
Graphs and Matrices with Integral

Spectrum in Some Families

Igor Shparlinski

Macquarie University

Sydney



1

Introduction

Notation

Given a finite family of matrices M we denote by

Z(M) = #{M ∈M : SpecM ⊆ ZZ}

Given a finite family of graphs G we put

Z(G) = Z(A),

where A is the set of adjacency matrices of graphs

G ∈ G.
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Families of Matrices and Graphs

We are interested in estimating Z(M) and Z(G)

for various interesting families M and G, such as

• Arbitrary matrices in a box:

M(K,h) = {M = (mij)
n
ij=1 : |kij −mij| < h}

for a given n× n matrix K = (kij)
n
ij=1;

• Symmetric matrices in a box:

S(K,h) = {M = (mij)
n
ij=1 : mij = mji, |kij−mij| < h}

for a given n× n matrix K = (kij)
n
ij=1;

• 0,1-matrices;

• Circulant graphs;

• Regular graphs;

• Arbitrary graphs.
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Motivation

Top ten reasons to study these questions:

1. They are interesting

2. They are interesting

... ... ...

9. They are interesting

10. They are related to network topologies that

support perfect quantum state transfer: Chris-

tandal, Datta, Ekert, Kay and Landahl (2004)

Facer, Twamley and Cresser (2008)

Godsil (2008)
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Integral Graphs

Background

The notion introduced by Harary and Schwenk (1974)

Several explicit constructions of integral graphs of

various types:

Brouwer and Koolen (1993)

Wang, Li and Hoede (2005)

Lepović (2006)

So (2006)

Indulal and Vijayakumar (2007)

Stevanović, de Abreu, de Freitas and Del-Vecchio (2007)

Brouwer (2008)

Brouwer and Haemers (2009)

Liu and Wang (2010)

Carvalho and Rama (2010)

. . . and many more
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Circulant Graphs

Let S = {s1, s2, . . . , sk} be a set of k integers with

1 ≤ s1, s2, . . . , sk < n.

We consider only undirected graphs =⇒ S is sym-

metric:

s ∈ S iff n− s ∈ S.

A circulant graph G(n;S) is a k-regular graph on n

vertices {v1, . . . , vn} such that vi and vj are incident

whenever i− j ∈ S.

G(n;S) is k-regular where k = #S.

G(n;S) is connected iff gcd({s : s ∈ S}) = 1.
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Eigenvalues of G(n;S) are explicitely given by:

λj =
∑
s∈S

exp
(

2πi
js

n

)
, j = 1, . . . , n,

and not that hard to control.

Let Cn = {G(n;S) : symmetric S ⊆ {1, . . . n− 1}}

So (2006) :

A full description of circulant integral graphs (based

on explicit formulas for the eigenvalues)

⇓

Z(Cn) ≤ 2τ(n)−1,

where τ(n) is divisors function.
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Let

C∗n,k = {G(n;S) ∈ Cn : #S = k, G(n;S) connected}

Saxena, Severini and Shparlinski (2007) :

For

n ≥ exp
(
c
√
k log log(k + 2) log k

)
with some absolute constant c > 0, we have

Z(Cn,k) = 0.

Klin and Kovács (2010)

Description of automorphism groups of integral

circulant graphs.

Open Question 1 What about more general Cay-

ley graphs?
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Integral Graphs with Few Cycles

Integral trees are fully classified by Watanabe and

Schwenk (1979)

Classification of integral graphs with at most two

cycles: Omidi (2010)



9

Arbitrary Graphs

Let An be the set of all adjacency matrices of

graphs on n vertices.

Ahmadi, Alon, Blake and Shparlinski (2008) :

Z(An) ≤ 2n(n−1)/2−n/400.

Not tight!

Conjecture: Z(An) = exp(O(n)).

For n = 2m any Cayley graph of (ZZ2)m is integral:

Z(An) ≥ 2Ω(n).
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Ideas Behind the Proof

• ‘Circular Law’

⇓

• For most of adjacency matrices have most of

eigenvalues are ≤ Cn1/2

⇓

• Since eigenvalues are integral, at least one is

of multiplicity ≥ cn1/2.

⇓

• In matrix with an eigenvalue of multiplicity s

there is an symmetric s × s minor defined by

other entries.

⇓

• Bound.
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More Details

Distribution of Eigenvalues

As A ∈ An is symmetric, its eigenvalues

λ1 ≥ λ2 ≥ . . . ≥ λn

are real.

Füredi and Komlós (1981) .

Lemma 2 For any c > 1 and large enough n

Pr
A∈An

[
−c
√
n < λi < c

√
n, i = 2, . . . , n

]
≥ 1− n−10.
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Let Ei denote the expected value of λi of A ∈ An
chosen uniformly at random.

Corollary 3 For i > 1 and large enough n

|Ei| < 2
√
n

Proof. Using Lemma 2 with c = 3/2, we have

that with probability 1−n−10, λi is at most 3
√
n/2

and with probability n−10 it is at most n:

Ei <

(
1−

1

n10

)
3

2

√
n+

1

n10
n < 2

√
n

for large enough values of n. Similarly we have

Ei >

(
1−

1

n10

)−3

2

√
n+

1

n10
(−n) > −2

√
n.

ut
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Let Mi denote the median of λi of A ∈ An: for at

least 0.5#An matrices A ∈ An we have λi ≥Mi.

Corollary 4 We have

|Mi| < 6
√
n, i = 2, . . . , n.

Proof. Suppose that Mi ≥ 6
√
n. Using Lemma 2

with c = 3/2 we obtain

Ei ≥
1

2
(6
√
n) +

1

2

(−3

2

√
n

)
+

1

n10
(−n) ≥ 2

√
n,

which contradicts Cor. 3. Similarly Mi ≤ −6
√
n.

ut

Alon, Krivelevich and Vu (2002)

Lemma 5 We have

Pr
A∈An

[|λs −Ms| > t] ≤ 4e−t
2/8r2

where r = min{s, n− s+ 1}.
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From Cor. 4 and Lemma 5 we derive:

Corollary 6 We have,

Pr
A∈An

[
|λi| < 7

√
n, i = 2, . . . , n

]
≥ 1− 8e−n/32.

Proof. By Cor. 4 we have

Pr
A∈An

[
λ2 > 7

√
n
]

= Pr
A∈An

[
λ2 − 6

√
n >
√
n
]

≤ Pr
A∈An

[
λ2 −M2 >

√
n
]
.

Applying Lemma 5 with t =
√
n we have

Pr
A∈An

[
λ2 > 7

√
n
]
≤ 4e−n/32.

Similarly

Pr
A∈An

[
λn < −7

√
n
]
≤ 4e−n/32.

ut
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Multiplicities of Eigenvalues

Let λ be an eigenvalue of a matrix M :

1. algebraic multiplicity is its order as a root of

the characteristic polynomial of M ;

2. geometric multiplicity is the rank of the null-

space of M − λI

M is symmetric:

algebraic multiplicity = geometric multiplicity

A principal submatrix of order r of n × n matrix

M is a submatrix of M obtained by deleting rows

Ri1, Ri2, . . . , Rin−r and columns Ci1, Ci2, . . . , Cin−r where

1 ≤ i1 < i2 < . . . < in−r ≤ n.

Principal submatrices of a symmetric matrix are

symmetric too.
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Well-known result:

Lemma 7 A symmetric matrix M is of rank r iff

M has a nonsingular principal submatrix of order

r and has no larger principal submatrix which is

nonsingular.

Not so well-known result:

Lemma 8 Let λ be a real number. Then the num-

ber Nλ(n, s) of adjacency matrices of order n hav-

ing λ as an eigenvalue of algebraic multiplicity s is

at most

Nλ(n, s) ≤
(n
s

)
2n(n−1)/2−s(s−1)/2.
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Concluding the Proof

By Cor. 6 the number of matrices with eigenvalue

outside of [−7
√
n,7
√
n] is at most 8e−n/322n(n−1)/2.

The remaining matrices have one eigenvalue of

multiplicity at least

t =
n− 1

14
√
n+ 1

.

By Lemma 8, there are at most∑
−7
√
n≤λ≤7

√
n

∑
t≤s≤n

Nλ(n, s)

≤ (14
√
n+ 1)

∑
t≤s≤n

(n
s

)
2n(n−1)/2−s(s−1)/2+1

≤ (14
√
n+ 1)n

( n

bn/2c

)
2n(n−1)/2−t(t−1)/2+1

graphs having an integral spectrum. ut
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Regular Graphs

Dumitriu and Pal (2009)

Analogue of the result of Alon, Krivelevich and

Vu (2002) about the distribution of eigenvalues.

Ahamdi and Shparlinski (???)

Nothing yet, but it’s in our plans
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Integral Matrices

Arbitrary matrices in a box

For a n× n matrix K = (kij)
n
ij=1 we define

M(K,h) = {M = (mij)
n
ij=1 : |kij −mij| < h}

Let On be the n× n zero matrix.

Martin and Wong (2009) :

Z(M(On, h)) ≤ hn
2−2+o(1)

Shparlinski (2009) : Improvement and generalisa-

tion:

Z(M(K,h)) ≤ (h+ ‖K‖)hn
2−n+o(1)

The result is based on a new upper bound

#{M ∈M(K,h) : detM = 0} � hn
2−n logh (1)

(uniformly over K) applied to K −λI instead of K

and the bound λ = O (h+ ‖K‖) on eigenvalues λ

of M ∈M(K,h).

The proof of (1) is elementary.
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Symmetric matrices in a box

For a n× n matrix K = (kij)
n
ij=1 we define

S(K,h) = {M = (mij)
n
ij=1 : mij = mji, |kij−mij| < h}

Shparlinski (2009) :

Z(S(K,h)) ≤ hn(n+1)/2−1+o(1)

The bound is uniform over K.

The result is based on a new upper bound

#{S ∈ S(K,h) : detS = 0} � hn(n+1)/2−1+o(1)

(2)

(uniformly over K) and a result of Weyl (1912) on

the stability of eigenvalues of symmetric matrices:

For every eigenvalue λ of M ∈ S(K,h) there exists

and an eigenvalue η of K with

λ = η +O(h)
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Matrices with a given determinant

The case of K = On: very well studied

Duke, Rudnick and Sarnak (1993) for a 6= 0 and

Katznelson (1993) when a = 0 we immediately

obtain

#{M ∈M(On, h) : detM = a} �

 hn
2−n, a 6= 0,

hn
2−n logh, a = 0,

where the implied constant may depend on n.

Wigman (2005) :

A variant of the result of Katznelson (1993) for

matrices with primitive rows
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Similarly, Duke, Rudnick and Sarnak (1993) for

a 6= 0 and Eskin and Katznelson (1994) when a =

0

#{S ∈ S(On, h) : detS = a} �
{
hn(n−1)/2, a 6= 0,

hn(n−1)/2 logh, a = 0.

In fact they all give asymptotic formulas but for

matrices ordered w.r.t. a different norm.

Bourgain, Costelo, Tao, Vu and Wood (2006–???)

A series of results about singular 0,1-matrices and

matrices with entries in {−k, . . . , k} for a fixed k

and growing dimension k.

They also lead to various estimates on the number

of integral matrices in some families. One example

is given in Bourgain, Vu and Wood (2009) .
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Arbitrary K:

The proof of (1) is elementary:

Assume that X,Y ∈M(K,h) are obtained from an

n× (n−1)-matrix R by augmenting it by x,y ∈ ZZn:

X = (R|x) and Y = (R|y) .

If det(X) = det(Y ) then putting

z = x− y and Z = (R|z)

we get detZ = 0 (expand Z with respect to the

last column).

Therefore,

#{x =(x1, . . . , xn) ∈ ZZn :

det (R|x) = a, |ki,n − xi| < h, i = 1, . . . , n}
≤#{z = (z1, . . . , zn) ∈ ZZn :

det (R|z) = 0, |zi| < 2h, i = 1, . . . , n}.
If x1, . . . ,xJ are the elements from set on the LHS

then the vectors zj = x1 − xj, j = 1, . . . , J are

distinct and belong to the set on the RHS.
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Summing this over all (2h−1)n
2−n integral matri-

ces R = (rij)
n,n−1
i,j=1 with

|kij − rij| < h, 1 ≤ i ≤ n, 1 ≤ j ≤ n− 1,

we obtain

#{M ∈M(K,h) : detM = a}
≤#{M ∈M(K1,2h) : detM = 0},

where K1 is obtained from K by replacing its nth

column by a zero vector.

Repeating the same argument with respect to the

(n− 1)th column of the matrix K1, we obtain

#{M ∈M(K,h) : detM = a}
≤#{M ∈M(K2,4h) : detM = 0},

where K2 now has two zero column.

After n steps we arrive to

#{M ∈M(K,h) : detM = a}
≤#{M ∈M(Kn,2

nh) : detM = 0},
where Kn = On is the zero matrix. ut
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The above argument does not work for symmetric

matrices (the structure disappears immediately).

The proof of (2) used deep results on integral

points on surfaces due to Browning, Heath-Brown

and Salberger (2006)

To apply we need to prove absolute irreducibility

of the highest form Hk of the polynomial

FK
(
{Xij}1≤i≤j≤n

)
= det

(
{kij +Xij}

)n
i,j=1

of degree n in n(n+ 1)/2 variables Xij, 1 ≤ i ≤ j ≤
n, where we also define Xij = Xji for i > j:

• Remark that HK = FOn.

• Then use induction.
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Comments and Open Questions

A common weakness of the above results: They

essentially deal with matrices having several (some-

times one!) integral eigenvalues rather than all

integral eigenvalues.

Exploiting that fact may lead to an improvement.

Open Question 9 Find a way to make use of all

eigenvalues.

A related problem:

Open Question 10 Given a set of n real numbers

Λ = {λ1, . . . , λn} estimate the number of graphs

having Λ as their spectrum.
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Our approaches do not work for algebraic eigen-

values of low degree.

Open Question 11 Given a number field IK, esti-

mate the number of graphs/matrices in the above

families with all eigenvlues in IK.

Open Question 12 Given an integer d, estimate

the number of graphs/matrices in the above fam-

ilies with all eigenvlues being algebraic numbers of

degree at most d.

Open Question 13 Obtain tight uniform bounds

on the number of integral matrices M ∈ M(K,h)

and S ∈ S(K,h) of a given rank r.
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Open Question 14 Obtain bounds on the num-

ber of integral matrices M ∈ M(K,h) and S ∈
S(K,h) with a characteristic polynomials of a cer-

tain type (for example, reducible over ZZ).

There are some results of Rivin (2008) but the do

not give what is really expected for Question 14.

Open Question 15 For a given matrix K = (kij)
n
i,j=1

and n2 polynomials fij(X) ∈ ZZ[X], i, j = 1, . . . , n,

obtain bounds on the number of integral matrices

in the set:{(
fij(xij)

)n
i,j=1

: kij ≤ xij < kij + h

}
.
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Back to our Motivation

Integral graphs and perfect quantum state trans-

fer?

– Not quite so . . .

What do we really need?

For every quadruple λh, λi, λj, λk of eigenvalues (with

λj 6= λk), we need

λh − λi
λj − λk

∈ Q.

Saxena, Severini and Shparlinski (2007) :

For circulant graphs this property is essentially

equivalent to integrality.

Open Question 16 What about other graphs?

Open Question 17 If this property differs from

integrality, can we estimate the number of such

graphs in some interesting families?


