have ‖c − b‖ ≤ σ
√

n = Õ(n1.5) w.h.p.

And we do not leak any information about the trapdoor!
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Cryptographic application: hash-and-sign

Signature: to ensure the authenticity of a document.

Signer’s public key: A; private key: TA.

To sign M, use the trapdoor to find s short
with sA = H(M‖r), where H is a public random oracle.

To verify (M, s, r), see whether sA = H(M‖r) and ‖s‖ small.

Can be made at least as hard to break as to solve SIS,
in the random oracle model.
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A trapdoor for Id-SIS

The trapdoor can be adapted to the structured case:

TA 0A

=

small

Compact trapdoor: Õ(n2) → Õ(n) bits.

Verifying the signature boils down to FFT mod q.

[Peikert’10] can be used to sign in quasi-linear time.
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