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Motivation

Multiple antenna systems allow to improve data rates and
reliability.

In order to increase data rates, both the number of antennas and
the size of the signal set can be increased.

This entails a high decoding complexity which is a real
challenge for practical implementation.
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MIMO systems

modulationbits
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channel

decoding demodulationcoding

multiplexing gain
- send independent data on each antenna
- improve the rate

diversity gain
- send independent copies of the same data
- improve reliability
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System model: spatial multiplexing

yn×1 = Hn×m xm×1 + wn×1

received signal channel codeword noise

m transmit antennas, n receive antennas

H, w are random matrices with i.i.d. complex Gaussian entries

xi ∈ S ⊂ Z[i] is the signal transmitted by antenna i
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System model: Space-Time Coding

Yn×t = Hn×m Xm×t + Wn×t

received signal channel codeword noise

m transmit antennas, n receive antennas, t frame length

codewords are represented by matrices or space-time blocks

the matrix element xi,j ∈ C represents the signal sent by antenna
i at time j

Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 6



Diversity order of a coding scheme

d = − lim
SNR→∞

log(Pe)

log(SNR)
,

where Pe is the error probability, and SNR is the signal-to-noise ratio.

Maximum diversity order

For spatial multiplexing:

dmax = n (receive diversity)

For space-time coding:

dmax = mn (transmit and receive diversity)
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Lattice point representation and decoding

Spatial multiplexing case

y = Hx + w

The received vector is the translated version of a point in the lattice
generated by H.

Coded case

Y = HX + W

Equivalent lattice formulation after vectorizing matrices:

y = HlΦs + w

Hl linear map corresponding to left multiplication by H

Φ generator matrix of the code

s vector of information signals
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Decoding

Optimal decoding amounts to solving the Closest Vector Problem
(CVP) in the lattice generated by H:

x̂ = argmin
x′∈S

∥∥y−Hx′
∥∥2 ML solution

ML decoders

Sphere Decoder, Schnorr-Euchner algorithm...
optimal performance but exponential complexity

Suboptimal decoders

zero forcing (ZF), successive interference cancellation (SIC)...
polynomial complexity, but they don’t attain maximal diversity
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Channel preprocessing

Example: ZF decoding

y = Hx + w

x̂ZF =
⌊
H−1y

⌉
=
⌊
x + H−1w

⌉
if H is orthogonal, ZF decoding is optimal

if H is ill-conditioned, the noise H−1w is amplified

Solution: channel preprocessing by lattice reduction improves
the performance of suboptimal decoders
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Lattice reduction

Two matrices H and H′ generate the same lattice if H′ = HT with T
unimodular.

Lattice reduction:
find a lattice basis formed by
“short” and “nearly orthogonal”
vectors

the most popular lattice reduction algorithm is the LLL algorithm,
thanks to its polynomial complexity
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The LLL algorithm

Gram-Schmidt Orthogonalization (GSO)

h∗1 ← h1
for i = 2, . . . ,m do

for j = 1, . . . , i− 1 do

µi,j ←
〈hi,h∗

j 〉
‖h∗

j ‖2

end
h∗i ← hi −

∑i−1
j=1 µi,jh∗j

end

LLL-reduced basis
H is LLL-reduced if its GSO satisfies the following properties:

Size reduction: |µk,l| ≤ 1
2 , 1 ≤ l < k ≤ m,

Lovasz condition:
∥∥h∗k + µk,k−1h∗k−1

∥∥2 ≥ 3
4

∥∥h∗k−1

∥∥2
, 1 < k ≤ m
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The LLL algorithm

Compute GSO
k← 2
while k ≤ m do

Size reduction RED(k,k-1)
if Lovasz(k,k-1) is not satisfied then

swap hk and hk−1
update GSO
k← max(k − 1, 2)

end
else

for l = k − 2, . . . , 1 do
Size reduction RED(k,l)

end
k← k + 1

end
end
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Preprocessing using LLL reduction

m transmit antennas, n receive antennas

yn×1 = Hn×m xm×1 + wn×1

received signal channel codeword noise

Hred = HU LLL-reduced form

LLL-ZF decoder

compute the pseudo-
inverse H†red

x̂LLL−ZF = U
(⌊

H†redy
⌉)

LLL-SIC decoder

QR decomposition of Hred

ỹ = QHy = Rx + QHw

recursively compute x̃m =
⌊

ỹm
rmm

⌉
,

x̃i =

⌊
ỹi−

∑m
j=i+1 rij x̃j

rii

⌉
, i = m− 1, . . . , 1

x̂LLL− SIC = Ux̃

Laura Luzzi Augmented Lattice Reduction Nanyang Technological University 17



Preprocessing using LLL reduction

m transmit antennas, n receive antennas

yn×1 = Hn×m xm×1 + wn×1

received signal channel codeword noise

Hred = HU LLL-reduced form

LLL-ZF decoder

compute the pseudo-
inverse H†red

x̂LLL−ZF = U
(⌊

H†redy
⌉)

LLL-SIC decoder

QR decomposition of Hred
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Performance of LLL-aided decoding

Proposition [Taherzadeh, Mobasher, Khandani 2007]

LLL-ZF and LLL-SIC decoders attain the maximal receive diversity
n.

the average complexity of LLL-aided decoding is polynomial,
which makes it an attractive technique

however, LLL becomes less effective for high-dimensional
lattices

as a consequence, the performance gap with respect to ML
decoding increases greatly when the number of antennas is large
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Augmented lattice reduction - principle

new technique which combines preprocessing and detection:
lattice reduction is used directly to decode

MIMO decoding amounts to solving the closest vector problem
(CVP) in the lattice generated by the channel matrix

reduce the CVP to the SVP (shortest vector problem)

use LLL reduction to solve the SVP in polynomial time
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Embedding method to reduce the CVP to the SVP

Follow Kannan’s approach (1987): embed the m-dimensional lattice
generated by H into a suitable (m + 1)-dimensional lattice

H̃ =

H −y

0 t

 augmented matrix

v =

Hx− y

t

 =

w

t

 = H̃

x

1


Strategy: if ‖w‖ and t are “very small”, v is the shortest vector in the
augmented lattice. By finding v, we recover x.
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Using LLL reduction to find the shortest lattice vector

LLL-reduce H̃: H̃red = H̃Ũ

Problem: in general, there’s no guarantee that the shortest vector
belongs to the reduced basis. However, the first column of H̃red satisfies∥∥∥h̃red

1

∥∥∥ ≤ 2
m
2 dH̃

v shortest vector in L is called α-unique if ∀u ∈ L,

‖u‖ ≤ α ‖v‖ ⇒ u, v linearly dependent

Exponential gap technique
v is 2

m
2 -unique ⇒ ±v is the first column of H̃red
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LLL reduction finds the shortest lattice vector

a(H) + min1≤i≤m ‖h∗i ‖ ⇒ dH

2
m−1

2
≤ a(Hred) ≤ dH

Lemma

Let t = a(Hred)
2m+1 , and suppose that ‖w‖ ≤ dH

2m+1 .

Then v =

Hx− y

t

 is a 2
m
2 -unique shortest vector in L(H̃).

Sketch of the proof:

Suppose ∃u =

Hx′ − qy

qt

 such that ‖u‖ ≤ 2
m
2 ‖v‖, and u, v linearly independent

‖u‖ ≥ |q| t ⇒ |q| ≤ 2
m
2 ‖v‖

t

‖H(x′ − qx)‖ ≤ ‖Hx′ − qy‖+ |q| ‖y−Hx‖ ≤ 2
m
2 ‖v‖+ 2

m
2 ‖v‖

t ‖w‖ ≤

≤ 2
m
2

√
‖w‖2 + t2

(
1 + ‖w‖

t

)
< dH ⇒ contradiction.
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Augmented lattice reduction- Decoding

Choose t = a(Hred)
2m+1 ⇒ the augmented lattice has an

exponential gap

LLL-reduce H̃: H̃red = H̃Ũ

If ‖w‖ ≤ dH
2m+1 , v = H̃

x

1

 is the first column of H̃red

find the transmitted message x on the first column of Ũ :

x̂ = 1
ũm+1,1

(ũ1,1, . . . , ũm,1)T
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Performance analysis

Diversity gain

d = − lim
SNR→∞

log(Pe)

log(SNR)

Proposition

If t = a(Hred)
2m+1 , then augmented lattice reduction achieves the maximum

receive diversity n.

Sketch of the proof.

Pe(H) ≤ P
{
‖w‖ > dH

2m+1

}
≤ C(log(SNR))n+1

SNRn
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6× 6 MIMO system, spatial multiplexing
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8× 8 MIMO system, spatial multiplexing
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Coded case: 2× 2 system, Golden Code
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Comparison with Kim and Park’s Method

[N. Kim, H. Park, “Improved lattice reduction aided detections for MIMO
systems”, Vehicular Technology Conference 2006]

Same form of the augmented matrix H̃

No exponential gap technique:

- the parameter t is “big” (t > max |rii|, where Hred = QR)
- the solution is found on the last column of Ũ

no guarantee that LLL reduction will find the right vector.
In fact, one can prove that the performance is the same as
LLL-SIC.
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Complexity analysis (for n = m)

average number of iterations of the LLL algorithm:

E[K(H)] ∼ O
(
n2 log n

)
[Jalden et al. 2008]

each iteration requires O(n2) operations, which can be reduced
to O(n) for LLL-SIC [Ling, Howgrave-Graham 2007]

⇒ the total complexity of LLL-SIC is bounded by O(n3 log n)

Complexity bound for augmented lattice reduction

E[K(H̃)] ≤ O(n3)

the total complexity is bounded by O(n4).
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Complexity: numerical simulations
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Open problems

explain why the performance of augmented lattice reduction is
better than LLL-SIC

find more realistic bounds on the complexity

for high-dimensional space-time codes, the gap between ML
decoding and augmented lattice reduction is still huge.
How can we bridge this gap?
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Thank you for listening!!
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