A Short Introduction to Index Coding with Side Information

Dau Son Hoang shdau@ntu.edu.sg
SPMS, Nanyang Technological University

Basic Definitions

S broadcasts (2 transmissions):

$$
\left\{\begin{array}{l}
x_{1}+x_{2} \\
x_{2}+x_{3}
\end{array}\right.
$$

Trivial solution: 3 transmissions

Basic Definitions

S broadcasts (2 transmissions):

$$
\left\{\begin{array}{l}
x_{1}+x_{2} \\
x_{2}+x_{3}
\end{array}\right.
$$

Trivial solution: 3 transmissions

Basic Definitions

S broadcasts (2 transmissions):

$$
\left\{\begin{array}{l}
x_{1}+x_{2} \\
x_{2}+x_{3}
\end{array}\right.
$$

Digraph of Side Information D

$$
\mathbf{M}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

has rank two. An $n \times n$ matrix M fits a digraph \mathcal{D} of order n if

$$
m_{i, j}= \begin{cases}1, & j=i \\ 0, & (i, j) \notin \mathcal{E}(\mathcal{D})\end{cases}
$$

Trivial solution: 3 transmissions

Basic Definitions

S broadcasts (2 transmissions):

$$
\left\{\begin{array}{l}
x_{1}+x_{2} \\
x_{2}+x_{3}
\end{array}\right.
$$

Digraph of Side Information D

$$
\mathbf{M}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

has rank two. An $n \times n$ matrix M fits a digraph \mathcal{D} of order n if

$$
m_{i, j}= \begin{cases}1, & j=i \\ 0, & (i, j) \notin \mathcal{E}(\mathcal{D})\end{cases}
$$

Trivial solution: 3 transmissions

$$
\operatorname{minrk}_{q}(\mathcal{D})=\min \left\{\operatorname{rank}_{q}(\mathbf{M}): \mathbf{M} \text { fits } \mathcal{D}\right\}
$$

Basic Definitions

S broadcasts (2 transmissions):

Digraph of Side Information D

$$
\mathbf{M}=\left(\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 0 & 1
\end{array}\right)
$$

has rank two. An $n \times n$ matrix \mathbf{M} fits a digraph \mathcal{D} of order n if

$$
m_{i, j}= \begin{cases}1, & j=i \\ 0, & (i, j) \notin \mathcal{E}(\mathcal{D})\end{cases}
$$

Trivial solution: 3 transmissions

$$
\operatorname{minrk}_{q}(\mathcal{D})=\min \left\{\operatorname{rank}_{q}(\mathbf{M}): \mathbf{M} \text { fits } \mathcal{D}\right\}
$$

Bar-Yossef et al. (2006): $1 /$ minrk $_{2}(\mathcal{D})$ is the best rate for scalar linear index codes (IC)

Bar-Yossef et al.' Conjecture
Definition (Capacity)

Bar-Yossef et al.' Conjecture

Definition (Capacity)

- a (t, k)-IC: broadcast $k q$-ary symbols; $x_{i} \in \mathbb{F}_{q}^{t}$

Bar-Yossef et al.' Conjecture

Definition (Capacity)

- a (t, k)-IC: broadcast $k q$-ary symbols; $x_{i} \in \mathbb{F}_{q}^{t}$
- a (t, k)-IC: t / k is the rate

Bar-Yossef et al.' Conjecture

Definition (Capacity)

- a (t, k)-IC: broadcast $k q$-ary symbols; $x_{i} \in \mathbb{F}_{q}^{t}$
- a (t, k)-IC: t / k is the rate
- general capacity: $C(\mathcal{D})=\sup \{t / k: \exists a(t, k)-I C\}$

Bar-Yossef et al.' Conjecture

Definition (Capacity)

- a (t, k)-IC: broadcast $k q$-ary symbols; $x_{i} \in \mathbb{F}_{q}^{t}$
- a (t, k)-IC: t / k is the rate
- general capacity: $C(\mathcal{D})=\sup \{t / k: \exists a(t, k)-I C\}$
- scalar capacity: $C_{s}(\mathcal{D})=\sup \{1 / k: \exists a(1, k)-I C\}$

Definition (Capacity)

- a (t, k)-IC: broadcast $k q$-ary symbols; $x_{i} \in \mathbb{F}_{q}^{t}$
- a (t, k)-IC: t / k is the rate
- general capacity: $C(\mathcal{D})=\sup \{t / k: \exists a(t, k)-I C\}$
- scalar capacity: $C_{s}(\mathcal{D})=\sup \{1 / k: \exists a(1, k)-I C\}$
- scalar linear capacity: $C_{s /}(\mathcal{D})=\sup \{1 / k: \exists$ a linear $(1, k)-I C\}$

Definition (Capacity)

- a (t, k)-IC: broadcast $k q$-ary symbols; $x_{i} \in \mathbb{F}_{q}^{t}$
- a (t, k)-IC: t / k is the rate
- general capacity: $C(\mathcal{D})=\sup \{t / k: \exists a(t, k)-I C\}$
- scalar capacity: $C_{s}(\mathcal{D})=\sup \{1 / k: \exists a(1, k)-I C\}$
- scalar linear capacity: $C_{s /}(\mathcal{D})=\sup \{1 / k: \exists$ a linear $(1, k)-I C\}$

Bar-Yossef et al. (2006) conjectured: $C_{s /}(D)\left(=1 / \operatorname{minrk}_{2}(\mathcal{D})\right)$ is the best rate

Definition (Capacity)

- a (t, k)-IC: broadcast $k q$-ary symbols; $x_{i} \in \mathbb{F}_{q}^{t}$
- a (t, k)-IC: t / k is the rate
- general capacity: $C(\mathcal{D})=\sup \{t / k: \exists a(t, k)-I C\}$
- scalar capacity: $C_{s}(\mathcal{D})=\sup \{1 / k: \exists a(1, k)-I C\}$
- scalar linear capacity: $C_{s /}(\mathcal{D})=\sup \{1 / k: \exists$ a linear $(1, k)-I C\}$

Bar-Yossef et al. (2006) conjectured: $C_{s l}(D)\left(=1 / \operatorname{minrk}_{2}(\mathcal{D})\right)$ is the best rate

Lubetzky and Stav (2007): q-ary ICs outperform binary ICs, mixed-field IC outperform q-ary ICs $\left(C_{s}(\mathcal{D}) \gg C_{s /}(\mathcal{D})\right)$

- \mathcal{G}_{n}

Definition (Capacity)

- a (t, k)-IC: broadcast $k q$-ary symbols; $x_{i} \in \mathbb{F}_{q}^{t}$
- a (t, k)-IC: t / k is the rate
- general capacity: $C(\mathcal{D})=\sup \{t / k: \exists a(t, k)-I C\}$
- scalar capacity: $C_{s}(\mathcal{D})=\sup \{1 / k: \exists a(1, k)-I C\}$
- scalar linear capacity: $C_{s /}(\mathcal{D})=\sup \{1 / k: \exists$ a linear $(1, k)-I C\}$

Bar-Yossef et al. (2006) conjectured: $C_{s l}(D)\left(=1 / \operatorname{minrk}_{2}(\mathcal{D})\right)$ is the best rate

Lubetzky and Stav (2007): q-ary ICs outperform binary ICs, mixed-field IC outperform q-ary ICs $\left(C_{s}(\mathcal{D}) \gg C_{s /}(\mathcal{D})\right)$

- \mathcal{G}_{n}

$$
\text { - } \operatorname{minrk}_{2}\left(\mathcal{G}_{n}\right) \geq n^{1-\varepsilon}
$$

Definition (Capacity)

- a (t, k)-IC: broadcast $k q$-ary symbols; $x_{i} \in \mathbb{F}_{q}^{t}$
- a (t, k)-IC: t / k is the rate
- general capacity: $C(\mathcal{D})=\sup \{t / k: \exists a(t, k)-I C\}$
- scalar capacity: $C_{s}(\mathcal{D})=\sup \{1 / k: \exists a(1, k)-I C\}$
- scalar linear capacity: $C_{s /}(\mathcal{D})=\sup \{1 / k: \exists$ a linear $(1, k)-I C\}$

Bar-Yossef et al. (2006) conjectured: $C_{s l}(D)\left(=1 / \operatorname{minrk}_{2}(\mathcal{D})\right)$ is the best rate

Lubetzky and Stav (2007): q-ary ICs outperform binary ICs, mixed-field IC outperform q-ary ICs $\left(C_{s}(\mathcal{D}) \gg C_{s /}(\mathcal{D})\right)$

- \mathcal{G}_{n}
- $\operatorname{minrk}_{2}\left(\mathcal{G}_{n}\right) \geq n^{1-\varepsilon}$
- $\operatorname{minrk}_{q}\left(\mathcal{G}_{n}\right) \leq n^{\varepsilon}$

Definition (Capacity)

- a (t, k)-IC: broadcast $k q$-ary symbols; $x_{i} \in \mathbb{F}_{q}^{t}$
- a (t, k)-IC: t / k is the rate
- general capacity: $C(\mathcal{D})=\sup \{t / k: \exists a(t, k)-I C\}$
- scalar capacity: $C_{s}(\mathcal{D})=\sup \{1 / k: \exists a(1, k)-I C\}$
- scalar linear capacity: $C_{s /}(\mathcal{D})=\sup \{1 / k: \exists$ a linear $(1, k)-I C\}$

Bar-Yossef et al. (2006) conjectured: $C_{s l}(D)\left(=1 / \operatorname{minrk}_{2}(\mathcal{D})\right)$ is the best rate

Lubetzky and Stav (2007): q-ary ICs outperform binary ICs, mixed-field IC outperform q-ary ICs $\left(C_{s}(\mathcal{D}) \gg C_{s /}(\mathcal{D})\right)$

- \mathcal{G}_{n}
- $\operatorname{minrk}_{2}\left(\mathcal{G}_{n}\right) \geq n^{1-\varepsilon}$
- $\operatorname{minrk}_{q}\left(\mathcal{G}_{n}\right) \leq n^{\varepsilon}$
- $\mathcal{H}_{n}=\mathcal{G}_{n} \cup \overline{\mathcal{G}_{n}}$
- $\operatorname{minrk}_{q}\left(\mathcal{H}_{n}\right) \geq 2 \sqrt{n}, \forall q$

Definition (Capacity)

- a (t, k)-IC: broadcast $k q$-ary symbols; $x_{i} \in \mathbb{F}_{q}^{t}$
- a (t, k)-IC: t / k is the rate
- general capacity: $C(\mathcal{D})=\sup \{t / k: \exists a(t, k)-I C\}$
- scalar capacity: $C_{s}(\mathcal{D})=\sup \{1 / k: \exists a(1, k)-I C\}$
- scalar linear capacity: $C_{s /}(\mathcal{D})=\sup \{1 / k: \exists$ a linear $(1, k)-I C\}$

Bar-Yossef et al. (2006) conjectured: $C_{s l}(D)\left(=1 / \operatorname{minrk}_{2}(\mathcal{D})\right)$ is the best rate

Lubetzky and Stav (2007): q-ary ICs outperform binary ICs, mixed-field IC outperform q-ary ICs $\left(C_{s}(\mathcal{D}) \gg C_{s /}(\mathcal{D})\right)$

- \mathcal{G}_{n}
- $\operatorname{minrk}_{2}\left(\mathcal{G}_{n}\right) \geq n^{1-\varepsilon}$
- $\operatorname{minrk}_{q}\left(\mathcal{G}_{n}\right) \leq n^{\varepsilon}$
- $\mathcal{H}_{n}=\mathcal{G}_{n} \cup \overline{\mathcal{G}_{n}}$
- $\operatorname{minrk}_{q}\left(\mathcal{H}_{n}\right) \geq 2 \sqrt{n}, \forall q$
- $\operatorname{minrk}_{2}\left(\mathcal{G}_{n}\right)+\operatorname{minrk}{ }_{3}\left(\mathcal{G}_{n}\right) \leq n^{\varepsilon}$

Definition (Capacity)

- a (t, k)-IC: broadcast $k q$-ary symbols; $x_{i} \in \mathbb{F}_{q}^{t}$
- a (t, k)-IC: t / k is the rate
- general capacity: $C(\mathcal{D})=\sup \{t / k: \exists a(t, k)-I C\}$
- scalar capacity: $C_{s}(\mathcal{D})=\sup \{1 / k: \exists a(1, k)-I C\}$
- scalar linear capacity: $C_{s /}(\mathcal{D})=\sup \{1 / k: \exists$ a linear $(1, k)-I C\}$

Bar-Yossef et al. (2006) conjectured: $C_{s l}(D)\left(=1 / \operatorname{minrk}_{2}(\mathcal{D})\right)$ is the best rate

Lubetzky and Stav (2007): q-ary ICs outperform binary ICs, mixed-field IC outperform q-ary ICs $\left(C_{s}(\mathcal{D}) \gg C_{s /}(\mathcal{D})\right)$

- \mathcal{G}_{n}
- $\operatorname{minrk}_{2}\left(\mathcal{G}_{n}\right) \geq n^{1-\varepsilon}$
- $\operatorname{minrk}_{q}\left(\mathcal{G}_{n}\right) \leq n^{\varepsilon}$
- $\mathcal{H}_{n}=\mathcal{G}_{n} \cup \overline{\mathcal{G}_{n}}$
- $\operatorname{minrk}_{q}\left(\mathcal{H}_{n}\right) \geq 2 \sqrt{n}, \forall q$
- $\operatorname{minrk}_{2}\left(\mathcal{G}_{n}\right)+\operatorname{minrk}_{3}\left(\mathcal{G}_{n}\right) \leq n^{\varepsilon}$

Alon et al. (2008): block nonlinear ICs outperform scalar nonlinear ICs $\left(C(\mathcal{D}) \gg C_{s}(\mathcal{D})\right)$

Definition (Capacity)

- a (t, k)-IC: broadcast $k q$-ary symbols; $x_{i} \in \mathbb{F}_{q}^{t}$
- a (t, k)-IC: t / k is the rate
- general capacity: $C(\mathcal{D})=\sup \{t / k: \exists a(t, k)-I C\}$
- scalar capacity: $C_{s}(\mathcal{D})=\sup \{1 / k: \exists a(1, k)-I C\}$
- scalar linear capacity: $C_{s /}(\mathcal{D})=\sup \{1 / k: \exists$ a linear $(1, k)-I C\}$

Bar-Yossef et al. (2006) conjectured: $C_{s l}(D)\left(=1 / \operatorname{minrk}_{2}(\mathcal{D})\right)$ is the best rate

Lubetzky and Stav (2007): q-ary ICs outperform binary ICs, mixed-field IC outperform q-ary ICs $\left(C_{s}(\mathcal{D}) \gg C_{s /}(\mathcal{D})\right)$

- \mathcal{G}_{n}
- $\operatorname{minrk}_{2}\left(\mathcal{G}_{n}\right) \geq n^{1-\varepsilon}$
- $\operatorname{minrk}_{q}\left(\mathcal{G}_{n}\right) \leq n^{\varepsilon}$
- $\mathcal{H}_{n}=\mathcal{G}_{n} \cup \overline{\mathcal{G}_{n}}$
- $\operatorname{minrk}_{q}\left(\mathcal{H}_{n}\right) \geq 2 \sqrt{n}, \forall q$
- $\operatorname{minrk}_{2}\left(\mathcal{G}_{n}\right)+\operatorname{minrk}_{3}\left(\mathcal{G}_{n}\right) \leq n^{\varepsilon}$

Alon et al. (2008): block nonlinear ICs outperform scalar nonlinear ICs ($C(\mathcal{D}) \gg C_{s}(\mathcal{D})$)

An IC instance \hookrightarrow Confusion graph \mathfrak{C} Best rate $=1 / \chi(\mathfrak{C})$

Definition (Capacity)

- a (t, k)-IC: broadcast $k q$-ary symbols; $x_{i} \in \mathbb{F}_{q}^{t}$
- a (t, k)-IC: t / k is the rate
- general capacity: $C(\mathcal{D})=\sup \{t / k: \exists a(t, k)-I C\}$
- scalar capacity: $C_{s}(\mathcal{D})=\sup \{1 / k: \exists a(1, k)-I C\}$
- scalar linear capacity: $C_{s /}(\mathcal{D})=\sup \{1 / k: \exists$ a linear $(1, k)-I C\}$

Bar-Yossef et al. (2006) conjectured: $C_{s l}(D)\left(=1 / \operatorname{minrk}_{2}(\mathcal{D})\right)$ is the best rate

Lubetzky and Stav (2007): q-ary ICs outperform binary ICs, mixed-field IC outperform q-ary ICs $\left(C_{s}(\mathcal{D}) \gg C_{s /}(\mathcal{D})\right)$

- \mathcal{G}_{n}
- $\operatorname{minrk}_{2}\left(\mathcal{G}_{n}\right) \geq n^{1-\varepsilon}$
- $\operatorname{minrk}_{q}\left(\mathcal{G}_{n}\right) \leq n^{\varepsilon}$
- $\mathcal{H}_{n}=\mathcal{G}_{n} \cup \overline{\mathcal{G}_{n}}$
- $\operatorname{minrk}_{q}\left(\mathcal{H}_{n}\right) \geq 2 \sqrt{n}, \forall q$
- $\operatorname{minrk}_{2}\left(\mathcal{G}_{n}\right)+\operatorname{minrk} \mathcal{K}_{3}\left(\mathcal{G}_{n}\right) \leq n^{\varepsilon}$

Alon et al. (2008): block nonlinear ICs outperform scalar nonlinear ICs $\left(C(\mathcal{D}) \gg C_{s}(\mathcal{D})\right)$

$$
\begin{aligned}
\text { An IC instance } & \hookrightarrow \text { Confusion graph } \mathfrak{C} \\
\text { Best rate } & =1 / \chi(\mathfrak{C})
\end{aligned}
$$

El Rouayheb et al. (2008): block nonlinear ICs outperform block linear ICs; block linear ICs outperform scalar linear ICs

Index Coding, Network Coding, and Matroid

Index Coding is a special case of Network Coding (NC)

Index Coding, Network Coding, and Matroid

Index Coding is a special case of Network Coding (NC)

Digraph of Side Information D

Index Coding, Network Coding, and Matroid

Index Coding is a special case of Network Coding (NC)

Digraph of Side Information D

Corresponding Network Coding instance

Index Coding, Network Coding, and Matroid

Index Coding is a special case of Network Coding (NC)

Digraph of Side Information D

Corresponding Network Coding instance

Index Coding, Network Coding, and Matroid

Index Coding is a special case of Network Coding (NC)

Digraph of Side Information D

Corresponding Network Coding instance

NC can be reduced to IC

NC instance \hookrightarrow IC instance
\exists a linear block NC $\Longleftrightarrow \exists$ a linear block IC \exists a nonlinear block NC $\Longrightarrow \exists$ a nonlinear block IC

Index Coding, Network Coding, and Matroid

Index Coding is a special case of Network Coding (NC)

Digraph of Side Information D

Corresponding Network Coding instance

NC can be reduced to IC

NC instance \hookrightarrow IC instance
\exists a linear block NC $\Longleftrightarrow \exists$ a linear block IC \exists a nonlinear block NC $\Longrightarrow \exists$ a nonlinear block IC
nonlinear vs. linear results in NC
\Downarrow
nonlinear vs. linear results in IC

Index Coding, Network Coding, and Matroid

Index Coding is a special case of Network Coding (NC)

Digraph of Side Information D

Corresponding Network Coding instance

NC can be reduced to IC

NC instance \hookrightarrow IC instance
\exists a linear block NC $\Longleftrightarrow \exists$ a linear block IC
\exists a nonlinear block NC $\Longrightarrow \exists$ a nonlinear block IC
nonlinear vs. linear results in NC
\Downarrow
nonlinear vs. linear results in IC
Matroid can be reduced to IC

Index Coding, Network Coding, and Matroid

Index Coding is a special case of Network Coding (NC)

Digraph of Side Information D

Corresponding Network Coding instance

NC can be reduced to IC

NC instance \hookrightarrow IC instance
\exists a linear block NC $\Longleftrightarrow \exists$ a linear block IC \exists a nonlinear block NC $\Longrightarrow \exists$ a nonlinear block IC \downarrow
nonlinear vs. linear results in NC
\Downarrow
nonlinear vs. linear results in IC

Matroid can be reduced to IC

 matroid \hookrightarrow IC instance\exists a t-representation $\Longleftrightarrow \exists$ a linear t-block IC

Index Coding, Network Coding, and Matroid

Index Coding is a special case of Network Coding (NC)

Digraph of Side Information D

Corresponding Network Coding instance

NC can be reduced to IC

NC instance \hookrightarrow IC instance
\exists a linear block NC $\Longleftrightarrow \exists$ a linear block IC \exists a nonlinear block NC $\Longrightarrow \exists$ a nonlinear block IC \downarrow
nonlinear vs. linear results in NC
\Downarrow
nonlinear vs. linear results in IC
Matroid can be reduced to IC matroid \hookrightarrow IC instance
\exists a t-representation $\Longleftrightarrow \exists$ a linear t-block IC \downarrow
matroid: 2-rep. but not 1-rep.
\Downarrow
linear 2-block IC with better rate than linear scalar IC

Capacity: Hardness and Bounds

Hardness

Capacity: Hardness and Bounds

Hardness

(1) $C_{s l}$: hard to compute

Capacity: Hardness and Bounds

Hardness

(1) $C_{s l}$: hard to compute

Capacity: Hardness and Bounds

Hardness

(1) $C_{s l}$: hard to compute

- (Peeters 1996): $C_{s l}(\mathcal{G})=1 / 3$? (or $\operatorname{minrk}_{q}(\mathcal{G})=3$?) is NP-complete
- (Dau, Skachek, Chee, 2011): $C_{s l}(\mathcal{D})=1 / 2$? $\left(\right.$ or minrk $_{q}(\mathcal{D})=2$?) is NP-complete

Capacity: Hardness and Bounds

Hardness

(1) $C_{s l}$: hard to compute

- (Peeters 1996): $C_{s l}(\mathcal{G})=1 / 3$? (or $\operatorname{minrk}_{q}(\mathcal{G})=3$?) is NP-complete
- (Dau, Skachek, Chee, 2011): $C_{s l}(\mathcal{D})=1 / 2$? (or minrk $_{q}(\mathcal{D})=2$?) is NP-complete
- (Langberg, Sprintson, 2008): finding an IC with rate $>\alpha C_{s /}(\mathcal{D})(\alpha \in(0,1])$ is NP-hard

Capacity: Hardness and Bounds

Hardness

(1) $C_{s l}$: hard to compute

- (Peeters 1996): $C_{s l}(\mathcal{G})=1 / 3$? (or $\operatorname{minrk}_{q}(\mathcal{G})=3$?) is NP-complete
- (Dau, Skachek, Chee, 2011): $C_{s l}(\mathcal{D})=1 / 2$? $\left(\right.$ or $^{\operatorname{minrk}}{ }_{q}(\mathcal{D})=2$?) is NP-complete
- (Langberg, Sprintson, 2008): finding an IC with rate $>\alpha C_{s /}(\mathcal{D})(\alpha \in(0,1])$ is NP-hard
(2) C_{s} and C : the hardness is not known

Capacity: Hardness and Bounds

Hardness

(1) $C_{s l}$: hard to compute

- (Dau, Skachek, Chee, 2011): $C_{s l}(\mathcal{D})=1 / 2$? (or minrk $_{q}(\mathcal{D})=2$?) is NP-complete
- (Langberg, Sprintson, 2008): finding an IC with rate $>\alpha C_{s /}(\mathcal{D})(\alpha \in(0,1])$ is NP-hard
(2) C_{s} and C : the hardness is not known
- (Blasiak et al. 2011): polynomial time algo. to approx. C with ratio $O\left(\frac{\log n}{n \log \log n}\right)$

Capacity: Hardness and Bounds

Hardness

(1) $C_{s l}$: hard to compute

- (Dau, Skachek, Chee, 2011): $C_{s l}(\mathcal{D})=1 / 2$? (or $\operatorname{minrk}_{q}(\mathcal{D})=2$?) is NP-complete
- (Langberg, Sprintson, 2008): finding an IC with rate $>\alpha C_{s /}(\mathcal{D})(\alpha \in(0,1])$ is NP-hard
(2) C_{s} and C : the hardness is not known
- (Blasiak et al. 2011): polynomial time algo. to approx. C with ratio $O\left(\frac{\log n}{n \log \log n}\right)$

Bounds

Capacity: Hardness and Bounds

Hardness

(1) $C_{s l}$: hard to compute

- (Dau, Skachek, Chee, 2011): $C_{s l}(\mathcal{D})=1 / 2$? (or $\operatorname{minrk}_{q}(\mathcal{D})=2$?) is NP-complete
- (Langberg, Sprintson, 2008): finding an IC with rate $>\alpha C_{s l}(\mathcal{D})(\alpha \in(0,1])$ is NP-hard
(2) C_{s} and C : the hardness is not known
- (Blasiak et al. 2011): polynomial time algo. to approx. C with ratio $O\left(\frac{\log n}{n \log \log n}\right)$

Bounds

(9) $\alpha(\mathcal{G}) \leq \frac{1}{C_{s(}(\mathcal{G})} \leq \chi(\overline{\mathcal{G}}): \chi$ - chromatic number, $\alpha(\mathcal{G})$ - independent number

Capacity: Hardness and Bounds

Hardness

(1) $C_{s l}$: hard to compute

- (Dau, Skachek, Chee, 2011): $C_{s l}(\mathcal{D})=1 / 2$? (or minrk $_{q}(\mathcal{D})=2$?) is NP-complete
- (Langberg, Sprintson, 2008): finding an IC with rate $>\alpha C_{s /}(\mathcal{D})(\alpha \in(0,1])$ is NP-hard
(2) C_{s} and C : the hardness is not known
- (Blasiak et al. 2011): polynomial time algo. to approx. C with ratio $O\left(\frac{\log n}{n \log \log n}\right)$

Bounds

(1) $\alpha(\mathcal{G}) \leq \frac{1}{C_{s(}(\mathcal{G})} \leq \chi(\overline{\mathcal{G}}): \chi$ - chromatic number, $\alpha(\mathcal{G})$ - independent number
(3) $\alpha(\mathcal{G}) \leq \frac{1}{C_{s l}(\mathcal{G})} \leq n-\mu(\mathcal{G}): \mu(\mathcal{G})$ - maximum size of a matching

Capacity: Hardness and Bounds

Hardness

(1) $C_{s l}$: hard to compute

- (Dau, Skachek, Chee, 2011): $C_{s l}(\mathcal{D})=1 / 2$? $\left(\right.$ or $^{\operatorname{minrk}}{ }_{q}(\mathcal{D})=2$?) is NP-complete
- (Langberg, Sprintson, 2008): finding an IC with rate $>\alpha C_{s /}(\mathcal{D})(\alpha \in(0,1])$ is NP-hard
(2) C_{s} and C : the hardness is not known
- (Blasiak et al. 2011): polynomial time algo. to approx. C with ratio $O\left(\frac{\log n}{n \log \log n}\right)$

Bounds

(1) $\alpha(\mathcal{G}) \leq \frac{1}{C_{s(}(\mathcal{G})} \leq \chi(\overline{\mathcal{G}}): \chi$ - chromatic number, $\alpha(\mathcal{G})$ - independent number
(3) $\alpha(\mathcal{G}) \leq \frac{1}{C_{s l}(\mathcal{G})} \leq n-\mu(\mathcal{G}): \mu(\mathcal{G})$ - maximum size of a matching

- $\alpha(\mathcal{D}) \leq \frac{1}{C_{s l}(\mathcal{D})} \leq \mathrm{cc}(\mathcal{D}): \alpha(\mathcal{D})$ - size of maximum acyclic induced subgraph, $\mathrm{cc}(\mathcal{D})$ - clique cover number

Capacity: Hardness and Bounds

Hardness

(1) $C_{s l}$: hard to compute

- (Dau, Skachek, Chee, 2011): $C_{s l}(\mathcal{D})=1 / 2$? $\left(\right.$ or $^{\operatorname{minrk}}{ }_{q}(\mathcal{D})=2$?) is NP-complete
- (Langberg, Sprintson, 2008): finding an IC with rate $>\alpha C_{s /}(\mathcal{D})(\alpha \in(0,1])$ is NP-hard
(2) C_{s} and C : the hardness is not known
- (Blasiak et al. 2011): polynomial time algo. to approx. C with ratio $O\left(\frac{\log n}{n \log \log n}\right)$

Bounds

(1) $\alpha(\mathcal{G}) \leq \frac{1}{C_{s(1}(\mathcal{G})} \leq \chi(\overline{\mathcal{G}}): \chi$ - chromatic number, $\alpha(\mathcal{G})$ - independent number
(3) $\alpha(\mathcal{G}) \leq \frac{1}{C_{s l}(\mathcal{G})} \leq n-\mu(\mathcal{G}): \mu(\mathcal{G})$ - maximum size of a matching

- $\alpha(\mathcal{D}) \leq \frac{1}{C_{s /(}(\mathcal{D})} \leq \operatorname{cc}(\mathcal{D}): \alpha(\mathcal{D})$ - size of maximum acyclic induced subgraph, $\mathrm{cc}(\mathcal{D})$ - clique cover number
($) ~ \alpha(\mathcal{D}) \leq \frac{1}{C_{s /}(\mathcal{D})} \leq n-\nu(\mathcal{D}): \nu(\mathcal{D})$ - maximum number of disjoint circuits

Capacity: Hardness and Bounds

Hardness

(1) $C_{s l}$: hard to compute

- (Dau, Skachek, Chee, 2011): $C_{s l}(\mathcal{D})=1 / 2$? $\left(\right.$ or $^{\operatorname{minrk}}{ }_{q}(\mathcal{D})=2$?) is NP-complete
- (Langberg, Sprintson, 2008): finding an IC with rate $>\alpha C_{s l}(\mathcal{D})(\alpha \in(0,1])$ is NP-hard
(2) C_{s} and C : the hardness is not known
- (Blasiak et al. 2011): polynomial time algo. to approx. C with ratio $O\left(\frac{\log n}{n \log \log n}\right)$

Bounds

(1) $\alpha(\mathcal{G}) \leq \frac{1}{C_{s(}(\mathcal{G})} \leq \chi(\overline{\mathcal{G}}): \chi$ - chromatic number, $\alpha(\mathcal{G})$ - independent number
(3) $\alpha(\mathcal{G}) \leq \frac{1}{C_{s l}(\mathcal{G})} \leq n-\mu(\mathcal{G}): \mu(\mathcal{G})$ - maximum size of a matching
(1) $\alpha(\mathcal{D}) \leq \frac{1}{c_{s /(\mathcal{D})}} \leq \operatorname{cc}(\mathcal{D}): \alpha(\mathcal{D})$ - size of maximum acyclic induced subgraph, $\mathrm{cc}(\mathcal{D})$ - clique cover number
(-) $\alpha(\mathcal{D}) \leq \frac{1}{C_{s /(}(\mathcal{D})} \leq n-\nu(\mathcal{D}): \nu(\mathcal{D})$ - maximum number of disjoint circuits
(3) $\alpha(\mathcal{G}) \leq b_{2} \leq \frac{1}{c(\mathcal{G})} \leq b_{n}=\chi_{f}(\overline{\mathcal{G}}): b_{2}, b_{n}$ - solutions of linear programs

Scalar Linear Capacity $C_{s I}$

Scalar Linear Capacity $C_{s l}$

- (Haemers 1978): perfect graphs $(1 / \alpha(\mathcal{G}))$

Scalar Linear Capacity $C_{s l}$

- (Haemers 1978): perfect graphs $(1 / \alpha(\mathcal{G}))$
- (Bar-Yossef et al. 2006): odd cycles $\left(\frac{1}{\lfloor n / 2\rfloor}\right)$ and complements (3), acyclic digraphs (orders)

Scalar Linear Capacity $C_{s l}$

- (Haemers 1978): perfect graphs $(1 / \alpha(\mathcal{G}))$
- (Bar-Yossef et al. 2006): odd cycles $\left(\frac{1}{\lfloor n / 2\rfloor}\right)$ and complements (3), acyclic digraphs (orders)
- (Berliner, Langberg 2011): outerplanar graphs (dynamic programming)

Scalar Linear Capacity $C_{s l}$

- (Haemers 1978): perfect graphs $(1 / \alpha(\mathcal{G}))$
- (Bar-Yossef et al. 2006): odd cycles $\left(\frac{1}{\lfloor n / 2\rfloor}\right)$ and complements (3), acyclic digraphs (orders)
- (Berliner, Langberg 2011): outerplanar graphs (dynamic programming)
- (Dau, Skachek, Chee 2011): Koenig-Egervary graphs $(1 / \alpha(\mathcal{G}))$, connectively reducible digraphs, line digraphs of partially planar digraphs $\left(\frac{1}{n-\nu(\mathcal{D})}\right)$, graphs having tree structure of Type I (dynamic programming)

Scalar Linear Capacity $C_{s l}$

- (Haemers 1978): perfect graphs $(1 / \alpha(\mathcal{G}))$
- (Bar-Yossef et al. 2006): odd cycles ($\frac{1}{[n / 2\rfloor}$) and complements (3), acyclic digraphs (orders)
- (Berliner, Langberg 2011): outerplanar graphs (dynamic programming)
- (Dau, Skachek, Chee 2011): Koenig-Egervary graphs $(1 / \alpha(\mathcal{G}))$, connectively reducible digraphs, line digraphs of partially planar digraphs $\left(\frac{1}{n-\nu(\mathcal{D})}\right)$, graphs having tree structure of Type I (dynamic programming)

Scalar Capacity C_{s} and General Capacity C

Scalar Linear Capacity $C_{s l}$

- (Haemers 1978): perfect graphs $(1 / \alpha(\mathcal{G}))$
- (Bar-Yossef et al. 2006): odd cycles ($\frac{1}{[n / 2\rfloor}$) and complements (3), acyclic digraphs (orders)
- (Berliner, Langberg 2011): outerplanar graphs (dynamic programming)
- (Dau, Skachek, Chee 2011): Koenig-Egervary graphs $(1 / \alpha(\mathcal{G}))$, connectively reducible digraphs, line digraphs of partially planar digraphs $\left(\frac{1}{n-\nu(\mathcal{D})}\right)$, graphs having tree structure of Type I (dynamic programming)

Scalar Capacity C_{s} and General Capacity C

- (Bar-Yossef et al. 2006): $C_{s}=C_{s l}$ for perfect graphs, odd cycles and complements, acyclic digraphs

Scalar Linear Capacity $C_{s l}$

- (Haemers 1978): perfect graphs $(1 / \alpha(\mathcal{G}))$
- (Bar-Yossef et al. 2006): odd cycles ($\frac{1}{[n / 2\rfloor}$) and complements (3), acyclic digraphs (orders)
- (Berliner, Langberg 2011): outerplanar graphs (dynamic programming)
- (Dau, Skachek, Chee 2011): Koenig-Egervary graphs $(1 / \alpha(\mathcal{G}))$, connectively reducible digraphs, line digraphs of partially planar digraphs $\left(\frac{1}{n-\nu(\mathcal{D})}\right)$, graphs having tree structure of Type I (dynamic programming)

Scalar Capacity C_{s} and General Capacity C

- (Bar-Yossef et al. 2006): $C_{s}=C_{s l}$ for perfect graphs, odd cycles and complements, acyclic digraphs
- (Blasiak et al. 2011): n-cycles $(C=2 / n)$, complements of n-cycles $\left(C=\frac{\lfloor n / 2\rfloor}{n}\right)$, 3-regular Cayley graphs of $\mathbb{Z}_{n}(C=2 / n)$

Error Correction for Index Coding

Error Correction for Index Coding

$$
\text { Classical ECC: } \mathbf{x} \xrightarrow{\text { encoding }} \mathbf{y}=\mathbf{x L} \xrightarrow[\text { channel }]{\text { noisy }} \mathbf{y}+\boldsymbol{\epsilon} \xrightarrow{\text { decoding }} \mathbf{x}
$$

(Dau, Skachek, Chee, 2011): scalar linear error-correcting index code (ECIC)

- optimal IC + optimal ECC \neq optimal ECIC for small alphabets

(Dau, Skachek, Chee, 2011): scalar linear error-correcting index code (ECIC)
- optimal IC + optimal ECC \neq optimal ECIC for small alphabets
- optimal IC + optimal ECC $=$ optimal ECIC for large alphabets

(Dau, Skachek, Chee, 2011): scalar linear error-correcting index code (ECIC)
- optimal IC + optimal ECC \neq optimal ECIC for small alphabets
- optimal IC + optimal ECC $=$ optimal ECIC for large alphabets
- develop bounds and constructions for length of an optimal ECIC

(Dau, Skachek, Chee, 2011): scalar linear error-correcting index code (ECIC)
- optimal IC + optimal ECC \neq optimal ECIC for small alphabets
- optimal IC + optimal ECC $=$ optimal ECIC for large alphabets
- develop bounds and constructions for length of an optimal ECIC
- syndrome decoding

Security for Index Coding

A scalar linear IC: $\mathbf{x} \mapsto \mathbf{x L}$, where \mathbf{L} is an $n \times k$ matrix; Rate: $1 / k$

A scalar linear IC: $\mathbf{x} \mapsto \mathbf{x} \mathbf{L}$, where \mathbf{L} is an $n \times k$ matrix; Rate: $1 / k$

A scalar linear IC: $\mathbf{x} \mapsto \mathbf{x} \mathbf{L}$, where \mathbf{L} is an $n \times k$ matrix; Rate: $1 / k$

Construction

(Dau, Skachek, Chee, 2011):

$$
\mathbf{x} \xrightarrow{\text { index coding }} \mathbf{x L}(0) \xrightarrow{\text { (0) }} \xrightarrow{\text { coset coding }}{ }^{a}\left(\mathbf{x L}^{(0)} \mid \mathbf{g}\right) \mathbf{M}
$$

A scalar linear IC: $\mathbf{x} \mapsto \mathbf{x} \mathbf{L}$, where \mathbf{L} is an $n \times k$ matrix; Rate: $1 / k$

Construction

(Dau, Skachek, Chee, 2011):

$$
\mathbf{x} \xrightarrow{\text { index coding }} \mathbf{x L}(0) \xrightarrow{\text { coset coding }}{ }^{\mathbf{a}}\left(\mathbf{x L}^{(0)} \mid \mathbf{g}\right) \mathbf{M}
$$

[^0]
[^0]: ${ }^{\text {a }}$ introduced by Ozarow and Wyner in "Wiretap Channel II," 1985

