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Gist of this talk

• Review a classical attack on RSA signatures by fault injection.

• Show how an industry standard for signatures avoids this
attack.

• Explain two techniques based on mathematical lattices to
extend the attack and make the standard vulerable
nonetheless.
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Signing with RSA-CRT

In RSA-based signature schemes, a signer with modulus N = pq
and key pair (e, d) signs a message m by computing:

1. σp = µ(m)d mod p

2. σq = µ(m)d mod q

3. σ = CRT(σp, σq) mod N

where µ is the encoding function of the scheme.

The Chinese Remainder Theorem offers a welcome 4-fold speed-up
in (often costly) signature generation.
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The Bellcore fault attack

The problem with CRT: fault attacks. A fault in signature
generation makes it possible to recover the secret key:

1. σp = µ(m)d mod p

2. σ′q 6= µ(m)d mod q ← fault

3. σ′ = CRT(σp, σ
′
q) mod N ← faulty signature

Then σ′e is µ(m) mod p but not mod q, so the attacker can then
factor N:

p = gcd(σ′e − µ(m),N)

This attack applies to:

• any deterministic padding; e.g. FDH, σ = H(m)d mod N

• any probabilistic padding with public randomizer; e.g. PFDH,
σ =

(
r ,H(m‖r)d mod N

)
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Fault attacker’s deadlock

The Bellcore attacks does not apply when only a part of the signed
encoding is known to the attacker.
Examples:

• σ = (m‖r)d mod N, where r is a large enough random nonce
unknown to the attacker.

• σ =
(
ω‖G1(ω)⊕ r‖G2(ω)

)d
mod N, where r is a random

nonce and ω = H(m‖r). This is PSS.

The attacker doesn’t know r , cannot compute σ′ − µ(m) to factor
N: the Bellcore attack is thwarted (unless r is short enough for
exhaustive search).
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ISO 9796-2

• ISO/IEC 9796-2 is an international standard for RSA
signatures, with large industry adoption (especially in banking:
EMV).

• It defines signature paddings with partial message recovery,
i.e. a portion of the message is recovered as part of signature
verification.

• In particular, not all of the message is available to an attacker:
fault attacker’s deadlock!

• However, with lattice-based techniques, one can extend the
Bellcore attack to the traditional ISO/IEC 9796-2 padding.

• Newer versions of the standard also include a variant of PSS,
which is secure against random faults [CM09], but it has yet
to gain momentum in applications.
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The classical ISO 9796-2 padding
• Messages m are divided as m[1]‖m[2], and only m[2] is

transmitted; m[1] is recovered during signature verification.
More precisely:

µ(m) = 6A16‖m[1]‖H(m)‖BC16
• In cases of interest (e.g. EMV signatures), we can write:

m[1] = α‖r‖α′ m[2] = data

where α, α′ are known bit patterns, and r is unknown. data
is a string that may or may not be known to the attacker.

• The encoded message is thus:

µ(m) = 6A16‖α‖r‖α′‖H(α‖r‖α′‖data)‖BC16
where the highlighted parts are unknown.

• In the current version of the standard, H has to be a hash
function of kh ≥ 160 bits (in practice: SHA-1).

• The total number of unknown bits is kr + kh.
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The affine equation

• The encoded message

µ(m) = 6A16‖m[1]‖H(m)‖BC16

can be written:

µ(m) = t + r · 2nr + H(m) · 28

where t is a known value, both r and H(m) are unknown.

• A faulty signature σ′ yields an equation of the form:

A + B · r + C · H(m) ≡ 0 (mod p)

with A = t − σ′e , B = 2nr , C = 28.

• Hence (r ,H(m)) is a root mod p of the bivariate polynomial
A + Bx + Cy .
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Coppersmith-like trick

Now we are left with solving the affine equation

A + Bx + Cy = 0 mod p

which admits a “small” root (x0, y0) = (r ,H(m)). However p is
unknown.
At CHES 2009, Coron et al. [CJKNP09] proposed the following
attack:

• Apply the method of Herrmann and May [HM08].

• The method is based on the Coppersmith’s technique for
finding small roots of polynomial equations.

• Coppersmith technique uses lattice reduction to obtain
(x0, y0).

• Finally, given (x0, y0) we can compute µ(m) and factor N
since p = gcd(σ′e − µ(m),N).
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Bounds on UMP size

For a balanced RSA modulus, it follows from the computations in
[HM08] that the attack works when the “small root” (x0, y0)
satisfies |x0| < Nγ and |y0| < Nδ where

γ + δ ≤
√

2− 1

2
∼= 0.207

This means that for a 1024-bit RSA modulus N, the combined size
of unknown message parts (umps) x0 and y0 can be at most 212
bits.
Applied to our context, this implies that for ISO/IEC 9796-2 with
kh = 160, the size of r can be as large as 52 bits.
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Physical fault injection

• 1536-bit RSA with CRT on ATmega128: running time several
minutes at 7.68 MHz.

• Spike attack: 40 ns cut-off in power supply (using FPGA).
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Limitations of this attack

• Severe size constraint on r ,H(m): in practical settings (e.g.
EMV), r is often significantly longer than 52 bits.

• The size of the lattice to be reduced grows when the ump size
gets close to the limit: even the small theoretical maximum is
difficult to reach in practice.

• To handle larger umps, up to 0.5 · n in theory, one can take
advantage of multiple faults.

• However, complexity grows exponentially with the number of
faulty signatures. Going beyond about 0.23 · n is unfeasible in
practice.
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A better way to use more faults

When several faulty signatures are available, it is in principle
possible to extend the polynomial attack to take advantage of
them for dealing with larger umps, but the lattice dimensions
quickly become unmanageable.

At CT-RSA 2010, Coron, Naccache and T. presented another
multiple fault attack on ISO 9796-2 based on different principle,
and that lifts most limitations of the CJKNP attack:

• Simpler and purely linear: doesn’t suffer from algebraic
independence problems of multivariate Coppersmith
techniques.

• Scales well with the number of faults: lattice dimension is
linear in the number of faults; easy to handle umps almost as
large as the theoretical maximum.

• Applicable to many EMV signature formats.
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Orthogonal lattice attack rundown

Recall that each faulty ISO 9796-2 signature σ′i gives an equation
Ai + Bxi + Cyi ≡ 0 (mod p), with (xi , yi ) = (ri ,H(mi )). Dividing
by B, we get affine relations:

ai + xi + cyi ≡ 0 (mod p) (∗)

Given ` faulty signatures, the attack proceeds as follows:

1. Linearize: using standard lattice reduction technique la
Nguyen-Stern, find vectors uj = (u1j , . . . , u`j) such that
uj · a ≡ 0 (mod N). Use them to cancel constant terms
between the relations (∗).

2. Orthogonalize: if the vectors as small enough, each uj is
orthogonal to x and y. Deduce a Z-lattice containing x and y.

3. Factor: find a vector v orthogonal to both x and y mod N,
but not to a. Then p = gcd(v · a,N).
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Size constraints
For the attack to work, we need the uj from the previous slide to
be “short enough.” How short is short enough?

Heuristically, the shortest vector in the lattice

L(c, p) = {(α, β) ∈ Z2 : α + c · β = 0 mod p}

is of length ≈ √p. Thus, if |uj · x| · |uj · y| < p ≈ N1/2, we expect
the attack to work.

Let Nγ and Nδ be the bounds on xi and yi . The lll-reduced
vectors uj have components smaller than about N1/`, so:

|uj · x| . N1/`+γ |uj · y| . N1/`+δ

Hence the heuristic size constraint:

2

`
+ γ + δ <

1

2
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Verifying the size constraint

For γ + δ = 1/3, the previous heuristic argument predicts that 13
faults are needed to factor N. Very well verified in practice, both
for balanced and unbalanced γ, δ.

Number of faults ` 12 13 14

Success rate with γ = δ = 1
6 13% 100% 100%

Success rate with γ = 1
4 , δ = 1

12 0% 100% 100%
Average cpu time (seconds) 0.19 0.14 0.17
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Efficiency of both attacks

Number of required faults, lattice dimension and cpu time for
various ump sizes, in the orthogonal lattice attack (left) and the
polynomial attack (right).

γ + δ `orth ωorth cpu time `pol ωold cpu time

0.204 7 8 0.03 s 3 84 49 s
0.214 8 9 0.04 s 2 126 22 min
0.230 8 9 0.04 s 2 462 centuries?
0.280 10 11 0.07 s 6 6188 —
0.330 14 15 0.17 s 8 221 —
0.400 25 26 1.44 s — — —
0.450 70 71 36.94 s — — —

The orthogonal lattice attack handles much larger parameters, but
always requires a larger number of faults for a given ump size: the
polynomial attack is preferable for very small sizes.
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Conclusion

• The Bellcore attack doesn’t apply directly to ISO 9796-2
signatures.

• However, lattice reduction techniques can extend the fault
attack to this setting in a practical way: given a few faulty
ISO 9796-2 signatures, it is fast and easy to factor the public
modulus.

• Signature formats based on this standard, such as EMV, are
vulnerable.

• In situations where fault attacks are a concern, provably
secure encodings, such as PSS, should be prefered. If it is not
possible, CRT fault countermeasures like Shamir’s are
necessary.
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Thank you!
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