Augmented Lattice Reduction for MIMO decoding

LAURA LUZZI

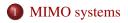
joint work with G. Rekaya-Ben Othman and J.-C. Belfiore at Télécom-ParisTech

NANYANG TECHNOLOGICAL UNIVERSITY SEPTEMBER 15, 2010

• Multiple antenna systems allow to improve data rates and reliability.

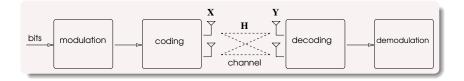
• In order to increase data rates, both the number of antennas and the size of the signal set can be increased.

• This entails a high **decoding complexity** which is a real challenge for practical implementation.



2 Decoding

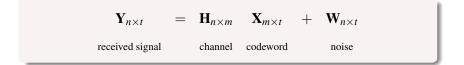
- Lattice decoding
- Lattice reduction-aided decoding
- 3 Augmented lattice reduction
 - Method
 - Performance
 - Complexity



• multiplexing gain

- send independent data on each antenna
- improve the rate
- diversity gain
 - send independent copies of the same data
 - improve reliability

- *m* transmit antennas, *n* receive antennas
- H, w are random matrices with i.i.d. complex Gaussian entries
- $x_i \in S \subset \mathbb{Z}[i]$ is the signal transmitted by antenna *i*



- *m* transmit antennas, *n* receive antennas, *t* frame length
- codewords are represented by matrices or space-time blocks
- the matrix element $x_{i,j} \in \mathbb{C}$ represents the signal sent by antenna *i* at time *j*

Diversity order of a coding scheme

$$d = -\lim_{\text{SNR}\to\infty} \frac{\log(P_e)}{\log(\text{SNR})},$$

where P_e is the error probability, and SNR is the signal-to-noise ratio.

Maximum diversity order

• For spatial multiplexing:

$$d_{\max} = n$$
 (receive diversity)

• For space-time coding:

 $d_{\text{max}} = mn$ (transmit and receive diversity)

MIMO systems

2 Decoding

- Lattice decoding
- Lattice reduction-aided decoding
- 3 Augmented lattice reduction
 - Method
 - Performance
 - Complexity

MIMO systems

2 Decoding

Lattice decoding

- Lattice reduction-aided decoding
- 3 Augmented lattice reduction
 - Method
 - Performance
 - Complexity

Lattice point representation and decoding

Spatial multiplexing case

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{w}$

The received vector is the translated version of a point in the lattice generated by **H**.

Coded case

 $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{W}$

Equivalent lattice formulation after vectorizing matrices:

 $\mathbf{y} = \mathbf{H}_l \Phi \mathbf{s} + \mathbf{w}$

- H_l linear map corresponding to left multiplication by H
- Φ generator matrix of the code
- s vector of information signals

Optimal decoding amounts to solving the Closest Vector Problem (CVP) in the lattice generated by **H**:

$$\hat{\mathbf{x}} = \underset{\mathbf{x}' \in \mathcal{S}}{\operatorname{argmin}} \|\mathbf{y} - \mathbf{H}\mathbf{x}'\|^2$$
 ML solution

• ML decoders

- Sphere Decoder, Schnorr-Euchner algorithm...
- optimal performance but exponential complexity
- Suboptimal decoders
 - zero forcing (ZF), successive interference cancellation (SIC)...
 - polynomial complexity, but they don't attain maximal diversity

Example: ZF decoding

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{w}$$
$$\hat{\mathbf{x}}_{\text{ZF}} = \left\lfloor \mathbf{H}^{-1}\mathbf{y} \right\rceil = \left\lfloor \mathbf{x} + \mathbf{H}^{-1}\mathbf{w} \right\rceil$$

- if **H** is orthogonal, ZF decoding is optimal
- if **H** is ill-conditioned, the noise $\mathbf{H}^{-1}\mathbf{w}$ is amplified

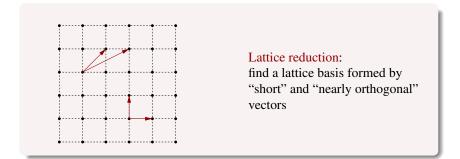
• Solution: channel preprocessing by lattice reduction improves the performance of suboptimal decoders

MIMO systems

2 Decoding

- Lattice decoding
- Lattice reduction-aided decoding
- 3 Augmented lattice reduction
 - Method
 - Performance
 - Complexity

Two matrices \mathbf{H} and \mathbf{H}' generate the same lattice if $\mathbf{H}' = \mathbf{HT}$ with \mathbf{T} unimodular.



• the most popular lattice reduction algorithm is the LLL algorithm, thanks to its polynomial complexity

The LLL algorithm

Gram-Schmidt Orthogonalization (GSO)

$$\begin{split} \mathbf{h}_{1}^{*} \leftarrow \mathbf{h}_{1} \\ \text{for } i = 2, \dots, m \text{ do} \\ \middle| \begin{array}{c} \text{for } j = 1, \dots, i-1 \text{ do} \\ \middle| \begin{array}{c} \mu_{i,j} \leftarrow \frac{\langle \mathbf{h}_{i}, \mathbf{h}_{j}^{*} \rangle}{\left\| \mathbf{h}_{j}^{*} \right\|^{2}} \\ \text{end} \\ \mathbf{h}_{i}^{*} \leftarrow \mathbf{h}_{i} - \sum_{j=1}^{i-1} \mu_{i,j} \mathbf{h}_{j}^{*} \\ \text{end} \\ \end{split} } \end{split}$$

LLL-reduced basis

H is LLL-reduced if its GSO satisfies the following properties:

- Size reduction: $|\mu_{k,l}| \le \frac{1}{2}, \quad 1 \le l < k \le m,$
- Lovasz condition: $\|\mathbf{h}_{k}^{*} + \mu_{k,k-1}\mathbf{h}_{k-1}^{*}\|^{2} \ge \frac{3}{4}\|\mathbf{h}_{k-1}^{*}\|^{2}, \quad 1 < k \le m$

Laura Luzzi

イロト イポト イヨト イヨト

э

The LLL algorithm

```
Compute GSO
k \leftarrow 2
while k < m do
    Size reduction RED(k,k-1)
    if Lovasz(k,k-1) is not satisfied then
         swap \mathbf{h}_k and \mathbf{h}_{k-1}
         update GSO
        k \leftarrow \max(k - 1, 2)
    end
    else
         for l = k - 2, ..., 1 do
            Size reduction RED(k,l)
         end
        k \leftarrow k + 1
    end
end
```

Preprocessing using LLL reduction

m transmit antennas, *n* receive antennas

$\mathbf{y}_{n \times 1}$	=	$\mathbf{H}_{n \times m}$	$\mathbf{x}_{m \times 1}$	+	$\mathbf{W}_{n \times 1}$
received signal		channel	codeword		noise

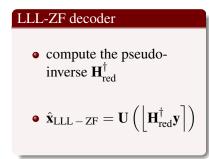
$H_{\text{red}} = HU \quad \text{LLL-reduced form}$

Preprocessing using LLL reduction

m transmit antennas, n receive antennas

$\mathbf{y}_{n \times 1}$	=	$\mathbf{H}_{n \times m}$	$\mathbf{x}_{m \times 1}$	+	$\mathbf{w}_{n \times 1}$
received signal		channel	codeword		noise

$H_{\text{red}} = HU \quad \text{LLL-reduced form}$



Preprocessing using LLL reduction

m transmit antennas, n receive antennas

$\mathbf{y}_{n \times 1}$	=	$\mathbf{H}_{n \times m}$	$\mathbf{x}_{m \times 1}$	+	$\mathbf{w}_{n \times 1}$
received signal		channel	codeword		noise

 $H_{\text{red}} = HU \quad \text{LLL-reduced form}$

LLL-ZF decoder

• compute the pseudo-inverse $\mathbf{H}_{red}^{\dagger}$

•
$$\hat{\mathbf{x}}_{LLL-ZF} = \mathbf{U}\left(\left\lfloor \mathbf{H}_{red}^{\dagger}\mathbf{y}\right
ight
ceil$$

LLL-SIC decoder

• QR decomposition of \mathbf{H}_{red}

•
$$\widetilde{\mathbf{y}} = \mathbf{Q}^H \mathbf{y} = \mathbf{R} \mathbf{x} + \mathbf{Q}^H \mathbf{w}$$

• recursively compute
$$\tilde{x}_m = \left\lfloor \frac{\tilde{y}_m}{r_{mm}} \right\rfloor,$$

 $\tilde{x}_i = \left\lfloor \frac{\tilde{y}_i - \sum_{j=i+1}^m r_{ij}\tilde{x}_j}{r_{ii}} \right\rfloor, \ i = m - 1, \dots, 1$

•
$$\hat{\mathbf{x}}_{\text{LLL}-\text{SIC}} = \mathbf{U}\tilde{\mathbf{x}}$$

Proposition [Taherzadeh, Mobasher, Khandani 2007]

LLL-ZF and LLL-SIC decoders attain the maximal receive diversity *n*.

- the average complexity of LLL-aided decoding is polynomial, which makes it an attractive technique
- however, LLL becomes less effective for high-dimensional lattices
- as a consequence, the performance gap with respect to ML decoding increases greatly when the number of antennas is large

1 MIMO systems

2 Decoding

- Lattice decoding
- Lattice reduction-aided decoding
- 3 Augmented lattice reduction
 - Method
 - Performance
 - Complexity

1 MIMO systems

2 Decoding

- Lattice decoding
- Lattice reduction-aided decoding
- 3 Augmented lattice reduction
 - Method
 - Performance
 - Complexity

Augmented lattice reduction - principle

• new technique which combines preprocessing and detection: lattice reduction is used directly to decode

• MIMO decoding amounts to solving the **closest vector problem** (CVP) in the lattice generated by the channel matrix

- reduce the CVP to the SVP (shortest vector problem)
- use LLL reduction to solve the SVP in polynomial time

Embedding method to reduce the CVP to the SVP

• Follow Kannan's approach (1987): **embed** the *m*-dimensional lattice generated by **H** into a suitable (*m* + 1)-dimensional lattice

$$\widetilde{\mathbf{H}} = \begin{pmatrix} \mathbf{H} & -\mathbf{y} \\ \mathbf{0} & t \end{pmatrix} \qquad \text{augmented matrix}$$

•
$$\mathbf{v} = \begin{pmatrix} \mathbf{H}\mathbf{x} - \mathbf{y} \\ t \end{pmatrix} = \begin{pmatrix} \mathbf{w} \\ t \end{pmatrix} = \widetilde{\mathbf{H}} \begin{pmatrix} \mathbf{x} \\ 1 \end{pmatrix}$$

• Strategy: if ||w|| and *t* are "very small", **v** is the shortest vector in the augmented lattice. By finding **v**, we recover **x**.

Using LLL reduction to find the shortest lattice vector

• LLL-reduce $\widetilde{\mathbf{H}}$:

$$\widetilde{\mathbf{H}}_{red} = \widetilde{\mathbf{H}}\widetilde{\mathbf{U}}$$

• **Problem:** in general, there's no guarantee that the shortest vector belongs to the reduced basis. However, the first column of \widetilde{H}_{red} satisfies

$$\left|\widetilde{\mathbf{h}}_{1}^{\mathrm{red}}\right\| \leq 2^{\frac{m}{2}} d_{\widetilde{\mathbf{H}}}$$

• v shortest vector in \mathcal{L} is called α -unique if $\forall \mathbf{u} \in \mathcal{L}$,

 $\|\mathbf{u}\| \le \alpha \|\mathbf{v}\| \Rightarrow \mathbf{u}, \mathbf{v}$ linearly dependent

Exponential gap technique

 $\mathbf{v} \text{ is } 2^{\frac{m}{2}}$ -unique $\Rightarrow \pm \mathbf{v}$ is the first column of $\widetilde{\mathbf{H}}_{red}$

LLL reduction finds the shortest lattice vector

$$a(\mathbf{H}) \doteq \min_{1 \le i \le m} \|\mathbf{h}_i^*\| \quad \Rightarrow \quad \frac{d_{\mathbf{H}}}{2^{\frac{m-1}{2}}} \le a(\mathbf{H}_{\text{red}}) \le d_{\mathbf{H}}$$

Lemma

Let
$$t = \frac{a(\mathbf{H}_{red})}{2^{m+1}}$$
, and suppose that $\|\mathbf{w}\| \le \frac{d_{\mathbf{H}}}{2^{m+1}}$.
Then $\mathbf{v} = \begin{pmatrix} \mathbf{H}\mathbf{x} - \mathbf{y} \\ t \end{pmatrix}$ is a $2^{\frac{m}{2}}$ -unique shortest vector in $\mathcal{L}(\widetilde{\mathbf{H}})$.

Sketch of the proof:

Suppose
$$\exists \mathbf{u} = \begin{pmatrix} \mathbf{H}\mathbf{x}' - q\mathbf{y} \\ qt \end{pmatrix}$$
 such that $\|\mathbf{u}\| \le 2^{\frac{m}{2}} \|\mathbf{v}\|$, and \mathbf{u}, \mathbf{v} linearly independent
• $\|\mathbf{u}\| \ge |q| t \Rightarrow |q| \le \frac{2^{\frac{m}{2}} \|\mathbf{v}\|}{t}$
• $\|\mathbf{H}(\mathbf{x}' - q\mathbf{x})\| \le \|\mathbf{H}\mathbf{x}' - q\mathbf{y}\| + |q| \|\mathbf{y} - \mathbf{H}\mathbf{x}\| \le 2^{\frac{m}{2}} \|\mathbf{v}\| + \frac{2^{\frac{m}{2}} \|\mathbf{v}\|}{t} \|\mathbf{w}\| \le 2^{\frac{m}{2}} \sqrt{\|\mathbf{w}\|^2 + t^2} \left(1 + \frac{\|\mathbf{w}\|}{t}\right) < d_{\mathbf{H}} \Rightarrow \text{ contradiction.}$

Augmented lattice reduction- Decoding

- Choose $t = \frac{a(\mathbf{H}_{red})}{2^{m+1}} \Rightarrow$ the augmented lattice has an exponential gap
- LLL-reduce $\widetilde{H} {:} \quad \widetilde{H}_{red} = \widetilde{H} \widetilde{U}$

• If
$$\|\mathbf{w}\| \leq \frac{d_{\mathbf{H}}}{2^{m+1}}$$
, $\mathbf{v} = \widetilde{\mathbf{H}} \begin{pmatrix} \mathbf{x} \\ 1 \end{pmatrix}$ is the first column of $\widetilde{\mathbf{H}}_{red}$

• find the transmitted message \mathbf{x} on the first column of \mathbf{U} :

$$\hat{\mathbf{x}} = \frac{1}{\widetilde{u}_{m+1,1}} (\widetilde{u}_{1,1}, \dots, \widetilde{u}_{m,1})^T$$

1 MIMO systems

2 Decoding

- Lattice decoding
- Lattice reduction-aided decoding
- 3 Augmented lattice reduction
 - Method
 - Performance
 - Complexity

Performance analysis

Diversity gain

$$d = -\lim_{\text{SNR}\to\infty} \frac{\log(P_e)}{\log(\text{SNR})}$$

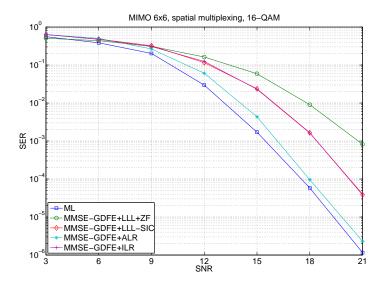
Proposition

If $t = \frac{a(\mathbf{H}_{red})}{2^{m+1}}$, then augmented lattice reduction achieves the maximum receive diversity *n*.

Sketch of the proof.

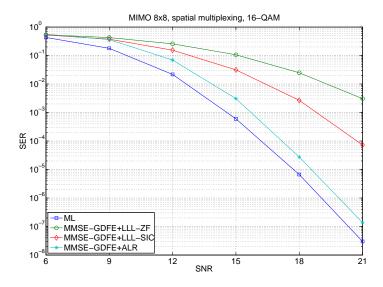
$$P_e(\mathbf{H}) \le P\left\{\|\mathbf{w}\| > \frac{d_{\mathbf{H}}}{2^{m+1}}\right\} \le \frac{C(\log(\mathrm{SNR}))^{n+1}}{\mathrm{SNR}^n}$$

6×6 MIMO system, spatial multiplexing

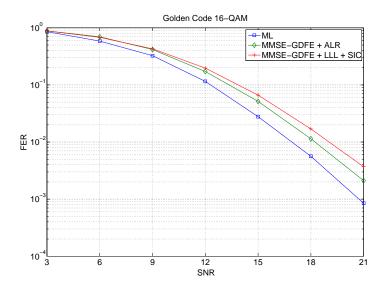


< <p>I < </p>

8×8 MIMO system, spatial multiplexing



Coded case: 2×2 system, Golden Code



Comparison with Kim and Park's Method

[N. Kim, H. Park, "Improved lattice reduction aided detections for MIMO systems", *Vehicular Technology Conference* 2006]

- Same form of the augmented matrix $\widetilde{\mathbf{H}}$
- No exponential gap technique:
 - the parameter *t* is "big" ($t > \max |r_{ii}|$, where $\mathbf{H}_{red} = \mathbf{QR}$)
 - the solution is found on the last column of $\dot{\mathbf{U}}$
- no guarantee that LLL reduction will find the right vector. In fact, one can prove that the performance is the **same as LLL-SIC**.

1 MIMO systems

2 Decoding

- Lattice decoding
- Lattice reduction-aided decoding

3 Augmented lattice reduction

- Method
- Performance
- Complexity

Complexity analysis (for n = m)

• average number of iterations of the LLL algorithm:

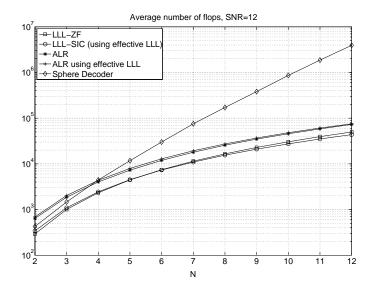
 $\mathbb{E}[K(\mathbf{H})] \sim O(n^2 \log n)$ [Jalden *et al.* 2008]

- each iteration requires $O(n^2)$ operations, which can be reduced to O(n) for LLL-SIC [Ling, Howgrave-Graham 2007]
- \Rightarrow the total complexity of LLL-SIC is bounded by $O(n^3 \log n)$

Complexity bound for augmented lattice reduction

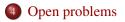
- $\mathbb{E}[K(\widetilde{\mathbf{H}})] \leq O(n^3)$
- the total complexity is bounded by $O(n^4)$.

Complexity: numerical simulations



• • • • • • • • • • • • •

- Lattice decoding
- Lattice reduction-aided decoding
- - Method
 - Performance
 - Complexity



-

• explain *why* the performance of augmented lattice reduction is better than LLL-SIC

• find more realistic bounds on the complexity

• for high-dimensional space-time codes, the gap between ML decoding and augmented lattice reduction is still huge. How can we bridge this gap?

Thank you for listening!!