Joint Linear Complexity of Multisequences Consisting of Linear Recurring Sequences

Fang-Wei Fu

Chern Institute of Mathematics, Nankai University, Tianjin, China

15 February 2011, NTU, Singapore Joint Work with Harald Niederreiter and Ferruh Özbudak

Fang-Wei Fu (Nankai University)

Joint Linear Complexity

Contents

- Introduction
- Linear Recurring Sequences and Linear Complexity
- Multiple Linear Recurring Sequences and Joint Linear Complexity
- Expectation and Variance
- Counting Function and Generating Polynomial

Introduction

- The linear complexity of sequences is one of the important security measures for stream cipher systems.
- Rueppel 1986, 1992
- Ding, Xiao, Shan 1991
- Cusick, Ding, Renvall 1998
- Niederreiter 2003

Introduction

- High linear complexity to resist an attack by the Berlekamp-Massey algorithm.
- A stream cipher system is completely secure if the keystream is a "truly random" sequence that is uniformly distributed.
- Fundamental research problem: Determine the expectation and variance of the linear complexity of random sequences that are uniformly distributed.

Introduction

- Study of word-based or vectorized stream cipher systems
- Study of joint linear complexity of multisequences
- Research works on the study of expectation and variance and counting function for
- linear complexity of random finite/periodic sequences: Rueppel, Dai, Meidl, Niederreiter, et al
- joint linear complexity of random finite/periodic multisequences: Meidl, Niederreiter, Dai, Xing, Fu, Su, Wang, et al

Linear Recurring Sequences and Linear Complexity

A sequence σ = (s_n)[∞]_{n=0} of elements of 𝔽_q is called a *linear* recurring sequence over 𝔽_q with characteristic polynomial

$$\sum_{i=0}^{\ell} a_i x^i \in \mathbb{F}_q[x]$$

if $a_\ell = 1$ and

$$\sum_{i=0}^{\ell} a_i s_{n+i} = 0 \qquad \text{for} \quad n = 0, 1, \dots$$

Here ℓ is an arbitrary nonnegative integer.

Fang-Wei Fu (Nankai University)

Joint Linear Complexity

Linear Recurring Sequences and Linear Complexity

- The minimal polynomial of σ is the uniquely determined characteristic polynomial of σ with least degree.
- The linear complexity of σ is the degree of the minimal polynomial of σ .

Multiple Sequences and Joint Linear Complexity

- *m*: an arbitrary positive integer.
- *m*-fold multisequence **S** = (σ₁,..., σ_m) consisting of linear recurring sequences σ₁,..., σ_m over F_q, that is, a linear recurring multisequence **S** over F_q.
- Joint minimal polynomial P_S ∈ F_q[x] is defined to be the (uniquely determined) monic polynomial of the least degree such that P_S is a characteristic polynomial of σ_i for each 1 ≤ i ≤ m.
- The joint linear complexity L(S) of S is defined to be L(S) = deg (P_S).

Fang-Wei Fu (Nankai University)

Multiple Sequences and Joint Linear Complexity

• For $1 \leq i \leq m$, let

$$\sigma_i = \left(\mathbf{s}_{i,n}\right)_{n=0}^{\infty},$$

and assume that σ_i is not the zero sequence for some $1 \leq i \leq m$.

• The joint linear complexity $L(\mathbf{S})$ is the smallest positive integer c for which there exist coefficients $a_1, a_2, \ldots, a_c \in \mathbb{F}_q$ such that for each $1 \leq i \leq m$, we have

$$s_{i,n} + a_1 s_{i,n-1} + \cdots + a_c s_{i,n-c} = 0$$
 for all $n \ge c$.

Fang-Wei Fu (Nankai University)

Joint Linear Complexity

Some Notations

- Given a monic polynomial $f \in \mathbb{F}_q[x]$.
- *M*^(m)(*f*): The set of *m*-fold multisequences **S** = (σ₁,...,σ_m) such that for each 1 ≤ *i* ≤ *m*, σ_{*i*} is a linear recurring sequence over 𝔽_{*q*} with characteristic polynomial *f*.

 $\left|\mathcal{M}^{(m)}(f)\right| = q^{m \deg(f)}.$

Some Notations

- The expectation E^(m)(f) and the variance Var^(m)(f) of the joint linear complexity of random *m*-fold multisequences from M^(m)(f), which are uniformly distributed over M^(m)(f).
- Counting function N^(m)(f; t): The number of m-fold multisequences from M^(m)(f) with a given joint linear complexity t.

Preliminaries

• For a monic polynomial $f \in \mathbb{F}_q[x]$ with deg $(f) \ge 1$, let

$$\mathcal{C}(f) := \{h \in \mathbb{F}_q[x] : \mathsf{deg}(h) < \mathsf{deg}(f)\},$$

$$R^{(m)}(f) := \{(h_1, \ldots, h_m) \in C(f)^m : \\ gcd(h_1, \ldots, h_m, f) = 1\},$$

$$\Phi_q^{(m)}(f) := \left| R^{(m)}(f)
ight|, ext{ and } \Phi_q^{(m)}(1) := 1.$$

Φ^(m)_q(f) is the number of *m*-fold multisequences S with the joint minimal polynomial f(x).

Fang-Wei Fu (Nankai University)

Preliminaries

Lemma

If $f = r_1^{e_1} r_2^{e_2} \cdots r_k^{e_k}$ is the canonical factorization of f into monic irreducible polynomials over \mathbb{F}_q , then

$$\Phi_q^{(m)}(f) = q^{m\deg(f)} \prod_{i=1}^k \left(1 - q^{-m\deg(r_i)}\right).$$

- Monic polynomial $f \in \mathbb{F}_q[x]$ with $\deg(f) \ge 1$.
- Canonical factorization

$$f=r_1^{e_1}r_2^{e_2}\cdots r_k^{e_k}$$

• For
$$1 \leq i \leq k$$
, let $\alpha_i = q^{m \deg(r_i)}$.

Theorem

Expectation $E^{(m)}(f)$ and Variance $Var^{(m)}(f)$:

$$\mathbf{E}^{(m)}(f) = \deg(f) - \sum_{i=1}^{k} \frac{1 - \alpha_i^{-e_i}}{\alpha_i - 1} \deg(r_i),$$

$$Var^{(m)}(f) = \sum_{i=1}^{k} \left(\frac{\deg(r_i)}{1 - \alpha_i^{-1}}\right)^2 \times [(2e_i + 1)(\alpha_i^{-e_i - 2} - \alpha_i^{-e_i - 1}) - \alpha_i^{-2e_i - 2} + \alpha_i^{-1}].$$

Fang-Wei Fu (Nankai University)

Remark:

- When $f(x) = x^N 1 \in \mathbb{F}_q[x]$ and N is an arbitrary positive integer, This is the case of *m*-fold N-periodic multisequences over \mathbb{F}_q .
- This theorem yields the corresponding results of Meidl-Niederreiter and Fu-Niederreiter-Su by a simpler method.
- These corresponding results are the general formulas for the expectation and the variance of the joint linear complexity of random *m*-fold *N*-periodic multisequences over \mathbb{F}_q .

Cyclotomic coset:

- Let *n* be a positive integer with gcd(n, q) = 1.
- For j ∈ Z_n := {0, 1, ..., n − 1}, the cyclotomic coset C_j of j modulo n relative to powers of q is defined as

$$C_j = \{j, j \cdot q, \ldots, j \cdot q^{l_j-1}\} \pmod{n},$$

where l_j is the least positive integer l satisfying $j \cdot q^l \equiv j \pmod{n}$.

Let $N = p^{v}n$ with $v \ge 0$, $p = \operatorname{char} \mathbb{F}_{q}$, and $\operatorname{gcd}(n, p) = 1$. Let D_1, \ldots, D_h be the different cyclotomic cosets modulo n and let $d_r = |D_r|$, $1 \le r \le h$, be the sizes of these cyclotomic cosets, respectively.

Meidl-Niederreiter 2003
 The expectation E_N^(m) of the joint linear complexity of m random N-periodic sequences with terms in F_q is given by

$$E_N^{(m)} = N - \sum_{r=1}^h \frac{d_r a_r (1 - a_r^{p^v})}{1 - a_r},$$

where $a_r = q^{-d_r m}$.

• Fu-Niederreiter-Su 2005

The variance $V_N^{(m)}$ of the joint linear complexity of m random N-periodic sequences with terms in \mathbb{F}_q is given by

$$V_N^{(m)} = \sum_{r=1}^h d_r^2 \cdot rac{(2p^
u+1)(a_r^{p^
u+2}-a_r^{p^
u+1})-a_r^{2p^
u+2}+a_r}{(1-a_r)^2},$$

where $a_r = q^{-d_r m}$.

Some Examples:

•
$$N = p^{\nu}$$
, $p = \operatorname{char} \mathbb{F}_q$:

$$E_N^{(m)}=N-rac{1}{q^m-1}\left(1-rac{1}{q^{mN}}
ight),$$

$$V_N^{(m)} = rac{(q^m + q^{-Nm})(1 - q^{-Nm})}{(q^m - 1)^2} - rac{2q^{-Nm}}{q^m - 1}N.$$

Fang-Wei Fu (Nankai University)

 N is a prime different from p: Let d be the multiplicative order of q in the prime field F_N.

$$E_N^{(m)}=N-rac{N-1}{q^{dm}}-rac{1}{q^m},$$

$$V_{\sf N}^{(m)}=q^{-m}-q^{-2m}+({\sf N}-1)d(1-q^{-dm})q^{-dm}.$$

•
$$N = q^k - 1$$
 and k is a prime:
 $E_N^{(m)} = N - (q - 1)q^{-m} - (q^k - q)q^{-km},$
 $V_N^{(m)} = (q - 1)q^{-m}(1 - q^{-m}) + k(q^k - q)q^{-km}(1 - q^{-km}).$

Fang-Wei Fu (Nankai University)

Joint Linear Complexity

Feb 2011 NTU 22 / 44

Reference Papers

- W. Meidl, H. Niederreiter, On the expected value of the linear complexity and the *k*-error linear complexity of periodic sequences, IEEE Trans. Inform. Theory 48 (2002) 2817–2825.
- W. Meidl, H. Niederreiter, The expected value of the joint linear complexity of periodic multisequences, J. Complexity 19 (2003) 61–72.
- F.-W. Fu, H. Niederreiter, M. Su, The expectation and variance of the joint linear complexity of random periodic multisequences, J. Complexity 21 (2005) 804–822.

Counting Function

Theorem

Counting function $\mathcal{N}^{(m)}(f;t)$ where $t \leq \deg(f)$:

$$\mathcal{N}^{(m)}(f;t) = \sum_{\substack{d \mid f \\ \deg(d) = t}} \Phi_q^{(m)}(d),$$

where the summation is over all monic polynomials $d \in \mathbb{F}_q[x]$ of degree t and dividing f.

Fang-Wei Fu (Nankai University)

Joint Linear Complexity

Counting Function

- We determine closed-form expressions for $\mathcal{N}^{(m)}(f; \deg(f))$, $\mathcal{N}^{(m)}(f; \deg(f) 1)$, and $\mathcal{N}^{(m)}(f; \deg(f) 2)$.
- We also give tight upper and lower bounds on the counting function $\mathcal{N}^{(m)}(f;t)$ in general.
- We give concrete examples determining the counting functions in closed form in some special cases.

Generating polynomial G^(m)(f; z) for the distribution of joint linear complexities of m-fold multisequences from M^(m)(f):

$$\mathcal{G}^{(m)}(f;z):=\sum_{t\geq 0}\mathcal{N}^{(m)}(f;t)z^t.$$

 We now determine G^(m)(f; z) as a product of certain polynomials in z depending on the canonical factorization of f into monic irreducibles over F_q.

Theorem

If $f = f_1 f_2$, where $f_1, f_2 \in \mathbb{F}_q[x]$ are monic polynomials with $\deg(f_1), \deg(f_2) \ge 1$, and $\gcd(f_1, f_2) = 1$, then

$$\mathcal{G}^{(m)}(f;z) = \mathcal{G}^{(m)}(f_1;z)\mathcal{G}^{(m)}(f_2;z).$$

Fang-Wei Fu (Nankai University)

Joint Linear Complexity

Theorem

If $f = r_1^{e_1} r_2^{e_2} \cdots r_k^{e_k}$ is the canonical factorization of f into monic irreducibles over \mathbb{F}_q , then

$$\mathcal{G}^{(m)}(f;z) = \prod_{j=1}^{k} \left(1 + (1 - \alpha_j^{-1}) \frac{\left(\alpha_j z^{\deg(r_j)}\right)^{e_j + 1} - \alpha_j z^{\deg(r_j)}}{\alpha_j z^{\deg(r_j)} - 1} \right),$$

where $\alpha_j = q^{m \deg(r_j)}$ for $1 \le j \le k$.

Fang-Wei Fu (Nankai University)

 For N ≥ 1, recall that the set of m-fold N-periodic multisequences over 𝔽_q is the same as the set M^(m)(f), where

$$f(x) = x^N - 1 \in \mathbb{F}_q[x].$$

- $n \ge 1$ is an integer with gcd(n, q) = 1.
- Euler totient function φ(ℓ): The number of nonnegative integers less than ℓ and coprime to ℓ.
- For each positive integer d dividing n, let H_q(d) be the multiplicative order of q modulo d, i.e., the least positive integer h such that q^h ≡ 1 mod d.

Theorem

Let $m, N \ge 1$ be integers and p be the characteristic of \mathbb{F}_q . Let $n \ge 1$ and $\nu \ge 0$ be the integers such that $N = p^{\nu}n$ and gcd(n, p) = 1. Assume that $f(x) = x^N - 1 \in \mathbb{F}_q[x]$. Then we have

$$\mathcal{G}^{(m)}(f;z) =$$

$$\prod_{d|n} \left(1 + \left(1 - q^{-mH_q(d)} \right) \frac{\left(q^{mH_q(d)} z^{H_q(d)} \right)^{p^{\nu} + 1} - q^{mH_q(d)} z^{H_q(d)}}{q^{mH_q(d)} z^{H_q(d)} - 1} \right)^{\phi(d)/H_q(d)}$$

Fang-Wei Fu (Nankai University)

Remark:

- The counting function $\mathcal{N}^{(m)}(f;t)$ is the coefficient of the term z^t of the generating polynomial $\mathcal{G}^{(m)}(f;z)$.
- These two theorems determine $\mathcal{G}^{(m)}(f;z)$ as a product of certain polynomials in z.
- However, even for $f(x) = x^N 1$, i.e., the periodic case, it is difficult in general to obtain the coefficient of the term z^t from the product in the above theorem.

Publication

Fang-Wei Fu, H. Niederreiter, and F. Özbudak, Joint linear complexity of multisequences consisting of linear recurring sequences, Cryptography and Communications, vol.1, no.1, pp. 3-29, 2009.

- Let *s* be an arbitrary positive integer.
- Let m_1, m_2, \ldots, m_s be further arbitrarily chosen positive integers.
- Let $f_1, f_2, \ldots, f_s \in \mathbb{F}_q[x]$ be monic polynomials of positive degree.

• Let
$$\mathcal{M}^{(m_1,m_2,...,m_s)}(f_1,f_2,\ldots,f_s)$$
 be the set of $(m_1+m_2+\cdots+m_s)$ -fold multisequences

$$\mathbf{S} = \begin{pmatrix} \sigma_{1,1}, \sigma_{1,2}, \dots, \sigma_{1,m_1}, \\ \sigma_{2,1}, \sigma_{2,2}, \dots, \sigma_{2,m_2}, \\ \dots \\ \sigma_{s,1}, \sigma_{s,2}, \dots, \sigma_{s,m_s} \end{pmatrix}$$

such that for each $1 \le i \le s$ and $1 \le j \le m_i$, $\sigma_{i,j}$ is a linear recurring sequence over \mathbb{F}_q with characteristic polynomial f_i .

Fang-Wei Fu (Nankai University)

 Expectation E^(m1,m2,...,ms)(f₁, f₂, ..., f_s) and Variance Var^(m1,m2,...,ms)(f₁, f₂, ..., f_s) of the joint linear complexity of random (m₁ + m₂ + ··· + m_s)-fold multisequences from M^(m1,m2,...,ms)(f₁, f₂, ..., f_s).

 Counting function N^(m₁,m₂,...,m_s)(f₁, f₂, ..., f_s; t) of (m₁ + m₂ + ··· + m_s)-fold multisequences from M^(m₁,m₂,...,m_s)(f₁, f₂, ..., f_s) with a given joint linear complexity t.

• Generating polynomial $\mathcal{G}^{(m_1,m_2,\ldots,m_s)}(f_1,f_2,\ldots,f_s;z)$:

$$\mathcal{G}^{(m_1,m_2,...,m_s)}(f_1,f_2,...,f_s;z) := \sum_{t\geq 0} \mathcal{N}^{(m_1,m_2,...,m_s)}(f_1,f_2,...,f_s;t)z^t.$$

Publication

Fang-Wei Fu, H. Niederreiter, and F. Özbudak, Joint linear complexity of arbitrary multisequences consisting of linear recurring sequences, Finite Fields and Their Applications, vol.15, no.4, pp.475-496, 2009.

Special case: f_1, f_2, \ldots, f_s are pairwise coprime.

Theorem

$$E^{(m_1,m_2,\ldots,m_s)}(f_1,f_2,\ldots,f_s) = \sum_{i=1}^{s} E^{(m_i)}(f_i),$$

$$\operatorname{Var}^{(m_1,m_2,\ldots,m_s)}(f_1,f_2,\ldots,f_s) = \sum_{i=1}^s \operatorname{Var}^{(m_i)}(f_i).$$

Here $E^{(m_i)}(f_i)$ and $Var^{(m_i)}(f_i)$ can be computed using previous theorems.

Fang-Wei Fu (Nankai University)

Joint Linear Complexity

Theorem

Counting function

$$\mathcal{N}^{(m_1,m_2,...,m_s)}(f_1,f_2,...,f_s;t) = \ \sum_{i_1,i_2,...,i_s} \mathcal{N}^{(m_1)}(f_1;i_1) \mathcal{N}^{(m_2)}(f_2;i_2) \cdots \mathcal{N}^{(m_s)}(f_s;i_s),$$

where the summation is over all nonnegative integers i_1, i_2, \ldots, i_s with $i_1 + i_2 + \cdots + i_s = t$.

Theorem

Generating polynomial

$$\mathcal{G}^{(m_1,m_2,\ldots,m_s)}(f_1,f_2,\ldots,f_s;z) = \prod_{i=1}^s \mathcal{G}^{(m_i)}(f_i;z).$$

Fang-Wei Fu (Nankai University)

Joint Linear Complexity

Feb 2011 NTU 42 / 44

If $m_1 = m_2 = \cdots = m_s$, then we can completely reduce the consideration to the case s = 1.

Corollary Let $f := f_1 f_2 \cdots f_s \in \mathbb{F}_q[x]$. Then we have $\mathcal{N}^{(m,m,\dots,m)}(f_1, f_2, \dots, f_s; t) = \mathcal{N}^{(m)}(f; t).$

Thank you for your attention!

Fang-Wei Fu (Nankai University)

Joint Linear Complexity

Feb 2011 NTU 44 / 44