Parallelizing the Camellia and SMS4 Block Ciphers

Huihui Yap^{1,2}, **Khoongming Khoo** ^{1,2} and Axel Poschmann²

¹DSO National Laboratories, Singapore

²Division of Mathematical Sciences, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore

WAC 2010, 3 Dec

Outline of Talk

- Motivation
- Our Contribution
- 3 Definitions and Preliminaries
- 4 Practical Security Evaluation of GF-NLFSR against DC and LC
- 6 Application
 - Parallelizing Camellia
 - Parallelizing SMS4
- 6 Conclusion

Motivation

- Object of interest: Parallelizable n-cell GF-NLFSR structures
- Encryption speed faster by up to n times
- SDS versus SPN round functions
 - SDS: Too complex and not suitable for space and speed efficient implementation
 - SPN: Use relatively less resources
- → Meanginful to investigate GF-NLFSR (with SPN) security against DC and LC

Our Contribution

- Provide a neat and concise proof of the result that for a 2nr-round parallelizable n-cell GF-NLFSR structure with an SPN round function having branch number \mathcal{B} , the number of differential active S-boxes $\geq r\mathcal{B} + \lfloor \frac{r}{2} \rfloor$
- Parallelizing Camellia and SMS4: p-Camellia and p-SMS4
- Ensure that p-Camellia and p-SMS4 are secure against other block cipher cryptanalysis
- Hardware implementation advantages: Achieves higher maximum frequency with lower area and power demands
- ullet \Rightarrow Well suited for applications that require a high throughput

SPN round function

- *F*-function comprises: key addition layer, *S*-function, *P*-function.
- Neglect the effect of the round key since by assumption, the round key consists of independent and uniformly random bits, and is bitwise XORed with data
- S-function: non-linear transformation layer with m parallel d-bit bijective S-boxes
- P-function is a linear transformation layer

SPN round function

• Throughout, assume S-function and P-function bijective

$$S : GF(2^d)^m \to GF(2^d)^m$$
, $X = (x_1, \dots, x_m) \mapsto Z = S(X) = (s_1(x_1), \dots, s_n(x_n))$

$$P \quad : \quad \textit{GF}(2^d)^m \to \textit{GF}(2^d)^m \ , \ \textit{Z} = (z_1, \cdots, z_m) \mapsto \textit{Y} = \textit{P}(\textit{Z}) = (y_1, \cdots, y_n)$$

$$F: GF(2^d)^m \to GF(2^d)^m$$
, $X \mapsto Y = F(X) = P(S(X))$

Differential and Linear Probabilities

Definition

Let $x, z \in GF(2^d)$. Denote the differences and the mask values of x and z by Δx , Δz , and, Γx , Γz respectively. The differential and linear probabilities of each S-box s_i are defined as:

$$DP^{s_i}(\Delta x \to \Delta z) = \frac{\#\{x \in GF(2^d)|s_i(x) \oplus s_i(x \oplus \Delta x) = \Delta z\}}{2^d},$$

$$LP^{s_i}(\Gamma z \to \Gamma x) = (2 \times \frac{\#\{x \in GF(2^d)|x \cdot \Gamma x = s_i(x) \cdot \Gamma z}{2^d} - 1)^2.$$

Differential and Linear Probabilities

Definition

The maximum differential and linear probabilities of S-boxes are defined as:

$$p_s = \max_i \max_{\Delta x \neq 0, \Delta z} DP^{s_i}(\Delta x \to \Delta z),$$

$$q_s = \max_i \max_{\Gamma x, \Gamma z \neq 0} LP^{s_i}(\Gamma z \to \Gamma x).$$

Branch Number

Definition

Let $X = (x_1, x_2, \dots, x_m) \in GF(2^d)^m$. Then the Hamming weight of X is denoted by $H_w(X) = \#\{i | x_i \neq 0\}$.

Definition

The branch number $\mathcal B$ of linear transformation θ is defined as follows:

$$\mathcal{B} = \min_{x \neq 0} (H_w(x) + H_w(\theta(x)).$$

Branch Number - DC

- ullet Differential case: ${\cal B}$ taken to be the differential branch number
- I.e. $\mathcal{B} = \min_{\Delta X \neq 0} (H_w(\Delta X) + H_w(\Delta Y))$
- ΔX is an input difference into the S-function, ΔY is an output difference of the P-function

Branch Number - LC

- ullet Linear case: ${\cal B}$ is taken to be the *linear* branch number
- I.e. $\mathcal{B} = \min_{\Gamma Y \neq 0} (H_w(P^*(\Gamma Y)) + H_w(\Gamma Y))$
- ΓY is an output mask value of the P-function
- P* is a diffusion function of mask values concerning the P-function
- ullet Throughout, ${\cal B}$ is used to denote differential or linear branch number, depending on the context

Number of active S-boxes

Definition

A differential active S-box is defined as an S-box given a non-zero input difference. Similarly, a linear active S-box is defined as an S-box given a non-zero output mask value.

Theorem

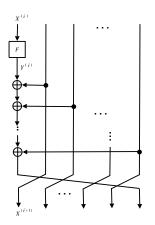
Let $\mathcal{D}^{(r)}$ and $\mathcal{L}^{(r)}$ be the minimum number of all differential and linear active S-boxes for a r-round Feistel cipher respectively. Then the maximum differential and linear characteristic probabilities of the r-round cipher are bounded by $p_s^{\mathcal{D}^{(r)}}$ and $q_s^{\mathcal{L}^{(r)}}$ respectively.

Kanda's result

Theorem

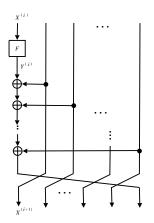
The minimum number of differential (and linear) active S-boxes $\mathcal{D}^{(4r)}$ for 4r-round Feistel ciphers with SPN round function is at least $r\mathcal{B} + \lfloor \frac{r}{2} \rfloor$.

Structure of *n*-cell GF-NLFSR



- Proposed in "Cryptographic Properties and Application of a Generalized Unbalanced Feistel Network Structure", ACISP 2009
- n-cell extension of the outer function FO of the KASUMI block cipher which is a 2-cell structure
- Parallelizable, up to n times

Structure of *n*-cell GF-NLFSR



- $X^{(i)}$, $Y^{(i)}$: input and output data to the *i*-th round function
- $X^{(i+n)}$ = $Y^{(i)} \oplus X^{(i+1)} \oplus \cdots \oplus X^{(i+n-1)}$ for $i = 1, 2, \cdots$.

- Aim: To investigate the upperbound of the maximum differential characteristic probability of GF-NLFSR cipher
- ullet \Rightarrow Need to find lower bound for $\mathcal{D}^{(r)}$
- I.e. number of differential active S-boxes for r consecutive rounds

Lemma

For n-cell GF-NLFSR cipher, the minimum number of differential active S-boxes in any 2n consecutive rounds satisfies $\mathcal{D}^{(2n)} \geq \mathcal{B}$.

- Assume that the 2n consecutive rounds run from the first round to the 2n-th round
- For $j=1,\cdots,n$, at least one of $\Delta X^{(j)} \neq 0$
- Let i be the smallest integer such that $\Delta X^{(i)} \neq 0$, where $1 \leq i \leq n$. Then

$$\mathcal{D}^{(2n)} \geq H_w(\Delta X^{(1)}) + H_w(\Delta X^{(2)}) + \dots + H_w(\Delta X^{(2n)})$$

- Assume that the 2*n* consecutive rounds run from the first round to the 2*n*-th round
- For $j=1,\cdots,n$, at least one of $\Delta X^{(j)} \neq 0$
- Let i be the smallest integer such that $\Delta X^{(i)} \neq 0$, where 1 < i < n. Then

$$\mathcal{D}^{(2n)} \geq H_{w}(\Delta X^{(1)}) + H_{w}(\Delta X^{(2)}) + \dots + H_{w}(\Delta X^{(2n)})$$

$$\geq H_{w}(\Delta X^{(i)}) + H_{w}(\Delta X^{(i+1)}) + \dots + H_{w}(\Delta X^{(i+n)})$$

- Assume that the 2n consecutive rounds run from the first round to the 2n-th round
- For $j=1,\cdots,n$, at least one of $\Delta X^{(j)} \neq 0$
- Let i be the smallest integer such that $\Delta X^{(i)} \neq 0$, where 1 < i < n. Then

$$\mathcal{D}^{(2n)} \geq H_{w}(\Delta X^{(1)}) + H_{w}(\Delta X^{(2)}) + \dots + H_{w}(\Delta X^{(2n)})$$

$$\geq H_{w}(\Delta X^{(i)}) + H_{w}(\Delta X^{(i+1)}) + \dots + H_{w}(\Delta X^{(i+n)})$$

$$\geq H_{w}(\Delta X^{(i)}) + H_{w}(\Delta X^{(i+1)} \oplus \dots \oplus \Delta X^{(i+n)}),$$

- Assume that the 2n consecutive rounds run from the first round to the 2n-th round
- For $j=1,\cdots,n$, at least one of $\Delta X^{(j)} \neq 0$
- Let i be the smallest integer such that $\Delta X^{(i)} \neq 0$, where 1 < i < n. Then

$$\mathcal{D}^{(2n)} \geq H_{w}(\Delta X^{(1)}) + H_{w}(\Delta X^{(2)}) + \dots + H_{w}(\Delta X^{(2n)})$$

$$\geq H_{w}(\Delta X^{(i)}) + H_{w}(\Delta X^{(i+1)}) + \dots + H_{w}(\Delta X^{(i+n)})$$

$$\geq H_{w}(\Delta X^{(i)}) + H_{w}(\Delta X^{(i+1)} \oplus \dots \oplus \Delta X^{(i+n)}),$$

$$= H_{w}(\Delta X^{(i)}) + H_{w}(\Delta Y^{(i)})$$

- Assume that the 2n consecutive rounds run from the first round to the 2n-th round
- For $j=1,\cdots,n$, at least one of $\Delta X^{(j)} \neq 0$
- Let i be the smallest integer such that $\Delta X^{(i)} \neq 0$, where 1 < i < n. Then

$$\mathcal{D}^{(2n)} \geq H_{w}(\Delta X^{(1)}) + H_{w}(\Delta X^{(2)}) + \dots + H_{w}(\Delta X^{(2n)})$$

$$\geq H_{w}(\Delta X^{(i)}) + H_{w}(\Delta X^{(i+1)}) \dots + H_{w}(\Delta X^{(i+n)})$$

$$\geq H_{w}(\Delta X^{(i)}) + H_{w}(\Delta X^{(i+1)} \oplus \dots \oplus \Delta X^{(i+n)}),$$

$$= H_{w}(\Delta X^{(i)}) + H_{w}(\Delta Y^{(i)})$$

$$\geq \mathcal{B}.$$

Remark

- With probability $1 \frac{1}{M}$, where M is the size of each cell, i.e. most of the time, $\Delta X^{(1)} \neq 0$
- ullet \Rightarrow Able to achieve at least ${\cal B}$ number of differential active S-boxes over (n+1)-round most of the time

With the previous lemma, straightforward to prove:

Theorem

The minimum number of differential active S-boxes for 2nr-round n-cell GF-NLFSR cipher with bijective SPN round function satisfies

$$\mathcal{D}^{(2nr)} \geq r\mathcal{B} + \lfloor \frac{r}{2} \rfloor.$$

Observations:

- When n=2, $\mathcal{D}^{(4r)} \geq r\mathcal{B} + \lfloor \frac{r}{2} \rfloor$
- ⇒ Similar security against DC as Feistel ciphers with bijective SPN round function
- 2-cell GF-NLFSR has added advantage: parallelizable
- To investigate practical security of 2-cell GF-NLFSR against LC

- Need to find lower bound for $\mathcal{L}^{(r)}$
- I.e. number of differential active S-boxes for *r* consecutive rounds

Lemma

For 2-cell GF-NLFSR cipher with bijective SPN round function and linear branch number $\mathcal{B}=5$, the minimum number of linear active S-boxes in any 4 consecutive rounds satisfies $\mathcal{L}^{(4)}\geq 3$.

Outline of proof:

- $\Gamma X^{(i)}$ and $\Gamma Y^{(i)}$: input, output mask values to the *i*-th round F function
- Assume that the 4 consecutive rounds run from the first round to the 4th round
- Duality between differential characteristic and linear approximation: $\Gamma X^{(i+1)} = \Gamma Y^{(i-1)} \oplus \Gamma Y^{(i)}$, for i=2 and 3
- $\mathcal{L}^{(4)} = H_w(\Gamma Y^{(1)}) + H_w(\Gamma Y^{(2)}) + H_w(\Gamma Y^{(3)}) + H_w(\Gamma Y^{(4)})$
- Go through all possible cases
- $\mathcal{L}_{i}^{(r)}$:number of linear active S-boxes over r rounds for case i:

With the previous lemma, straightforward to prove:

Theorem

For 2-cell GF-NLFSR cipher with bijective SPN round function and linear branch number $\mathcal{B}=5$, we have

- **1** $\mathcal{L}^{(8)} \geq 7$,
- ② $\mathcal{L}^{(12)} \geq 11$,
- 3 $\mathcal{L}^{(16)} \geq 15$,

where $\mathcal{L}^{(r)}$ is the minimum number of linear active S-boxes over r rounds.

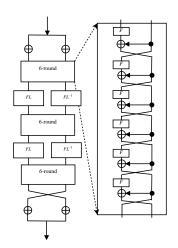
Camellia

- Jointly developed by NTT and Mitsubishi Electric Corporation
- Uses an 18-round Feistel structure for 128-bit key, and a 24-round Feistel structure for 192-bit and 256-bit keys,
- Additional input/output whitenings and logical functions, FL-function and FL^{-1} -function, inserted every 6 rounds
- Bijective SPN F-function
- S-function: 8 S-boxes in parallel
- P-function: bytewise exclusive-ORs
- $\mathcal{B} = 5$; $p_s, q_s = 2^{-6}$

p-Camellia: "Parallelizable" Camellia

- Replace the Feistel network of Camellia with the 2-cell GF-NLFSR block cipher structure instead
- Other components such as number of rounds, S-function,
 P-function and the key schedule etc remain unchanged

Figure of p-Camellia block cipher



DC of p-Camellia

- p: Maximum differential characteristic probabilities reduced to 16-round
- Over 16 rounds ⇒ four 4-round blocks
- Recall: $\mathcal{B} = 5$, $p_s = 2^{-6}$
- By previous results, minimum number of differential active S-boxes $= 4 \times 5 + 2 = 22$
- $\bullet \Rightarrow p \le (2^{-6})^{22} = 2^{-132} < 2^{-128}$
- \bullet \Rightarrow Secure against DC

LC of p-Camellia

- q: Maximum linear characteristic probabilities reduced to 16-round
- By previous results, minimum number of linear active S-boxes is 15
- $\Rightarrow q \le (2^{-6})^{15} = 2^{-90}$
- ullet Attacker needs to collect at least 2^{90} chosen/known plaintexts to mount an attack, which is not feasible in practice
- ullet \Rightarrow Secure against LC

Other Attacks on p-Camellia

- Boomerang attack: Can be shown that for 16 rounds, probability of finding a boomerang distinguisher $\leq 2^{-180}$
 - ⇒ Secure against boomerang attack
- Impossible differential attack: Maximum length of impossible differential distinguisher is 4
 - \Rightarrow Full cipher secure against impossible differential attack

Other Attacks on p-Camellia

- Integral attack: Maximum length of integral distinguisher is 4 and attacker can extend by at most 3 rounds
 - ⇒ Full cipher secure against impossible differential attack
- **Slide attack**: *FL* and *FL*⁻¹-functions provide non-regularity across rounds, and different subkeys used for every round
 - ⇒ Unlikely to work

Other Attacks on p-Camellia

- **Higher order differential attack**: Algebraic degree reach maximum degree of 127 after 6th round
 - ⇒ Unlikely to work
- Interpolation attack: After passing through many S-boxes and P-functions, cipher becomes a complex function which is a sum of many multi-variate monomials over $GF(2^8)$
 - ⇒ Unlikely to work

Implementation of p-Camellia

Table: Comparison of the implementation results of the round function of Camellia and p-Camellia on UMC 180 nm ASIC technology.

	Camellia				p-Camellia			
	1 round		2 rounds		1 round		2 rounds	
	abs.	%	abs.	%	abs.	%	abs.	%
Area (GE)	4877	100	9754	200	4877	100	9754	200
power* (mW)	2.65	100	8.38	316.5	2.65	100	5.2	196.2
max Freq. (MHz)	229.4	100	117.8	51.4	229.4	100	221.2	96.5
max T'put (Gbps)	29.4	100	30.2	103	29.4	100	56.6	192.9

^{*}at a frequency of 100 MHz and a supply voltage of 1.8V.

SMS4

- Underlying block cipher used in WAPI standard (Chinese national standard for Wireless Local Area Networks)
- 128-bit key
- 32-round generalized Feistel structure
- Each round transforms four 32-bit words X_i , i = 0, 1, 2, 3:

$$(X_0,X_1,X_2,X_3,\mathit{rk})\mapsto (X_1,X_2,X_3,X_0\oplus \mathcal{T}(X_1\oplus X_2\oplus X_3\oplus \mathit{rk})),$$

where rk denotes the round key

SMS4

- Non-linear function T in sequence: 32-bit subkey addition,
 S-box Substitution (layer of four 8-bit S-boxes), a 32-bit linear transformation L
- $\mathcal{B} = 5$; $p_s, q_s = 2^{-6}$
- Key schedule similar structure to main cipher with slight differences

p-SMS4: "Parallelizable" SMS4

- Replace the generalized Feistel network of SMS4 with the 4-cell GF-NLFSR block cipher structure instead
- Modify key schedule too so that same structure as the main cipher: also parallelizable in hardware
- Other components such as number of rounds, S-function,
 P-function etc remain unchanged

Security of p-SMS4 against block cipher attacks

- Follows similar analysis to p-Camellia
- \bullet E.g. Can be shown differential characteristic probability over 29 rounds $< 2^{-108}$
- → Attacker needs to collect at least 2¹⁰⁸ chosen plaintext-ciphertext pairs
- Can be shown linear characteristic probability over 29 rounds $< 2^{-90}$
- → Attacker needs to collect at least 2⁹⁰ chosen plaintext-ciphertext pairs

Implementation of p-SMS4

Table: Comparison of the implementation results of the round function of SMS4 and p-SMS4 on UMC *180 nm* ASIC technology.

	SMS4				p-SMS4			
	1 round		4 rounds		1 round		4 rounds	
	abs.	%	abs.	%	abs.	%	abs.	%
Area (GE)	2924	100	11546	394.9	2924	100	11574	395.9
power* (mW)	1.81	100	11.38	627.5	1.39	76.8	5.9	322.3
max Freq. (MHz)	288.2	100	73.1	25.4	290.7	100.9	267.4	92.8
max T'put (Gbps)	36.9	100	37.4	101.4	37.2	100.9	136.9	371.1

^{*}at a frequency of 100 MHz and a supply voltage of 1.8V.

Conclusion

- Proposed the use of n-cell GF-NLFSR structure to parallelize (Generalized) Feistel structures
- Used two examples, p-Camellia and p-SMS4, and showed that they offer sufficient security against various known existing attacks
- Hardware implementations achieve a maximum frequency that is n times higher, where n is the number of Feistel branches, while having lower area and power demands
- ⇒ n-cell GF-NLFSRs are particularly well suited for applications that require a high throughput

Motivation
Our Contribution
Definitions and Preliminaries
Practical Security Evaluation of GF-NLFSR against DC and LC
Application
Conclusion

Thank you!