Factoring Polynomials over Finite Fields

Enver Ozdemir

(1) \mathbb{F}_{p}, p is an odd prime.
(2) $f(x) \in \mathbb{F}_{p}[x]$
(3) The Problem: Find $f_{i}(x) \in \mathbb{F}_{p}[x], f(x)=f_{1}(x) \ldots f_{n}(x)$, $f_{i}(x)$ irreducible and coprime.
(1) \mathbb{F}_{p}, p is an odd prime.
(2) $f(x) \in \mathbb{F}_{p}[x]$
(3) The Problem: Find $f_{i}(x) \in \mathbb{F}_{p}[x], f(x)=f_{1}(x) \ldots f_{n}(x)$, $f_{i}(x)$ irreducible and coprime.
(1) \mathbb{F}_{p}, p is an odd prime.
(2) $f(x) \in \mathbb{F}_{p}[x]$
(3) The Problem: Find $f_{i}(x) \in \mathbb{F}_{p}[x], f(x)=f_{1}(x) \ldots f_{n}(x)$, $f_{i}(x)$ irreducible and coprime.
(1) Berlekamp and Cantor-Zassenhaus (PARI etc.)
(2) Berlekamp: Find $h(x) \in \mathbb{F}_{p}[x], h^{D}(x) \equiv h(x)(\bmod f(x))$
(3) $\operatorname{gcd}(h(x)-t, f(x))$
(4) Cantor-Zassenhaus: $\operatorname{gcd}\left(h(x)^{\left(p^{d}-1\right) / 2}-1, f(x)\right)$ each irreducible factor of $f(x)$ is of degree n.
(6) probabilistic, $\sim 1 / 2$ chance for $h(x)$
(1) Berlekamp and Cantor-Zassenhaus (PARI etc.)
(2) Berlekamp: Find $h(x) \in \mathbb{F}_{p}[x], h^{\mathcal{P}}(x) \equiv h(x)(\bmod f(x))$
(3) $\operatorname{gcd}(h(x)-t, f(x))$
(a) Cantor-Zassenhaus: $\operatorname{gcd}\left(h(x)^{\left(p^{d}-1\right) / 2}-1, f(x)\right)$ each irreducible factor of $f(x)$ is of degree n.
(6) probabilistic, $\sim 1 / 2$ chance for $h(x)$
(1) Berlekamp and Cantor-Zassenhaus (PARI etc.)
(2) Berlekamp: Find $h(x) \in \mathbb{F}_{p}[x], h^{P}(x) \equiv h(x)(\bmod f(x))$
(3) $\operatorname{gcd}(h(x)-t, f(x))$
(4) Cantor-Zassenhaus: $\operatorname{gcd}\left(h(x)^{\left(p^{d}-1\right) / 2}-1, f(x)\right)$ each irreducible factor of $f(x)$ is of degree n.
(1) Berlekamp and Cantor-Zassenhaus (PARI etc.)
(2) Berlekamp: Find $h(x) \in \mathbb{F}_{p}[x], h^{P}(x) \equiv h(x)(\bmod f(x))$
(3) $\operatorname{gcd}(h(x)-t, f(x))$
(4) Cantor-Zassenhaus: $\operatorname{gcd}\left(h(x)^{\left(p^{d}-1\right) / 2}-1, f(x)\right)$ each irreducible factor of $f(x)$ is of degree n.
(5) probabilistic, $\sim 1 / 2$ chance for $h(x)$
(1) k is a finite field of characteristic different from 2.
(2) $H: y^{2}=f(x)$
(3) $f(x)$ is a monic polynomial with simple roots and $\operatorname{deg}(f(x))=2 g+1$
(1) k is a finite field of characteristic different from 2.
(2) $H: y^{2}=f(x)$
(3) $f(x)$ is a monic polynomial with simple roots and $\operatorname{deg}(f(x))=2 g+1$
(1) k is a finite field of characteristic different from 2.
(2) $H: y^{2}=f(x)$
(3) $f(x)$ is a monic polynomial with simple roots and $\operatorname{deg}(f(x))=2 g+1$
(1) $\operatorname{Jac}(H)=\operatorname{Pic}^{\circ}(H)$
(2) $\operatorname{Pic}(H)=$ the group of all isomorphism classes of invertible $k[x, y] /\left(y^{2}-f(x)\right.$-modules.
(3) $D \in J a c(H)$
(4) the Mumford Representation: Unique pair of polynomials $(u(x), v(x))$ satisfying the followings

- $u(x)$ is monic
- $\operatorname{deg} v(x)<\operatorname{deg} u(x) \leq g$
- $f(x)-v(x)^{2}$ is a multiple of $u(x)$
(Cantor's Algorithm: Computing in Jac(H), only polynomial arithmetics
(1) $\operatorname{Jac}(H)=\operatorname{Pic}^{\circ}(H)$
(2) $\operatorname{Pic}(H)=$ the group of all isomorphism classes of invertible $k[x, y] /\left(y^{2}-f(x)\right.$-modules.
(3) $D \in \operatorname{Jac}(H)$
(4) the Mumford Representation: Unique pair of polynomials $(u(x), v(x))$ satisfying the followings
- $u(x)$ is monic
- $\operatorname{deg} v(x)<\operatorname{degu}(x) \leq g$
- $f(x)-v(x)^{2}$ is a multiple of $u(x)$
(5) Cantor's Algorithm: Computing in Jac(H), only polynomial arithmetics
(1) $\operatorname{Jac}(H)=\operatorname{Pic}^{\circ}(H)$
(2) $\operatorname{Pic}(H)=$ the group of all isomorphism classes of invertible $k[x, y] /\left(y^{2}-f(x)\right.$-modules.
(3) $D \in \operatorname{Jac}(H)$
(4) the Mumford Representation: Unique pair of polynomials ($u(x), v(x)$) satisfying the followings
- $u(x)$ is monic

(5) Cantor's Algorithm: Computing in Jac (H), only polynomial arithmetics
(1) $\operatorname{Jac}(H)=\operatorname{Pic}^{\circ}(H)$
(2) $\operatorname{Pic}(H)=$ the group of all isomorphism classes of invertible $k[x, y] /\left(y^{2}-f(x)\right.$-modules.
(3) $D \in \operatorname{Jac}(H)$
(4) the Mumford Representation: Unique pair of polynomials ($u(x), v(x)$) satisfying the followings
- $u(x)$ is monic

(5) Cantor's Algorithm: Computing in Jac(H), only polynomial arithmetics
(1) $\operatorname{Jac}(H)=\operatorname{Pic}^{\circ}(H)$
(2) $\operatorname{Pic}(H)=$ the group of all isomorphism classes of invertible $k[x, y] /\left(y^{2}-f(x)\right.$-modules.
(3) $D \in \operatorname{Jac}(H)$
(4) the Mumford Representation: Unique pair of polynomials ($u(x), v(x)$) satisfying the followings
- $u(x)$ is monic
- $\operatorname{deg} v(x)<\operatorname{deg} u(x) \leq g$
(5) Cantor's Algorithm: Computing in Jac(H), only polynomial arithmetics
(1) $\operatorname{Jac}(H)=\operatorname{Pic}^{\circ}(H)$
(2) $\operatorname{Pic}(H)=$ the group of all isomorphism classes of invertible $k[x, y] /\left(y^{2}-f(x)\right.$-modules.
(3) $D \in \operatorname{Jac}(H)$
(4) the Mumford Representation: Unique pair of polynomials ($u(x), v(x)$) satisfying the followings
- $u(x)$ is monic
- $\operatorname{deg} v(x)<\operatorname{deg} u(x) \leq g$
- $f(x)-v(x)^{2}$ is a multiple of $u(x)$
(5) Cantor's Algorithm: Computing in Jac (H), only polynomial arithmetics
(1) $\operatorname{Jac}(H)=\operatorname{Pic}^{\circ}(H)$
(2) $\operatorname{Pic}(H)=$ the group of all isomorphism classes of invertible $k[x, y] /\left(y^{2}-f(x)\right.$-modules.
(3) $D \in \mathrm{Jac}(H)$
(4) the Mumford Representation: Unique pair of polynomials ($u(x), v(x)$) satisfying the followings
- $u(x)$ is monic
- $\operatorname{deg} v(x)<\operatorname{deg} u(x) \leq g$
- $f(x)-v(x)^{2}$ is a multiple of $u(x)$
(5) Cantor's Algorithm: Computing in Jac (H), only polynomial arithmetics
(1) $f(x)$ is square-free and reducible in $k[x]$
(2) $\operatorname{deg} f(x)=2 g+1$
(3) $H: y^{2}=f(x)$ over k
(4) 2-torsion points of $\mathrm{Jac}(H)$:
- $(u(x), 0)$
- $\operatorname{deg} u(x) \leq g$
- $f(x)$ is divisible by $u(x)$
(1) $f(x)$ is square-free and reducible in $k[x]$
(2) $\operatorname{deg} f(x)=2 g+1$
(3) $H: y^{2}=f(x)$ over k
(4) 2-torsion points of $\mathrm{Jac}(H)$:
- $(u(x), 0)$
- $\operatorname{deg} u(x) \leq g$
- $f(x)$ is divisible by $u(x)$
(1) $f(x)$ is square-free and reducible in $k[x]$
(2) $\operatorname{deg} f(x)=2 g+1$
(3) $H: y^{2}=f(x)$ over k
(0) 2-torsion points of Jac(H):
- $(u(x), 0)$
- $\operatorname{deg} u(x) \leq 0$
- $f(x)$ is divisible by $u(x)$
(1) $f(x)$ is square-free and reducible in $k[x]$
(2) $\operatorname{deg} f(x)=2 g+1$
(3) H : $y^{2}=f(x)$ over k
(0) 2-torsion points of $\mathrm{Jac}(H)$:
- $(u(x), 0)$
- $\operatorname{deg} u(x) \leq g$
- $f(x)$ is divisible by $u(x)$
(1) $f(x)$ is square-free and reducible in $k[x]$
(2) $\operatorname{deg} f(x)=2 g+1$
(3) H : $y^{2}=f(x)$ over k
(0) 2-torsion points of $\mathrm{Jac}(H)$:
- $(u(x), 0)$
- $\operatorname{deg} u(x) \leq g$
- $f(x)$ is divisible by $u(x)$

Finding a 2-torsion point in $\mathrm{Jac}(H)$

(1) Find a random D in $\mathrm{Jac}(H)$
(2) Find \#Jac $(H)=2^{e} m,(m, 2)=1$
(3) $2^{i} m(D)$ is a 2-torsion point for some $i<e$ if \# D is even
(4) Two bia problems:

- Finding a random divisor class D in Jac(H)
- Finding the order of $\mathrm{Jac}(H)$

Finding a 2-torsion point in $\mathrm{Jac}(H)$

(1) Find a random D in $\mathrm{Jac}(H)$
(2) Find $\# \operatorname{Jac}(H)=2^{e} m,(m, 2)=1$
(3) $2^{i} m(D)$ is a 2-torsion point for some $i<e$ if \# D is even
(4) Two big problems:

- Finding a random divisor class D in Jac(H)
- Finding the order of $\mathrm{Jac}(H)$

Finding a 2-torsion point in $\mathrm{Jac}(H)$

(1) Find a random D in $\operatorname{Jac}(H)$
(2) Find $\# \operatorname{Jac}(H)=2^{e} m,(m, 2)=1$
(3) $2^{i} m(D)$ is a 2-torsion point for some $i<e$ if \# D is even Two big problems:

- Finding a random divisor class D in $\operatorname{Jac}(H)$
- Finding the order of $\mathrm{Jac}(H)$

Finding a 2-torsion point in $\mathrm{Jac}(H)$

(1) Find a random D in $\mathrm{Jac}(H)$
(2) Find $\# \operatorname{Jac}(H)=2^{e} m,(m, 2)=1$
(3) $2^{i} m(D)$ is a 2-torsion point for some $i<e$ if \# D is even
(4) Two big problems:

- Finding a random divisor class D in $\mathrm{Jac}(H)$
- Finding the order of $\mathrm{Jac}(H)$
(1) $H: y^{2}=f(x), f(x)$ has repeated roots and $\operatorname{deg} f(x)=2 g+1$
(2) Singular points: $(a, 0)$ where a is a root of $f(x)$ with multiplicity> 1
(3) the Mumford Representation: any $D \in \operatorname{Jac}(H)$ is uniquely represented by a pair of polynomials $(u(x), v(x))$ satisfying the followings:
- $u(x)$ is monic
- $\operatorname{deg} v(x)<\operatorname{deg} u(x) \leq g$
- $f(x)-v(x)^{2}$ is divisible by $u(x)$
- if both $u(x)$ and $v(x)$ are divisible by $(x-a)$ for a singular point $(a, 0)$ then $\left(f-v(x)^{2}\right) / u(x)$ is not divisible by $(x-a)$
(1) $H: y^{2}=f(x), f(x)$ has repeated roots and $\operatorname{deg} f(x)=2 g+1$
(2) Singular points: $(a, 0)$ where a is a root of $f(x)$ with multiplicity> 1
(3) the Mumford Representation: any $D \in \operatorname{Jac}(H)$ is uniquely represented by a pair of polynomials $(u(x), v(x))$ satisfying the followings:
- $u(x)$ is monic
- $\operatorname{deg} v(x)<\operatorname{deg} u(x) \leq g$
- $f(x)-v(x)^{2}$ is divisible by $u(x)$
- if both $u(x)$ and $v(x)$ are divisible by $(x-a)$ for a singular point $(a, 0)$ then $\left(f-v(x)^{2}\right) / u^{\prime}(x)$ is not divisible by $(x-a)$
(1) $H: y^{2}=f(x), f(x)$ has repeated roots and $\operatorname{deg} f(x)=2 g+1$
(2) Singular points: $(a, 0)$ where a is a root of $f(x)$ with multiplicity> 1
(3) the Mumford Representation: any $D \in \operatorname{Jac}(H)$ is uniquely represented by a pair of polynomials $(u(x), v(x))$ satisfying the followings:
- $u(x)$ is monic
- $\operatorname{deg} v(x)<\operatorname{deg} u(x) \leq g$
- $f(x)-v(x)^{2}$ is divisible by $u(x)$
- if both $u(x)$ and $v(x)$ are divisible by $(x-a)$ for a singular
point $(a, 0)$ then $\left(f-v(x)^{2}\right) / u(x)$ is not divisible by $(x-a)$
(1) $H: y^{2}=f(x), f(x)$ has repeated roots and $\operatorname{deg} f(x)=2 g+1$
(2) Singular points: $(a, 0)$ where a is a root of $f(x)$ with multiplicity> 1
(3) the Mumford Representation: any $D \in \operatorname{Jac}(H)$ is uniquely represented by a pair of polynomials $(u(x), v(x))$ satisfying the followings:
- $u(x)$ is monic
- $\operatorname{deg} v(x)<\operatorname{deg} u(x) \leq g$
- $f(x)-v(x)^{2}$ is divisible by $u(x)$
- if both $u(x)$ and $v(x)$ are divisible by $(x-a)$ for a singular
point $(a, 0)$ then $\left(f-v(x)^{2}\right) / u(x)$ is not divisible by $(x-a)$
(1) $H: y^{2}=f(x), f(x)$ has repeated roots and $\operatorname{deg} f(x)=2 g+1$
(2) Singular points: $(a, 0)$ where a is a root of $f(x)$ with multiplicity> 1
(3) the Mumford Representation: any $D \in \operatorname{Jac}(H)$ is uniquely represented by a pair of polynomials $(u(x), v(x))$ satisfying the followings:
- $u(x)$ is monic
- $\operatorname{deg} v(x)<\operatorname{deg} u(x) \leq g$
- $f(x)-v(x)^{2}$ is divisible by $u(x)$
- if both $u(x)$ and $v(x)$ are divisible by $(x-a)$ for a singular point $(a, 0)$ then $\left(f-v(x)^{2}\right) / u(x)$ is not divisible by $(x-a)$
(1) $H: y^{2}=f(x), f(x)$ has repeated roots and $\operatorname{deg} f(x)=2 g+1$
(2) Singular points: $(a, 0)$ where a is a root of $f(x)$ with multiplicity> 1
(3) the Mumford Representation: any $D \in \operatorname{Jac}(H)$ is uniquely represented by a pair of polynomials $(u(x), v(x))$ satisfying the followings:
- $u(x)$ is monic
- $\operatorname{deg} v(x)<\operatorname{deg} u(x) \leq g$
- $f(x)-v(x)^{2}$ is divisible by $u(x)$
- if both $u(x)$ and $v(x)$ are divisible by $(x-a)$ for a singular point $(a, 0)$ then $\left(f-v(x)^{2}\right) / u(x)$ is not divisible by $(x-a)$
(1) $k=\mathbb{F}_{p}, p$
(2) $f(x)=f_{1}(x) \cdots f_{n}(x), \operatorname{deg} f_{i}(x)=d_{i}$
(3) $H: y^{2}=x f(x)^{2}$
(4) $\operatorname{Jac}(H)=\mathbb{G}_{1} \oplus \cdots \oplus \mathbb{G}_{n}$
(1) $k=\mathbb{F}_{p}, p$
(2) $f(x)=f_{1}(x) \cdots f_{n}(x), \operatorname{deg} f_{i}(x)=d_{i}$
(1) $k=\mathbb{F}_{p}, p$
(2) $f(x)=f_{1}(x) \cdots f_{n}(x), \operatorname{deg} f_{i}(x)=d_{i}$
(3) $H: y^{2}=x f(x)^{2}$
(a) $\operatorname{Jac}(H)=\mathbb{G}_{1} \oplus \cdots \oplus \mathbb{G}_{n}$
(1) $k=\mathbb{F}_{p}, p$
(2) $f(x)=f_{1}(x) \cdots f_{n}(x), \operatorname{deg} f_{i}(x)=d_{i}$
(3) $H: y^{2}=x f(x)^{2}$
(9) $\operatorname{Jac}(H)=\mathbb{G}_{1} \oplus \cdots \oplus \mathbb{G}_{n}$
(1) Any $\widetilde{D}_{\tilde{f}} \in \mathrm{Jac}(H)$ is uniquely represented by a pair of the form $\left[\tilde{f}(x)^{2}, \breve{h}(x) \widetilde{f}(x)\right]$ such that $\operatorname{deg}(\widetilde{h}(x))<\operatorname{deg}(\tilde{f}(x))$ and $\tilde{f}(x)$ divides $f(x)$

(1) Any $\widetilde{D}_{\tilde{\sim}} \in \operatorname{Jac}(H)$ is uniquely represented by a pair of the form $\left[\tilde{f}(x)^{2}, \breve{h}(x) \tilde{f}(x)\right]$ such that $\operatorname{deg}(\widetilde{h}(x))<\operatorname{deg}(\tilde{f}(x))$ and $f(x)$ divides $f(x)$
(2) $D_{i}=\left[f_{i}(x)^{2}, h_{i}(x) f_{i}(x)\right] \in \mathbb{G}_{i}, \operatorname{deg} h_{i}(x)<\operatorname{deg}\left(d_{i}\right)$

(1) Any $\tilde{D} \in \operatorname{Jac}(H)$ is uniquely represented by a pair of the form $\left[\tilde{f}(x)^{2}, \widehat{h}(x) \tilde{f}(x)\right]$ such that $\operatorname{deg}(\widetilde{h}(x))<\operatorname{deg}(\tilde{f}(x))$ and $f(x)$ divides $f(x)$
(2) $D_{i}=\left[f_{i}(x)^{2}, h_{i}(x) f_{i}(x)\right] \in \mathbb{G}_{i}$, deg $h_{i}(x)<\operatorname{deg}\left(d_{i}\right)$
(3) $\# D_{i}$ divides either $p^{d_{i}}+1$ or $p^{d_{i}}-1$

(1) Any $\tilde{D}_{\tilde{f}} \in \operatorname{Jac}(H)$ is uniquely represented by a pair of the form $\left[\tilde{f}(x)^{2}, \breve{h}(x) \tilde{f}(x)\right]$ such that $\operatorname{deg}(\widetilde{h}(x))<\operatorname{deg}(\tilde{f}(x))$ and $f(x)$ divides $f(x)$
(2) $D_{i}=\left[f_{i}(x)^{2}, h_{i}(x) f_{i}(x)\right] \in \mathbb{G}_{i}, \operatorname{deg} h_{i}(x)<\operatorname{deg}\left(d_{i}\right)$
(3) $\# D_{i}$ divides either $p^{d_{i}}+1$ or $p^{d_{i}}-1$
(1) $D=\left[f(x)^{2}, h(x) f(x)\right]=D_{1}+\cdots+D_{n}$ such that $D_{i} \in \mathbb{G}_{i}$
(1) Any $\tilde{D} \in \operatorname{Jac}(H)$ is uniquely represented by a pair of the form $\left[\widetilde{f}(x)^{2}, \breve{h}(x) \widetilde{f}(x)\right]$ such that $\operatorname{deg}(\widetilde{h}(x))<\operatorname{deg}(\tilde{f}(x))$ and $\tilde{f}(x)$ divides $f(x)$
(2) $D_{i}=\left[f_{i}(x)^{2}, h_{i}(x) f_{i}(x)\right] \in \mathbb{G}_{i}, \operatorname{deg} h_{i}(x)<\operatorname{deg}\left(d_{i}\right)$
(3) $\# D_{i}$ divides either $p^{d_{i}}+1$ or $p^{d_{i}}-1$
(1) $D=\left[f(x)^{2}, h(x) f(x)\right]=D_{1}+\cdots+D_{n}$ such that $D_{i} \in \mathbb{G}_{i}$
(0) if a power D annihilates some of D_{i} we get a non-trivial factor of $f(x)$

(9) the probability of getting a non-trivial factor is at least.1/2
(1) Any $\widetilde{D}_{\tilde{f}} \in \operatorname{Jac}(H)$ is uniquely represented by a pair of the form $\left[\widetilde{f}(x)^{2}, \widehat{h}(x) \widetilde{f}(x)\right]$ such that $\operatorname{deg}(\widetilde{h}(x))<\operatorname{deg}(\widetilde{f}(x))$ and $\tilde{f}(x)$ divides $f(x)$
(2) $D_{i}=\left[f_{i}(x)^{2}, h_{i}(x) f_{i}(x)\right] \in \mathbb{G}_{i}, \operatorname{deg} h_{i}(x)<\operatorname{deg}\left(d_{i}\right)$
(3) $\# D_{i}$ divides either $p^{d_{i}}+1$ or $p^{d_{i}}-1$
(9) $D=\left[f(x)^{2}, h(x) f(x)\right]=D_{1}+\cdots+D_{n}$ such that $D_{i} \in \mathbb{G}_{i}$
(0) if a power D annihilates some of D_{i} we get a non-trivial factor of $f(x)$
(0) $D=D_{1}+\cdots+D_{s} \cdots+D_{r}=$
$\left[f_{1}^{2}, h_{1} g_{1}\right]+\cdots+\left[f_{s}^{2}+h_{s} f_{s}\right]+\cdots+\left[f_{r}^{2}, h_{r} f_{r}\right]$
$m D=\left[f_{1}^{2}, \widetilde{h}_{1} g_{1}\right]+\cdots+0+\cdots+\left[f_{r}^{2}, \widetilde{h}_{r} f_{r}\right]=\left[f_{1}^{2} f_{2}^{2}\right.$.
$\left(p^{j} \pm 1\right) D$ for $j=1, \ldots, d=\max \left\{d_{i}\right\}$, gives a non-trivial
factor or $[1,0]$
(- the probability of getting a non-trivial factor is at least $1 / 2$
(1) Any $\widetilde{D}_{\tilde{f}} \in \operatorname{Jac}(H)$ is uniquely represented by a pair of the form $\left[\widetilde{f}(x)^{2}, \breve{h}(x) \widetilde{f}(x)\right]$ such that $\operatorname{deg}(\widetilde{h}(x))<\operatorname{deg}(\widetilde{f}(x))$ and $\tilde{f}(x)$ divides $f(x)$
(2) $D_{i}=\left[f_{i}(x)^{2}, h_{i}(x) f_{i}(x)\right] \in \mathbb{G}_{i}, \operatorname{deg} h_{i}(x)<\operatorname{deg}\left(d_{i}\right)$
(3) $\# D_{i}$ divides either $p^{d_{i}}+1$ or $p^{d_{i}}-1$
(9) $D=\left[f(x)^{2}, h(x) f(x)\right]=D_{1}+\cdots+D_{n}$ such that $D_{i} \in \mathbb{G}_{i}$
(0) if a power D annihilates some of D_{i} we get a non-trivial factor of $f(x)$
(0) $D=D_{1}+\cdots+D_{s} \cdots+D_{r}=$
$\left[f_{1}^{2}, h_{1} g_{1}\right]+\cdots+\left[f_{s}^{2}+h_{s} f_{s}\right]+\cdots+\left[f_{r}^{2}, h_{r} f_{r}\right]$
(1) $m D_{s}=0$,
$m D=\left[f_{1}^{2}, \widetilde{h}_{1} g_{1}\right]+\cdots+0+\cdots+\left[f_{r}^{2}, \widetilde{h}_{r} f_{r}\right]=\left[f_{1}^{2} f_{2}^{2} \cdots f_{r}^{2}, \cdots\right]$
(1) Any $\widetilde{D}_{\tilde{N}} \in \operatorname{Jac}(H)$ is uniquely represented by a pair of the form $\left[\widetilde{f}(x)^{2}, \breve{h}(x) \widetilde{f}(x)\right]$ such that $\operatorname{deg}(\widetilde{h}(x))<\operatorname{deg}(\widetilde{f}(x))$ and $\tilde{f}(x)$ divides $f(x)$
(2) $D_{i}=\left[f_{i}(x)^{2}, h_{i}(x) f_{i}(x)\right] \in \mathbb{G}_{i}, \operatorname{deg} h_{i}(x)<\operatorname{deg}\left(d_{i}\right)$
(3) $\# D_{i}$ divides either $p^{d_{i}}+1$ or $p^{d_{i}}-1$
(1) $D=\left[f(x)^{2}, h(x) f(x)\right]=D_{1}+\cdots+D_{n}$ such that $D_{i} \in \mathbb{G}_{i}$
(0) if a power D annihilates some of D_{i} we get a non-trivial factor of $f(x)$
(6) $D=D_{1}+\cdots+D_{s} \cdots+D_{r}=$
$\left[f_{1}^{2}, h_{1} g_{1}\right]+\cdots+\left[f_{s}^{2}+h_{s} f_{s}\right]+\cdots+\left[f_{r}^{2}, h_{r} f_{r}\right]$
(1) $m D_{s}=0$, $m D=\left[f_{1}^{2}, \widetilde{h}_{1} g_{1}\right]+\cdots+0+\cdots+\left[f_{r}^{2}, \widetilde{h}_{r} f_{r}\right]=\left[f_{1}^{2} f_{2}^{2} \cdots f_{r}^{2}, \cdots\right]$
(3) $\left(p^{j} \pm 1\right) D$ for $j=1, \ldots, \widetilde{d}=\max \left\{d_{i}\right\}$, gives a non-trivial factor or $[1,0]$
(1) Any $\tilde{D}_{\tilde{f}} \in \operatorname{Jac}(H)$ is uniquely represented by a pair of the form $\left[\widetilde{f}(x)^{2}, \breve{h}(x) \widetilde{f}(x)\right]$ such that $\operatorname{deg}(\widetilde{h}(x))<\operatorname{deg}(\widetilde{f}(x))$ and $\tilde{f}(x)$ divides $f(x)$
(2) $D_{i}=\left[f_{i}(x)^{2}, h_{i}(x) f_{i}(x)\right] \in \mathbb{G}_{i}, \operatorname{deg} h_{i}(x)<\operatorname{deg}\left(d_{i}\right)$
(3) $\# D_{i}$ divides either $p^{d_{i}}+1$ or $p^{d_{i}}-1$
(1) $D=\left[f(x)^{2}, h(x) f(x)\right]=D_{1}+\cdots+D_{n}$ such that $D_{i} \in \mathbb{G}_{i}$
(0) if a power D annihilates some of D_{i} we get a non-trivial factor of $f(x)$
(6) $D=D_{1}+\cdots+D_{s} \cdots+D_{r}=$
$\left[f_{1}^{2}, h_{1} g_{1}\right]+\cdots+\left[f_{s}^{2}+h_{s} f_{s}\right]+\cdots+\left[f_{r}^{2}, h_{r} f_{r}\right]$
(1) $m D_{s}=0$, $m D=\left[f_{1}^{2}, \widetilde{h}_{1} g_{1}\right]+\cdots+0+\cdots+\left[f_{r}^{2}, \widetilde{h}_{r} f_{r}\right]=\left[f_{1}^{2} f_{2}^{2} \cdots f_{r}^{2}, \cdots\right]$
(3) $\left(p^{j} \pm 1\right) D$ for $j=1, \ldots, \widetilde{d}=\max \left\{d_{i}\right\}$, gives a non-trivial factor or [1,0]
(2) the probability of getting a non-trivial factor is at least $1 / 2$
(1) Suppose $\left(p^{r} \pm 1\right) D=[1,0]$ and $p^{r} \pm 1=2^{e} m,(m, 2)=1$
(2) if $\# D$ is even then $2^{s} m(D)$ must be a 2-torsion point for $s=0$,
(3) 2-torsion points $[x, 0],\left[x f(x)^{2}, 0\right],\left[f(x)^{2}, 0\right]$ such that $f(x)$ is a non-trivial factor of $f(x)$
(4) the probability of finding a non-trivial factor of $f(x)$ in a single trial is at least $3 / 4$
(5) this probability is close to $1 / 2$ for C-Z and Berlekamp's algorithms
(6) $\mathcal{O}\left(\widetilde{d}^{3} / g p\right), \widetilde{d}=\max \left\{d_{i}\right\}$
(1) Suppose $\left(p^{r} \pm 1\right) D=[1,0]$ and $p^{r} \pm 1=2^{e} m,(m, 2)=1$
(2) if $\# D$ is even then $2^{s} m(D)$ must be a 2 -torsion point for $s=0, \ldots, e$
(3) 2-torsion points $[x, 0],\left[x f(x)^{2}, 0\right],\left[f(x)^{2}, 0\right]$ such that $f(x)$ is a non-trivial factor of $f(x)$
(9) the probability of finding a non-trivial factor of $f(x)$ in a single trial is at least 3/4
(0) this probability is close to $1 / 2$ for C-Z and Berlekamp's algorithms
(0) $\mathcal{O}\left(\widetilde{d}^{3} \lg p\right), \widetilde{d}=\max \{d\}$
(1) Suppose $\left(p^{r} \pm 1\right) D=[1,0]$ and $p^{r} \pm 1=2^{e} m,(m, 2)=1$
(2) if $\# D$ is even then $2^{s} m(D)$ must be a 2 -torsion point for $s=0, \ldots, e$
(3) 2-torsion points $[x, 0],\left[x \tilde{f}(x)^{2}, 0\right],\left[\tilde{f}(x)^{2}, 0\right]$ such that $\tilde{f}(x)$ is a non-trivial factor of $f(x)$
(a) the probability of finding a non-trivial factor of $f(x)$ in a single trial is at least $3 / 4$
(6) this probability is close to $1 / 2$ for C-Z and Berlekamp's algorithms
(i) $\mathcal{O}\left(\tilde{d}^{3} / g p\right), \tilde{d}=\max \left\{d_{i}\right\}$
(1) Suppose $\left(p^{r} \pm 1\right) D=[1,0]$ and $p^{r} \pm 1=2^{e} m,(m, 2)=1$
(2) if $\# D$ is even then $2^{s} m(D)$ must be a 2-torsion point for $s=0, \ldots, e$
(3) 2-torsion points $[x, 0],\left[x \tilde{f}(x)^{2}, 0\right],\left[\tilde{f}(x)^{2}, 0\right]$ such that $\tilde{f}(x)$ is a non-trivial factor of $f(x)$
(0) the probability of finding a non-trivial factor of $f(x)$ in a single trial is at least $3 / 4$
(3) this probability is close to $1 / 2$ for C-Z and Berlekamp's algorithms
(0) $\mathcal{O}\left(\tilde{d}^{3} \lg p\right), \tilde{d}=\max \{d\}$
(1) Suppose $\left(p^{r} \pm 1\right) D=[1,0]$ and $p^{r} \pm 1=2^{e} m,(m, 2)=1$
(2) if $\# D$ is even then $2^{s} m(D)$ must be a 2-torsion point for $s=0, \ldots, e$
(3) 2-torsion points $[x, 0],\left[x \tilde{f}(x)^{2}, 0\right],\left[\tilde{f}(x)^{2}, 0\right]$ such that $\tilde{f}(x)$ is a non-trivial factor of $f(x)$
(9) the probability of finding a non-trivial factor of $f(x)$ in a single trial is at least $3 / 4$
(6) this probability is close to $1 / 2$ for C-Z and Berlekamp's algorithms
(i) $\mathcal{O}\left(d^{3} l g p\right), d=\max \left\{d_{i}\right\}$
(1) Suppose $\left(p^{r} \pm 1\right) D=[1,0]$ and $p^{r} \pm 1=2^{e} m,(m, 2)=1$
(2) if $\# D$ is even then $2^{s} m(D)$ must be a 2-torsion point for $s=0, \ldots, e$
(3) 2-torsion points $[x, 0],\left[x \tilde{f}(x)^{2}, 0\right],\left[\tilde{f}(x)^{2}, 0\right]$ such that $\tilde{f}(x)$ is a non-trivial factor of $f(x)$
(9) the probability of finding a non-trivial factor of $f(x)$ in a single trial is at least $3 / 4$
(0) this probability is close to $1 / 2$ for C-Z and Berlekamp's algorithms
(0) $\mathcal{O}\left(\widetilde{d}^{3} \lg p\right), \widetilde{d}=\max \left\{d_{i}\right\}$

