Introduction to modern lattice-based cryptography (Part I)

Damien Stehlé

LIP - CNRS/ENSL/INRIA/UCBL/U. Lyon

Singapore, June 2010

Modern lattice-based cryptography

- Cryptography: the science of information hiding.
- "Lattice-based": the schemes involve Euclidean lattices.
- Standard lattice problems provably reduce to attacks against those schemes.
- Modern: we won't be interested in GGH and NTRU.
 More recent schemes offer similar performance with rigorous security guarantees.

Why lattice-based cryptography?

(why not business as usual, with factoring and discrete log?)

- LBC provides unmatched security properties: its security stems from worst-case hardness assumptions.
- LBC seems to remain secure even against quantum computers.
- LBC is asymptotically extremely efficient.
- LBC is simple and flexible: this leads to easier design of complicated cryptographic functions.
- Diversity fosters cross-pollination.

Goal of this course

To give an overview of recent developments in LBC, and a flavour of the techniques/results.

Disclaimer: This is not a practical crypto course.

Contents: Complexity theory, distributions, quantum computing, cryptography, structured matrices, lattices.

Highlights: Worst-case to average-case reductions, encryption with quasi-optimal complexity, fully homomorphic encryption.

Bibliography

- The LLL Algorithm. Survey and Applications. P. Nguyen and B. Vallée (Eds.), Springer.
- The Learning with Errors Problem. Survey by O. Regev.
- Lattice-based Cryptography. Survey by D. Micciancio and O. Regev.
- Webpage of C. Peikert (including slides of several talks).

Plan

- 1- Background on Euclidean lattices.
- 2- The SIS problem, or how to hash.
- 3- The LWE problem, or how to encrypt.
- 4- Cryptanalysis.
- 5- Advanced topics: IBE and FHE.

1- Background on Euclidean lattices.

- 2- The SIS problem, or how to hash.
- 3- The LWE problem, or how to encrypt.

4- Cryptanalysis.

5- Advanced topics: IBE and FHE.

Background on Euclidean lattices

a- Arbitrary lattices.

- b- Ideal lattices.
- c- Lattice Gaussians.

(Arbitrary) lattices

Lattice \equiv discrete subgroup of \mathbb{R}^n $\equiv \{\sum_{i \leq n} x_i \mathbf{b}_i : x_i \in \mathbb{Z}\}$

If the \mathbf{b}_i 's are linearly independent, they are called a **basis**.

Bases are not unique, but they can be obtained from each other by integer transforms of determinant ± 1 :

$$\begin{bmatrix} -2 & 1 \\ 10 & 6 \end{bmatrix} = \begin{bmatrix} 4 & -3 \\ 2 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 1 \\ 2 & 1 \end{bmatrix}.$$

Lattice invariants

First minimum: $\lambda = \min(\|\mathbf{b}\| : \mathbf{b} \in L \setminus \mathbf{0}).$

Successive minima:

 $\lambda_k = \min(r : \dim \operatorname{span}(L \cap \mathcal{B}(r)) \ge k).$

Lattice volume:

vol $L = |\det(\mathbf{b}_i)_i|$, for any basis.

Minkowski theorem (1889): $\lambda(L) \leq \sqrt{n} \cdot (\text{vol } L)^{1/n}.$

SVP and SIVP

The Shortest Vector Problem: SVP_{γ}

Given a basis of L, find $\mathbf{b} \in L \setminus \mathbf{0}$ such that: $\|\mathbf{b}\| \leq \gamma \cdot \lambda(L)$.

The Shortest Independent Vectors Problem: SIVP $_{\gamma}$

Given a basis of *L*, find $\mathbf{b}_1, \ldots, \mathbf{b}_n \in L$ lin. indep. such that: $\max \|\mathbf{b}_i\| \le \gamma \cdot \lambda_n(L).$

- NP-hard when $\gamma = O(1)$ (under randomized red.).
- In lattice-based crypto: $\gamma = \mathcal{P}oly(n)$ (most often).
- Solvable in polynomial time when $\gamma = 2^{\widetilde{O}(n)}$.

CVP

The Closest Vector Problem: CVP_{γ}

Given a basis of *L* and a target $\mathbf{t} \in \mathbb{Q}^n$, find $\mathbf{b} \in L$ such that: $\|\mathbf{b} - \mathbf{t}\| \le \gamma \cdot \min(\|\mathbf{c} - \mathbf{t}\| : \mathbf{c} \in L).$

Gram-Schmidt Orthogonalisation

- A lattice may have infinitely many bases.
- Quality of a basis: measured by the GSO.

- $\mathbf{b}_i^* = \operatorname{argmin} \|\mathbf{b}_i + \sum_{j < i} \mathbb{R} \mathbf{b}_j\|$
- Quality measure: $\max_i \|\mathbf{b}_i^*\|$.

GSO and basis vectors:

- For any *i*, $\|\mathbf{b}_i^*\| \leq \|\mathbf{b}_i\|$.
- Size-reduction: any basis can be efficiently transformed so that: max ||b_i|| ≤ √n ⋅ max ||b_i^{*}||.

GSO and lattice invariants:

- vol $L = \prod \|\mathbf{b}_i^*\|$, for any basis (\mathbf{b}_i) .
- Also, $\lambda(L) \geq \min \|\mathbf{b}_i^*\|$.

From short vectors to a short basis

- Let $(\mathbf{b}_i)_i$ be a basis of a lattice L.
- Let $(\mathbf{s}_i)_i$ in L be linearly independent with small GSO.
- Can we compute a basis of L with small GSO?
- Write $(\mathbf{s}_i)_i = (\mathbf{b}_i)_i \cdot T$, with $T \in \mathbb{Z}^{n \times n}$.
- Triangularize *T*, i.e., *T* = *U* · *T'* with |det *U*| = 1 and *T'* ∈ Z^{n×n} upper triangular. Let (c_i)_i = (b_i)_i · *U*.
- $(\mathbf{c}_i)_i$ is a basis of L and $(\mathbf{s}_i)_i = (\mathbf{c}_i)_i \cdot T'$.
- Since T' is upper triangular: $\forall i, \|\mathbf{c}_i^*\| \le \|\mathbf{s}_i^*\|$.

With a size-reduction, we get: $\max \|\mathbf{c}_i\| \le \sqrt{n} \cdot \max \|\mathbf{s}_i\|$.

The dual lattice

• The dual of *L* is

$$\hat{L} = \left\{ \mathbf{\hat{b}} : \forall \mathbf{b} \in L, \langle \mathbf{\hat{b}}, \mathbf{b} \rangle \in \mathbb{Z} \right\}.$$

- B basis matrix of $L \implies B^{-T}$ basis matrix of \hat{L} .
- Let $B' = \operatorname{reverse}(B^{-T})$. Then $\frac{1}{\|\mathbf{b}'_{n-i+1}^*\|} = \|\mathbf{b}_i^*\|$. Therefore:

$$\frac{1}{\min \|\mathbf{b}'_i^*\|} = \max \|\mathbf{b}_i^*\|.$$

Background on lattices

- a- Arbitrary lattices.
- b- Ideal lattices.
- c- Lattice Gaussians.

Ideal lattices

A lattice *L* is **ideal** if membership is preserved under negacyclic shifts of the coordinates:

$$\begin{pmatrix} b_0 & b_1 & b_2 & b_3 & \dots & b_{n-2} & b_{n-1} \end{pmatrix} \in L \Rightarrow \begin{pmatrix} -b_{n-1} & b_0 & b_1 & b_2 & \dots & b_{n-3} & b_{n-2} \end{pmatrix} \in L \Rightarrow \begin{pmatrix} -b_{n-2} & -b_{n-1} & b_0 & b_1 & \dots & b_{n-4} & b_{n-3} \end{pmatrix} \in L \Rightarrow \begin{pmatrix} -b_{n-3} & -b_{n-2} & -b_{n-1} & b_0 & \dots & b_{n-5} & b_{n-4} \end{pmatrix} \in L$$

A lattice L is **ideal** if it is an ideal of $\mathbb{Z}[x]/(x^n+1)$.

Easy property: all minima of an ideal lattice are equal.

$$\lambda_1(L) = \lambda_2(L) = \ldots = \lambda_n(L).$$

How special are ideal lattices?

Advantages

- The negacyclic structure allows one to save space.
 Warning: an ideal lattice may have no negacyclic basis.
- We can multiply vectors together.
- Fast polynomial arithmetic.

Drawbacks

- NP-hardness results not valid anymore.
- Decisional SVP becomes easier.

But no known computational advantage for Id-SVP/Id-SIVP.

Decisional SVP becomes easier

- Decisional SVP $_{\gamma}$ consists in approximating $\lambda(L)$.
- Minkowski: $\lambda \leq \sqrt{n} \cdot (\text{vol } L)^{1/n}$.
- Let (b_i)_i be a basis, and (s_i)_i be lin. indep. vectors reaching the λ_i's: ||s_i|| = λ_i = λ.

• Since
$$(\mathbf{s}_i)_i = (\mathbf{b}_i)_i \cdot T$$
, with $T \in \mathbb{Z}^{n \times n}$:

vol
$$L = |\det(\mathbf{b}_i)| \le |\det(\mathbf{s}_i)| \le \prod ||\mathbf{s}_i|| = \lambda^n$$
.

• Overall:
$$1 \le \frac{\lambda}{(\operatorname{vol} L)^{1/n}} \le \sqrt{n}.$$

Ideal lattices are famous objects

- A lattice *L* is **ideal** if it is an ideal of $\mathbb{Z}[x]/(x^n+1)$.
- We choose $n = 2^k$, making $x^n + 1$ irreducible.
- We play with the 2*n*-th cyclotomic number field.
- We could use other number fields.
- These ideals have been studied for decades in the field of algebraic number theory.

Background on lattices

- a- Arbitrary lattices.
- b- Ideal lattices.
- c- Lattice Gaussians.

A handy distribution: the discrete Gaussian

A handy distribution: the discrete Gaussian

A discrete Gaussian is a discretization of a continuous Gaussian, with support being a lattice.

A handy distribution: the discrete Gaussian

For $\mathbf{b} \in \mathbb{R}^n$ and $\mathbf{c} \in \mathbb{R}^n$:

$$\rho_{\sigma,\mathbf{c}}(\mathbf{b}) := e^{-\pi \frac{\|\mathbf{b}-\mathbf{c}\|^2}{\sigma^2}}$$

 σ is the standard deviation.

For $L \subseteq \mathbb{R}^n$ and $\mathbf{c} \in \mathbb{R}^n$: $\rho_{\sigma,\mathbf{c}}(L) = \sum_{\mathbf{b} \in L} \rho_{\sigma,\mathbf{c}}(\mathbf{b})$ is finite. Discrete *n*-dimensional Gaussian:

$$orall \mathbf{b} \in L: D_{L,\sigma,\mathbf{c}}(\mathbf{b}) = rac{
ho_{\sigma,\mathbf{c}}(\mathbf{b})}{
ho_{\sigma,\mathbf{c}}(L)}.$$

Why are discrete Gaussians interesting?

- This is a lattice invariant.
- We can do Fourier analysis for lattice distributions, and (discrete) Gaussians interact nicely with (discrete) Fourier transforms.
- Many properties carry over from continuous Gaussians to discrete Gaussians. E.g.:

$$\forall \sigma \geq 1 : \rho_{\sigma}(L \setminus \mathcal{B}(\mathbf{0}, 2\sigma\sqrt{n})) \leq 2^{-n-1} \cdot \rho_{\sigma}(L).$$

(i.e., the probability of getting a large vector is tiny)Discrete Gaussians can be sampled from efficiently.

The smoothing parameter

- Define $\eta(L)$ as the smallest σ such that $\rho_{1/\sigma}(\hat{L} \setminus \mathbf{0}) \leq 2^{-n}$.
- Intuition: If the standard deviation is larger than η , then discrete Gaussians behave like continuous ones.
- If $\sigma \geq \eta$, then $\rho_{\sigma,c}(L)$ is quasi-constant:

$$\forall \mathbf{c} \in \mathbb{R}^n: \ \rho_{\sigma,\mathbf{c}}(L) \in \sigma^n \cdot (\text{vol } \hat{L}) \cdot \left[1 \pm 2^{-n}\right].$$

• If $(\mathbf{b}_i)_i$ is a basis of L:

$$\eta(L) \leq \sqrt{n} \cdot \max \|\mathbf{b}_i^*\|.$$

• Consequence:
$$\eta \leq n \cdot \lambda_n$$
.

Proof that $\eta(L) \leq \sqrt{n} \cdot \max \|\mathbf{b}_i^*\|$

• First:
$$\eta(L) \leq \sqrt{n}/\lambda(\hat{L})$$
.

$$\begin{array}{lll} \rho_{1/\sigma}(\hat{L} \setminus \mathbf{0}) &=& \rho(\sigma \hat{L} \setminus \mathcal{B}(\mathbf{0}, 2\sqrt{n})) \\ &\leq& 2^{-n-1}\rho(\sigma \hat{L}) \\ &=& 2^{-n-1}\rho_{1/\sigma}(\hat{L}) \\ &\leq& 2^{-n}. \end{array}$$

• Second: $1/\lambda(\hat{L}) \le \max \|\mathbf{b}_i^*\|$. With $B' = \operatorname{reverse}(B^{-T})$: $\lambda(\hat{L}) \ge \min \|\mathbf{b}'_i^*\|$ and $\frac{1}{\min \|\mathbf{b}'_i^*\|} = \max \|\mathbf{b}_i^*\|$.

Sampling from $D_{L,\sigma}$ (Gentry et al.'08)

There exists an efficient algorithm s.t. given as inputs a basis $(\mathbf{b}_i)_i$ of a lattice L, $\mathbf{c} \in \mathbb{Q}^n$ and $\sigma \ge \sqrt{n} \max \|\mathbf{b}_i^*\|$, produces vectors of Lwith distribution within statistical distance 2^{-n} of $D_{L,\sigma,\mathbf{c}}$:

$$\sum_{\mathbf{b}\in L} |\mathsf{Pr}[\mathbf{b}] - D_{L,\sigma,\mathbf{c}}(\mathbf{b})| \le 2^{-n}.$$

- This may not exactly produce $D_{L,\sigma,\mathbf{c}}$, but no algorithm can see the difference with advantage $\geq \frac{1}{2} + 2^{-n}$.
- Being able to sample from $D_{L,\sigma,c}$ with small σ is (almost) equivalent to having a small basis.
- But samples from $D_{L,\sigma,c}$ do not provide information on the utilized small basis.

- 1- Background on Euclidean lattices.
- 2- The SIS problem, or how to hash.
- 3- The LWE problem, or how to encrypt.
- 4- Cryptanalysis.
- 5- Advanced topics: IBE and FHE.

The SIS problem

a- Non structured SIS.

- b- Structured SIS.
- c- A trapdoor for SIS.

The Small Integer Solution Problem

Given a uniform $A \in \mathbb{Z}_q^{m \times n}$, find $\mathbf{s} \in \mathbb{Z}^m \setminus \mathbf{0}$ such that: $\|\mathbf{s}\| \leq \beta$ and $\mathbf{s}A = \mathbf{0} \mod q$.

Many interpretations:

- Small codeword problem.
- Short lattice vector problem: $A^{\perp} = \{ \mathbf{s} \in \mathbb{Z}^m : \mathbf{s}A = \mathbf{0} [q] \}.$

Cryptographic application of SIS

- Hash: an efficiently computable function H : D → R with |R| ≪ |D| is collision resistant if finding x ≠ x' in D such that H(x) = H(x') is computationally hard.
- Applications: message integrity, password verification, file identification, digital signature, etc.
- SIS-based hash: $\mathbf{s} \in \{0,1\}^m \mapsto \mathbf{s} \cdot A \ [q].$
- By linearity, SIS reduces to finding a collision.
- Compression ratio: $\frac{m}{n \log q}$.

How hard is SIS? A unique level of security.

Worst-case to average-case reduction $(\gammapprox {\it n}eta)$

Any efficient SIS algorithm succeeding with non-negligible probability leads to an efficient SIVP algorithm.

Intuition:

- Start with a short basis of the lattice $L \subseteq \mathbb{Z}^n$.
- Sample *m* short random lattice points.
- Look at their coordinates wrt the basis, modulo q.
- A SIS solution provides a shorter vector of *L*.
- Repeat to get a basis shorter than the initial one.
- Repeat to get shorter and shorter bases of L.

The $D_{L,\sigma}$ sampler provides valid SIS inputs

- We start with a basis (\mathbf{b}_i) with $B = \|\mathbf{b}_i\|$.
- Use the sampler with $\sigma = \sqrt{nB}$. Let $(\mathbf{c}_j)_{j \leq m}$ be the samples.
- With high probability: $\forall j, \|\mathbf{c}_j\| \leq \sqrt{n}\sigma = nB$.
- Are their coordinates wrt the **b**_i's uniform mod q?
- Yes, because $D_{L,\sigma} \mod qL$ is (quasi)-uniform: $D_{qL,\sigma,\mathbf{c}}$ is (quasi)-independent of $\mathbf{c} \in L$, when $\sigma \ge \eta(qL) = q \cdot \eta(L)$.

Sufficient condition: $B \ge q\sqrt{n}\lambda_n$.

Shortness of the output vectors

- The c_j's satisfy ||c_j|| ≤ nB. Let x_j be their coordinates vectors, reduced mod q.
- The SIS oracle finds $\mathbf{s} \in \mathbb{Z}^m$ with $\sum s_j \mathbf{x}_j = \mathbf{0} [q]$ and $0 < \|\mathbf{s}\| \le \beta$.

• Take
$$\mathbf{c} = \frac{1}{q} \sum s_j \mathbf{c}_j$$
: $\mathbf{c} \in L$ and $\|\mathbf{c}\| \leq \frac{\beta n^2 B}{q}$.

- If q is large enough, we obtain a shorter lattice vector.
- By analyzing D_{L,σ} further, one can prove that by iterating, w.h.p. we can find a full rank set of short lattice vectors.
- We can convert the latter into a short basis.

Sufficient condition: $\frac{\beta n^2 B}{\sigma} \leq \frac{B}{2}$.

The SIS problem

- a- Non structured SIS.
- **b-** Structured SIS.
- c- A trapdoor for SIS.

Id-SIS, graphically

- Each block is negacyclic.
- The *i*th row is: $x^i \cdot a(x) \mod x^n + 1$.
- The structure allows us to decrease *m* by a factor *n*.
- Structured matrices \equiv polynomials \equiv fast algorithms.

Given a uniform $A \in \mathbb{Z}_q^{m \times n}$, find $\mathbf{s} \in \mathbb{Z}^m \setminus \mathbf{0}$ such that: $\|\mathbf{s}\| \leq \beta$ and $\mathbf{s}A = \mathbf{0} \mod q$.

Let
$$R=rac{\mathbb{Z}[x]}{x^n+1}$$
 and $R_q=rac{\mathbb{Z}_q[x]}{x^n+1}$, with $n=2^k$ and q prime.

Id-SIS

Given $a_1, \ldots, a_m \leftrightarrow U(R_q)$, find $s_1, \ldots, s_m \in R$ not all 0 s.t.: $\|\mathbf{s}\| \leq \beta$ and $\sum s_i a_i = 0 \mod (q, x^n + 1)$.

Worst-case to average-case reduction

Any efficient **Id-SIS** algorithm succeeding with non-negligible probability leads to an efficient **Id-SIVP** algorithm.

Damien Stehlé

Introduction to modern lattice-based cryptography (Part I) 22/06/2010

Efficient hashing

- SIS hash: $\mathbf{s} \in \{0,1\}^m \mapsto \mathbf{s} \cdot A \ [q].$
- Id-SIS hash: $s_1, \ldots, s_m \in \{0, 1\}[x]$ of degrees < n are mapped to $\sum s_i(x)a_i(x) \ [q, x^n + 1]$.
- If 2n|q-1, then x^n+1 splits completely mod q.

 \Rightarrow Fast Discrete Fourier Transform mod q.

• Storage: $\widetilde{O}(n^2) \to \widetilde{O}(n)$; complexity: $\widetilde{O}(n^2) \to \widetilde{O}(n)$.

This is SWIFFT and it was proposed to the SHA-3 contest. With $n = 2^6$, $m = 2^4$, $q \approx 2^8$: A can be stored on $\approx 2^{13}$ bits.

The SIS problem

- a- Non structured SIS.
- b- Structured SIS.
- c- A trapdoor for SIS.

A uniform A with a good basis for A^{\perp}

If $m = \widetilde{\Omega}(n)$, we can efficiently sample $A \in \mathbb{Z}_q^{m \times n}$ and T_A s.t.

- The statistical distance from A to uniform is $2^{-\Omega(n)}$.
- The rows of T_A are small: $\max \|\mathbf{t}_i^*\| = \widetilde{O}(\sqrt{n})$.
- $T_A \in \mathbb{Z}^{m \times m}$ is a basis of A^{\perp} .

Regularity principle:

- Assume $(\mathbf{a}_i)_{i \leq k}$ are iid uniform.
- Take $(x_i)_i$ iid uniform in $\{-1, 0, 1\}$.
- Then $\mathbf{a}_{k+1} = \sum_{i \le k} x_i \mathbf{a}_i$ is close to uniform.

A trapdoor for (inhomogeneous) SIS

- Suppose we have $\mathbf{u} \in \mathbb{Z}_q^n$, A and T_A . How do we find a small $\mathbf{s} \in \mathbb{Z}^m$ such that $\mathbf{s}A = \mathbf{u} [q]$?
- With linear algebra, find $\mathbf{c} \in \mathbb{Z}^m$ such that $\mathbf{c}A = \mathbf{u} \ [q]$.
- Use the sampler from $D_{L,\sigma,c}$ with:

$$\sigma = \sqrt{n} \cdot \max \|\mathbf{t}_i^*\| = \widetilde{O}(n).$$

- We have $\|\mathbf{c} \mathbf{b}\| \le \sigma \sqrt{n} = \widetilde{O}(n^{1.5})$ w.h.p.
- And we do not leak any information about the trapdoor!

Cryptographic application: hash-and-sign

- Signature: to ensure the authenticity of a document.
- Signer's public key: A; private key: T_A .
- To sign *M*, use the trapdoor to find s short with s*A* = H(*M*||*r*), where *H* is a public random oracle.
- To verify (M, \mathbf{s}, r) , see whether $\mathbf{s}A = \mathcal{H}(M \| r)$ and $\|\mathbf{s}\|$ small.
- Can be made at least as hard to break as to solve SIS, in the random oracle model.

A trapdoor for Id-SIS

The trapdoor can be adapted to the structured case:

- Compact trapdoor: $\widetilde{O}(n^2) \to \widetilde{O}(n)$ bits.
- Verifying the signature boils down to FFT mod q.
- [Peikert'10] can be used to sign in quasi-linear time.