Joint Linear Complexity of Multisequences Consisting of Linear Recurring Sequences

Fang-Wei Fu

Chern Institute of Mathematics, Nankai University, Tianjin, China
15 February 2011, NTU, Singapore Joint Work with Harald Niederreiter and Ferruh Özbudak

Contents

- Introduction
- Linear Recurring Sequences and Linear Complexity
- Multiple Linear Recurring Sequences and Joint Linear Complexity
- Expectation and Variance
- Counting Function and Generating Polynomial

Introduction

- The linear complexity of sequences is one of the important security measures for stream cipher systems.
- Rueppel 1986, 1992
- Ding, Xiao, Shan 1991
- Cusick, Ding, Renvall 1998
- Niederreiter 2003

Introduction

- High linear complexity to resist an attack by the Berlekamp-Massey algorithm.
- A stream cipher system is completely secure if the keystream is a "truly random" sequence that is uniformly distributed.
- Fundamental research problem:

Determine the expectation and variance of the linear complexity of random sequences that are uniformly distributed.

Introduction

- Study of word-based or vectorized stream cipher systems
- Study of joint linear complexity of multisequences
- Research works on the study of expectation and variance and counting function for
- linear complexity of random finite/periodic sequences: Rueppel, Dai, Meidl, Niederreiter, et al
- joint linear complexity of random finite/periodic multisequences: Meidl, Niederreiter, Dai, Xing, Fu, Su, Wang, et al

Linear Recurring Sequences and Linear Complexity

- A sequence $\sigma=\left(s_{n}\right)_{n=0}^{\infty}$ of elements of \mathbb{F}_{q} is called a linear recurring sequence over \mathbb{F}_{q} with characteristic polynomial

$$
\sum_{i=0}^{\ell} a_{i} x^{i} \in \mathbb{F}_{q}[x]
$$

if $a_{\ell}=1$ and

$$
\sum_{i=0}^{\ell} a_{i} s_{n+i}=0 \quad \text { for } n=0,1, \ldots
$$

Here ℓ is an arbitrary nonnegative integer.

Linear Recurring Sequences and Linear Complexity

- The minimal polynomial of σ is the uniquely determined characteristic polynomial of σ with least degree.
- The linear complexity of σ is the degree of the minimal polynomial of σ.

Multiple Sequences and Joint Linear Complexity

- m: an arbitrary positive integer.
- m-fold multisequence $\mathbf{S}=\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ consisting of linear recurring sequences $\sigma_{1}, \ldots, \sigma_{m}$ over \mathbb{F}_{q}, that is, a linear recurring multisequence \mathbf{S} over \mathbb{F}_{q}.
- Joint minimal polynomial $P_{\mathbf{S}} \in \mathbb{F}_{q}[x]$ is defined to be the (uniquely determined) monic polynomial of the least degree such that P_{S} is a characteristic polynomial of σ_{i} for each $1 \leq i \leq m$.
- The joint linear complexity $L(\mathbf{S})$ of \mathbf{S} is defined to be $L(\mathbf{S})=\operatorname{deg}\left(P_{\mathbf{S}}\right)$.

Multiple Sequences and Joint Linear Complexity

- For $1 \leq i \leq m$, let

$$
\sigma_{i}=\left(s_{i, n}\right)_{n=0}^{\infty}
$$

and assume that σ_{i} is not the zero sequence for some $1 \leq i \leq m$.

- The joint linear complexity $L(\mathbf{S})$ is the smallest positive integer c for which there exist coefficients $a_{1}, a_{2}, \ldots, a_{c} \in \mathbb{F}_{q}$ such that for each $1 \leq i \leq m$, we have

$$
s_{i, n}+a_{1} s_{i, n-1}+\cdots+a_{c} s_{i, n-c}=0 \quad \text { for all } n \geq c
$$

Some Notations

- Given a monic polynomial $f \in \mathbb{F}_{q}[x]$.
- $\mathcal{M}^{(m)}(f)$: The set of m-fold multisequences $\mathbf{S}=\left(\sigma_{1}, \ldots, \sigma_{m}\right)$ such that for each $1 \leq i \leq m, \sigma_{i}$ is a linear recurring sequence over \mathbb{F}_{q} with characteristic polynomial f.

$$
\left|\mathcal{M}^{(m)}(f)\right|=q^{m \operatorname{deg}(f)}
$$

Some Notations

- The expectation $\mathrm{E}^{(m)}(f)$ and the variance $\operatorname{Var}^{(m)}(f)$ of the joint linear complexity of random m-fold multisequences from $\mathcal{M}^{(m)}(f)$, which are uniformly distributed over $\mathcal{M}^{(m)}(f)$.
- Counting function $\mathcal{N}^{(m)}(f ; t)$: The number of m-fold multisequences from $\mathcal{M}^{(m)}(f)$ with a given joint linear complexity t.

Preliminaries

- For a monic polynomial $f \in \mathbb{F}_{q}[x]$ with $\operatorname{deg}(f) \geq 1$, let

$$
\begin{aligned}
& C(f):=\left\{h \in \mathbb{F}_{q}[x]: \operatorname{deg}(h)<\operatorname{deg}(f)\right\} \\
& R^{(m)}(f):=\left\{\left(h_{1}, \ldots, h_{m}\right) \in C(f)^{m}:\right. \\
& \left.\operatorname{gcd}\left(h_{1}, \ldots, h_{m}, f\right)=1\right\} \\
& \Phi_{q}^{(m)}(f):=\left|R^{(m)}(f)\right|, \text { and } \Phi_{q}^{(m)}(1):=1
\end{aligned}
$$

- $\Phi_{q}^{(m)}(f)$ is the number of m-fold multisequences \mathbf{S} with the joint minimal polynomial $f(x)$.

Preliminaries

Lemma

If $f=r_{1}^{e_{1}} r_{2}^{e_{2}} \cdots r_{k}^{e_{k}}$ is the canonical factorization of f into monic irreducible polynomials over \mathbb{F}_{q}, then

$$
\Phi_{q}^{(m)}(f)=q^{m \operatorname{deg}(f)} \prod_{i=1}^{k}\left(1-q^{-m \operatorname{deg}\left(r_{i}\right)}\right)
$$

Expectation and Variance

- Monic polynomial $f \in \mathbb{F}_{q}[x]$ with $\operatorname{deg}(f) \geq 1$.
- Canonical factorization

$$
f=r_{1}^{e_{1}} r_{2}^{e_{2}} \cdots r_{k}^{e_{k}}
$$

- For $1 \leq i \leq k$, let $\alpha_{i}=q^{m \operatorname{deg}\left(r_{i}\right)}$.

Expectation and Variance

Theorem

Expectation $\mathrm{E}^{(m)}(f)$ and $\operatorname{Variance} \operatorname{Var}^{(m)}(f)$:

$$
\begin{aligned}
& \mathrm{E}^{(m)}(f)=\operatorname{deg}(f)-\sum_{i=1}^{k} \frac{1-\alpha_{i}^{-e_{i}}}{\alpha_{i}-1} \operatorname{deg}\left(r_{i}\right), \\
& \operatorname{Var}^{(m)}(f)=\sum_{i=1}^{k}\left(\frac{\operatorname{deg}\left(r_{i}\right)}{1-\alpha_{i}^{-1}}\right)^{2} \\
& \times\left[\left(2 e_{i}+1\right)\left(\alpha_{i}^{-e_{i}-2}-\alpha_{i}^{-e_{i}-1}\right)-\alpha_{i}^{-2 e_{i}-2}+\alpha_{i}^{-1}\right] .
\end{aligned}
$$

Expectation and Variance

Remark:

- When $f(x)=x^{N}-1 \in \mathbb{F}_{q}[x]$ and N is an arbitrary positive integer, This is the case of m-fold N-periodic multisequences over \mathbb{F}_{q}.
- This theorem yields the corresponding results of Meidl-Niederreiter and Fu-Niederreiter-Su by a simpler method.
- These corresponding results are the general formulas for the expectation and the variance of the joint linear complexity of random m-fold N-periodic multisequences over \mathbb{F}_{q}.

Expectation and Variance

Cyclotomic coset:

- Let n be a positive integer with $\operatorname{gcd}(n, q)=1$.
- For $j \in \mathbf{Z}_{n}:=\{0,1, \ldots, n-1\}$, the cyclotomic coset C_{j} of j modulo n relative to powers of q is defined as

$$
C_{j}=\left\{j, j \cdot q, \ldots, j \cdot q^{l_{j}-1}\right\}(\bmod n)
$$

where I_{j} is the least positive integer $/$ satisfying $j \cdot q^{\prime} \equiv j$ $(\bmod n)$.

Expectation and Variance

Let $N=p^{v} n$ with $v \geq 0, p=\operatorname{char} \mathbb{F}_{\mathrm{q}}$, and $\operatorname{gcd}(n, p)=1$. Let D_{1}, \ldots, D_{h} be the different cyclotomic cosets modulo n and let $d_{r}=\left|D_{r}\right|, 1 \leq r \leq h$, be the sizes of these cyclotomic cosets, respectively.

- Meidl-Niederreiter 2003

The expectation $E_{N}^{(m)}$ of the joint linear complexity of m random N-periodic sequences with terms in \mathbb{F}_{q} is given by

$$
E_{N}^{(m)}=N-\sum_{r=1}^{h} \frac{d_{r} a_{r}\left(1-a_{r}^{p^{\vee}}\right)}{1-a_{r}}
$$

where $a_{r}=q^{-d_{r} m}$.

Expectation and Variance

- Fu-Niederreiter-Su 2005

The variance $V_{N}^{(m)}$ of the joint linear complexity of m random N-periodic sequences with terms in \mathbb{F}_{q} is given by

$$
V_{N}^{(m)}=\sum_{r=1}^{h} d_{r}^{2} \cdot \frac{\left(2 p^{\vee}+1\right)\left(a_{r}^{p^{\vee}+2}-a_{r}^{p^{\vee}+1}\right)-a_{r}^{2 p^{\vee}+2}+a_{r}}{\left(1-a_{r}\right)^{2}}
$$

where $a_{r}=q^{-d_{r} m}$.

Expectation and Variance

Some Examples:

- $N=p^{v}, p=\operatorname{char} \mathbb{F}_{\mathrm{q}}$:

$$
\begin{gathered}
E_{N}^{(m)}=N-\frac{1}{q^{m}-1}\left(1-\frac{1}{q^{m N}}\right) \\
V_{N}^{(m)}=\frac{\left(q^{m}+q^{-N m}\right)\left(1-q^{-N m}\right)}{\left(q^{m}-1\right)^{2}}-\frac{2 q^{-N m}}{q^{m}-1} N
\end{gathered}
$$

Expectation and Variance

- N is a prime different from p :

Let d be the multiplicative order of q in the prime field \mathbb{F}_{N}.

$$
\begin{gathered}
E_{N}^{(m)}=N-\frac{N-1}{q^{d m}}-\frac{1}{q^{m}} \\
V_{N}^{(m)}=q^{-m}-q^{-2 m}+(N-1) d\left(1-q^{-d m}\right) q^{-d m}
\end{gathered}
$$

Expectation and Variance

- $N=q^{k}-1$ and k is a prime:

$$
E_{N}^{(m)}=N-(q-1) q^{-m}-\left(q^{k}-q\right) q^{-k m}
$$

$$
V_{N}^{(m)}=(q-1) q^{-m}\left(1-q^{-m}\right)+k\left(q^{k}-q\right) q^{-k m}\left(1-q^{-k m}\right)
$$

Reference Papers

- W. Meidl, H. Niederreiter, On the expected value of the linear complexity and the k-error linear complexity of periodic sequences, IEEE Trans. Inform. Theory 48 (2002) 2817-2825.
- W. Meidl, H. Niederreiter, The expected value of the joint linear complexity of periodic multisequences, J. Complexity 19 (2003) 61-72.
- F.-W. Fu, H. Niederreiter, M. Su, The expectation and variance of the joint linear complexity of random periodic multisequences, J. Complexity 21 (2005) 804-822.

Counting Function

Theorem

Counting function $\mathcal{N}^{(m)}(f ; t)$ where $t \leq \operatorname{deg}(f)$:

$$
\mathcal{N}^{(m)}(f ; t)=\sum_{\substack{d \mid f \\ \operatorname{deg}(d)=t}} \Phi_{q}^{(m)}(d),
$$

where the summation is over all monic polynomials $d \in \mathbb{F}_{q}[x]$ of degree t and dividing f.

Counting Function

- We determine closed-form expressions for $\mathcal{N}^{(m)}(f ; \operatorname{deg}(f))$, $\mathcal{N}^{(m)}(f ; \operatorname{deg}(f)-1)$, and $\mathcal{N}^{(m)}(f ; \operatorname{deg}(f)-2)$.
- We also give tight upper and lower bounds on the counting function $\mathcal{N}^{(m)}(f ; t)$ in general.
- We give concrete examples determining the counting functions in closed form in some special cases.

Generating Polynomial

- Generating polynomial $\mathcal{G}^{(m)}(f ; z)$ for the distribution of joint linear complexities of m-fold multisequences from $\mathcal{M}^{(m)}(f)$:

$$
\mathcal{G}^{(m)}(f ; z):=\sum_{t \geq 0} \mathcal{N}^{(m)}(f ; t) z^{t}
$$

- We now determine $\mathcal{G}^{(m)}(f ; z)$ as a product of certain polynomials in z depending on the canonical factorization of f into monic irreducibles over \mathbb{F}_{q}.

Generating Polynomial

Theorem

If $f=f_{1} f_{2}$, where $f_{1}, f_{2} \in \mathbb{F}_{q}[x]$ are monic polynomials with $\operatorname{deg}\left(f_{1}\right), \operatorname{deg}\left(f_{2}\right) \geq 1$, and $\operatorname{gcd}\left(f_{1}, f_{2}\right)=1$, then

$$
\mathcal{G}^{(m)}(f ; z)=\mathcal{G}^{(m)}\left(f_{1} ; z\right) \mathcal{G}^{(m)}\left(f_{2} ; z\right) .
$$

Generating Polynomial

Theorem

If $f=r_{1}^{e_{1}} r_{2}^{e_{2}} \cdots r_{k}^{e_{k}}$ is the canonical factorization of f into monic irreducibles over \mathbb{F}_{q}, then

$$
\mathcal{G}^{(m)}(f ; z)=\prod_{j=1}^{k}\left(1+\left(1-\alpha_{j}^{-1}\right) \frac{\left(\alpha_{j} z^{\operatorname{deg}\left(r_{j}\right)}\right)^{e_{j}+1}-\alpha_{j} z^{\operatorname{deg}\left(r_{j}\right)}}{\alpha_{j} z^{\operatorname{deg}\left(r_{j}\right)}-1}\right),
$$

where $\alpha_{j}=q^{m \operatorname{deg}\left(r_{j}\right)}$ for $1 \leq j \leq k$.

Generating Polynomial

- For $N \geq 1$, recall that the set of m-fold N-periodic multisequences over \mathbb{F}_{q} is the same as the set $\mathcal{M}^{(m)}(f)$, where

$$
f(x)=x^{N}-1 \in \mathbb{F}_{q}[x]
$$

Generating Polynomial

- $n \geq 1$ is an integer with $\operatorname{gcd}(n, q)=1$.
- Euler totient function $\phi(\ell)$: The number of nonnegative integers less than ℓ and coprime to ℓ.
- For each positive integer d dividing n, let $H_{q}(d)$ be the multiplicative order of q modulo d, i.e., the least positive integer h such that $q^{h} \equiv 1 \bmod d$.

Generating Polynomial

Theorem

Let $m, N \geq 1$ be integers and p be the characteristic of \mathbb{F}_{q}. Let $n \geq 1$ and $\nu \geq 0$ be the integers such that $N=p^{\nu} n$ and $\operatorname{gcd}(n, p)=1$. Assume that $f(x)=x^{N}-1 \in \mathbb{F}_{q}[x]$. Then we have

$$
\mathcal{G}^{(m)}(f ; z)=
$$

$\prod_{d \mid n}\left(1+\left(1-q^{-m H_{q}(d)}\right) \frac{\left(q^{m H_{q}(d)} z^{H_{q}(d)}\right)^{p^{\nu}+1}-q^{m H_{q}(d)} z^{H_{q}(d)}}{q^{m H_{q}(d)} z^{H_{q}(d)}-1}\right)^{\phi(d) / H_{q}(d)}$

Generating Polynomial

Remark:

- The counting function $\mathcal{N}^{(m)}(f ; t)$ is the coefficient of the term z^{t} of the generating polynomial $\mathcal{G}^{(m)}(f ; z)$.
- These two theorems determine $\mathcal{G}^{(m)}(f ; z)$ as a product of certain polynomials in z.
- However, even for $f(x)=x^{N}-1$, i.e., the periodic case, it is difficult in general to obtain the coefficient of the term z^{t} from the product in the above theorem.

Publication

Fang-Wei Fu, H. Niederreiter, and F. Özbudak, Joint linear complexity of multisequences consisting of linear recurring sequences, Cryptography and Communications, vol.1, no.1, pp. 3-29, 2009.

General Case

- Let s be an arbitrary positive integer.
- Let $m_{1}, m_{2}, \ldots, m_{s}$ be further arbitrarily chosen positive integers.
- Let $f_{1}, f_{2}, \ldots, f_{s} \in \mathbb{F}_{q}[x]$ be monic polynomials of positive degree.

General Case

- Let $\mathcal{M}^{\left(m_{1}, m_{2}, \ldots, m_{s}\right)}\left(f_{1}, f_{2}, \ldots, f_{s}\right)$ be the set of $\left(m_{1}+m_{2}+\cdots+m_{s}\right)$-fold multisequences

$$
\mathbf{S}=\left(\begin{array}{ll}
& \sigma_{1,1}, \sigma_{1,2}, \ldots, \sigma_{1, m_{1}} \\
& \sigma_{2,1}, \sigma_{2,2}, \ldots, \sigma_{2, m_{2}} \\
& \ldots \ldots \\
& \left.\sigma_{s, 1}, \sigma_{s, 2}, \ldots, \sigma_{s, m_{s}}\right)
\end{array}\right.
$$

such that for each $1 \leq i \leq s$ and $1 \leq j \leq m_{i}, \sigma_{i, j}$ is a linear recurring sequence over \mathbb{F}_{q} with characteristic polynomial f_{i}.

General Case

- Expectation $\mathrm{E}^{\left(m_{1}, m_{2}, \ldots, m_{s}\right)}\left(f_{1}, f_{2}, \ldots, f_{s}\right)$ and Variance $\operatorname{Var}^{\left(m_{1}, m_{2}, \ldots, m_{s}\right)}\left(f_{1}, f_{2}, \ldots, f_{s}\right)$ of the joint linear complexity of random $\left(m_{1}+m_{2}+\cdots+m_{s}\right)$-fold multisequences from $\mathcal{M}^{\left(m_{1}, m_{2}, \ldots, m_{s}\right)}\left(f_{1}, f_{2}, \ldots, f_{s}\right)$.

General Case

- Counting function $\mathcal{N}^{\left(m_{1}, m_{2}, \ldots, m_{s}\right)}\left(f_{1}, f_{2}, \ldots, f_{s} ; t\right)$ of $\left(m_{1}+m_{2}+\cdots+m_{s}\right)$-fold multisequences from $\mathcal{M}^{\left(m_{1}, m_{2}, \ldots, m_{s}\right)}\left(f_{1}, f_{2}, \ldots, f_{s}\right)$ with a given joint linear complexity t.

General Case

- Generating polynomial $\mathcal{G}^{\left(m_{1}, m_{2}, \ldots, m_{s}\right)}\left(f_{1}, f_{2}, \ldots, f_{s} ; z\right)$:

$$
\begin{aligned}
& \mathcal{G}^{\left(m_{1}, m_{2}, \ldots, m_{s}\right)}\left(f_{1}, f_{2}, \ldots, f_{s} ; z\right) \\
& :=\sum_{t \geq 0} \mathcal{N}^{\left(m_{1}, m_{2}, \ldots, m_{s}\right)}\left(f_{1}, f_{2}, \ldots, f_{s} ; t\right) z^{t} .
\end{aligned}
$$

Publication

Fang-Wei Fu, H. Niederreiter, and F. Özbudak, Joint linear complexity of arbitrary multisequences consisting of linear recurring sequences, Finite Fields and Their Applications, vol.15, no.4, pp.475-496, 2009.

$f_{1}, f_{2}, \ldots, f_{s}$ are pairwise coprime

Special case: $f_{1}, f_{2}, \ldots, f_{s}$ are pairwise coprime.

Theorem

$$
\begin{gathered}
\mathrm{E}^{\left(m_{1}, m_{2}, \ldots, m_{s}\right)}\left(f_{1}, f_{2}, \ldots, f_{s}\right)=\sum_{i=1}^{s} \mathrm{E}^{\left(m_{i}\right)}\left(f_{i}\right), \\
\operatorname{Var}^{\left(m_{1}, m_{2}, \ldots, m_{s}\right)}\left(f_{1}, f_{2}, \ldots, f_{s}\right)=\sum_{i=1}^{s} \operatorname{Var}^{\left(m_{i}\right)}\left(f_{i}\right) .
\end{gathered}
$$

Here $\mathrm{E}^{\left(m_{i}\right)}\left(f_{i}\right)$ and $\operatorname{Var}^{\left(m_{i}\right)}\left(f_{i}\right)$ can be computed using previous theorems.

$f_{1}, f_{2}, \ldots, f_{s}$ are pairwise coprime

Theorem

Counting function

$$
\begin{aligned}
& \mathcal{N}^{\left(m_{1}, m_{2}, \ldots, m_{s}\right)}\left(f_{1}, f_{2}, \ldots, f_{s} ; t\right)= \\
& \sum_{i_{1}, i_{2}, \ldots, i_{s}} \mathcal{N}^{\left(m_{1}\right)}\left(f_{1} ; i_{1}\right) \mathcal{N}^{\left(m_{2}\right)}\left(f_{2} ; i_{2}\right) \cdots \mathcal{N}^{\left(m_{s}\right)}\left(f_{s} ; i_{s}\right),
\end{aligned}
$$

where the summation is over all nonnegative integers $i_{1}, i_{2}, \ldots, i_{s}$ with $i_{1}+i_{2}+\cdots+i_{s}=t$.

$f_{1}, f_{2}, \ldots, f_{s}$ are pairwise coprime

Theorem

Generating polynomial

$$
\mathcal{G}^{\left(m_{1}, m_{2}, \ldots, m_{s}\right)}\left(f_{1}, f_{2}, \ldots, f_{s} ; z\right)=\prod_{i=1}^{s} \mathcal{G}^{\left(m_{i}\right)}\left(f_{i} ; z\right) .
$$

$f_{1}, f_{2}, \ldots, f_{s}$ are pairwise coprime

If $m_{1}=m_{2}=\cdots=m_{s}$, then we can completely reduce the consideration to the case $s=1$.

Corollary

Let $f:=f_{1} f_{2} \cdots f_{s} \in \mathbb{F}_{q}[x]$. Then we have

$$
\mathcal{N}^{(m, m, \ldots, m)}\left(f_{1}, f_{2}, \ldots, f_{s} ; t\right)=\mathcal{N}^{(m)}(f ; t)
$$

Thank you for your attention!

