Differential and Invertibility Properties of BLAKE

Jean-Philippe Aumasson ${ }^{1}$ Jian Guo ${ }^{2}$ Simon Knellwolf ${ }^{1}$ Krystian Matusiewicz ${ }^{3}$ Milli Meier ${ }^{1}$

${ }^{1}$ FHNW, Windisch, Switzerland
${ }^{2}$ Nanyang Technological University, Singapore
${ }^{3}$ Technical University of Denmark, Denmark
18 Jan 2010

Talk Overview

1 Description of BLAKE

2 Results
■ Round-Reduced Near-Collisions

- Impossible Differentials

3 Conclusions

BLAKE Overview

■ One of the 14 second round SHA-3 candiates
■ HAIFA-like construction (narrow pipe)

- Local wide-pipe compression function

■ BLAKE-32: 32-bit word, 512 -bit state, 10 rounds, 256 -bit digest
■ BLAKE-64: 64 -bit word, 1024-bit state, 14 rounds, 512 -bit digest

BLAKE's Permutation

$$
\left(\begin{array}{llll}
v_{0} & v_{1} & v_{2} & v_{3} \\
v_{4} & v_{5} & v_{6} & v_{7} \\
v_{8} & v_{9} & v_{10} & v_{11} \\
v_{12} & v_{13} & v_{14} & v_{15}
\end{array}\right)
$$

1 round = 1 column step followed by 1 diagonal step
Reuse the permutation of ChaCha stream cipher, based on G transform

BLAKE's Permutation

$$
\left(\begin{array}{llll}
v_{0} & v_{1} & v_{2} & v_{3} \\
v_{4} & v_{5} & v_{6} & v_{7} \\
v_{8} & v_{9} & v_{10} & v_{11} \\
v_{12} & v_{13} & v_{14} & v_{15}
\end{array}\right)
$$

1 round = 1 column step followed by 1 diagonal step
Reuse the permutation of ChaCha stream cipher, based on G transform

BLAKE's Permutation

$$
\left(\begin{array}{llll}
v_{0} & v_{1} & v_{2} & v_{3} \\
v_{4} & v_{5} & v_{6} & v_{7} \\
v_{8} & v_{9} & v_{10} & v_{11} \\
v_{12} & v_{13} & v_{14} & v_{15}
\end{array}\right)
$$

1 round = 1 column step followed by 1 diagonal step
Reuse the permutation of ChaCha stream cipher, based on G transform

BLAKE's Permutation

$$
\left(\begin{array}{llll}
v_{0} & v_{1} & v_{2} & v_{3} \\
v_{4} & v_{5} & v_{6} & v_{7} \\
v_{8} & v_{9} & v_{10} & v_{11} \\
v_{12} & v_{13} & v_{14} & v_{15}
\end{array}\right)
$$

1 round = 1 column step followed by 1 diagonal step
Reuse the permutation of ChaCha stream cipher, based on G transform

BLAKE's Permutation

$$
\left(\begin{array}{llll}
v_{0} & v_{1} & v_{2} & v_{3} \\
v_{4} & v_{5} & v_{6} & v_{7} \\
v_{8} & v_{9} & v_{10} & v_{11} \\
v_{12} & v_{13} & v_{14} & v_{15}
\end{array}\right)
$$

1 round = 1 column step followed by 1 diagonal step
Reuse the permutation of ChaCha stream cipher, based on G transform

BLAKE's Permutation

$$
\left(\begin{array}{llll}
v_{0} & v_{1} & v_{2} & v_{3} \\
v_{4} & v_{5} & v_{6} & v_{7} \\
v_{8} & v_{9} & v_{10} & v_{11} \\
v_{12} & v_{13} & v_{14} & v_{15}
\end{array}\right)
$$

1 round = 1 column step followed by 1 diagonal step
Reuse the permutation of ChaCha stream cipher, based on G transform

BLAKE's Permutation

$$
\left(\begin{array}{llll}
v_{0} & v_{1} & v_{2} & v_{3} \\
v_{4} & v_{5} & v_{6} & v_{7} \\
v_{8} & v_{9} & v_{10} & v_{11} \\
v_{12} & v_{13} & v_{14} & v_{15}
\end{array}\right)
$$

1 round = 1 column step followed by 1 diagonal step
Reuse the permutation of ChaCha stream cipher, based on G transform

BLAKE's Permutation

$$
\left(\begin{array}{llll}
v_{0} & v_{1} & v_{2} & v_{3} \\
v_{4} & v_{5} & v_{6} & v_{7} \\
v_{8} & v_{9} & v_{10} & v_{11} \\
v_{12} & v_{13} & v_{14} & v_{15}
\end{array}\right)
$$

1 round = 1 column step followed by 1 diagonal step
Reuse the permutation of ChaCha stream cipher, based on G transform

BLAKE's Permutation

$$
\left(\begin{array}{llll}
v_{0} & v_{1} & v_{2} & v_{3} \\
v_{4} & v_{5} & v_{6} & v_{7} \\
v_{8} & v_{9} & v_{10} & v_{11} \\
v_{12} & v_{13} & v_{14} & v_{15}
\end{array}\right)
$$

1 round = 1 column step followed by 1 diagonal step
Reuse the permutation of ChaCha stream cipher, based on G transform

Linearization for BLAKE-32

- $\Delta=0 \times 88888888$, invariant of ratations by 4

■ Linearization: replace addition by xor
■ No-difference goes through > 7

- 1.5 rounds for fee using message modification

Linearization - linearized G

■ $\Delta=0 x 88888888$, invariant of ratations by 4
\square Linearization: replace addition by xor
■ No-difference goes through > 7
■ 1.5 rounds for fee using message modification

4-Round Near Collisions for BLAKE-32

■ Rounds 6-9
■ Time Complexiy: 2^{42}, with negligible memory

Impossible Differentials

Miss-in-the-Middle: proof by contradiction that $(\alpha \rightarrow \gamma)$ can not occur,

$$
\alpha \xrightarrow{\text { prob. } 1} \beta \neq \delta \stackrel{\text { prob. } 1}{\longleftrightarrow} \gamma
$$

Impossible Differentials

Miss-in-the-Middle:
proof by contradiction that $(\alpha \rightarrow \gamma)$ can not occur,

$$
\alpha \xrightarrow{\text { prob. } 1} \beta \neq \delta \stackrel{\text { prob. } 1}{\longleftrightarrow} \gamma
$$

Construct long impossible differentials by concatenating:

- probablity 1 differentials
- impossible differentials

Probablity 1 Differential - 1st

$\Delta=0 \times 800 \ldots 00$, prob $=1$

Probablity 1 Differential - 2nd

$\Delta=0 \times 800 \ldots 00$, prob $=1$

Probablity 1 Differential - 3rd

$\Delta=0 \times 800 \ldots 00$, prob $=1$

5-round impossible differential for BLAKE-32

Apply miss-in-the-middle to BLAKE-32:

$\xrightarrow[\text { prob. }=1]{2.5 \text { rounds }}$
$\underset{\text { prob. }=1}{2.5 \text { rounds }}$

■ Start with $\Delta=0 \times 800 \ldots 00$
■ Differences after 2.5 rounds DO NOT match

6-round impossible differential for BLAKE-64

Apply miss-in-the-middle to BLAKE-64:

■ Start with $\Delta=0 \times 800 \ldots 00$
■ Differences after 3 rounds DO NOT match

Conclusions

- $2^{42} 4$-round near collisions
- Impossible differentials for 5/6-rounds

■ $2^{128 / 2^{256}}$ preimages for 2-round BLAKE-32/64

