
The Design of Cryptosystems 1
Stefan Lucks

The Design of Cryptosystems:

The Interplay between Proofs and Attacks
French-German-Singaporean Workshop on Applied Cryptography

3rd of December, 2010

Stefan Lucks

Bauhaus-Universität Weimar, Germany

The Design of Cryptosystems 2
Stefan Lucks

Roadmap

Example: Entity Recognition

The Problem with Proofs

The Jane Doe Protocol

The Random Oracle Debate

The Jane Doe Protocol (revisited)

Summary

The Design of Cryptosystems 3
Stefan Lucks

The Design of Cryptosystems Example: Entity Recognition 4
Stefan Lucks

Example: Entity Recognition

The Problem with Proofs

The Jane Doe Protocol

The Random Oracle Debate

The Jane Doe Protocol (revisited)

Summary

The Design of Cryptosystems Example: Entity Recognition 5
Stefan Lucks

Example: Entity Recognition

Alice
(Sender)

Bob
(Receiver)

I Alice (“Jane Doe”) and Bob meet at a party.
They make a bet. Others listen.

I Much later, when it had turned out that Alice won, Bob receives
a mail from “Jane Doe”:
“Bob, please transfer the money I have won to . . .

I How can Bob verify that this mail is from Alice?

The Design of Cryptosystems Example: Entity Recognition 5
Stefan Lucks

Example: Entity Recognition

Alice
(Sender)

Bob
(Receiver)

I Alice (“Jane Doe”) and Bob meet at a party.
They make a bet. Others listen.

I Much later, when it had turned out that Alice won, Bob receives
a mail from “Jane Doe”:
“Bob, please transfer the money I have won to . . .

I How can Bob verify that this mail is from Alice?

The Design of Cryptosystems Example: Entity Recognition 6
Stefan Lucks

Entity Recognition: More Formal

Alice
(Sender)

Bob
(Receiver)

I The initial communication may be observed – but not
tampered with

I Later, communication may be observed but also tampered with
(read, modify, suppress, or re-send data).

The Design of Cryptosystems Example: Entity Recognition 6
Stefan Lucks

Entity Recognition: More Formal

Alice
(Sender)

Bob
(Receiver)

I The initial communication may be observed – but not
tampered with

I Later, communication may be observed but also tampered with
(read, modify, suppress, or re-send data).

The Design of Cryptosystems Example: Entity Recognition 7
Stefan Lucks

“Cheap” Symmetric Operations
Hash Chain
a0 := H(H(. . . (H(an)))) :

a0

an−2

an−1an

an−1

a1

Assumption (one-wayness):
given ai−1:
infeasible to find any a′ with
H(a′) = ai−1

Message Authentication Code (MAC)

message key

tag

secret

Assumption
(secure against existential
forgery):
given many (tag,message) pairs:
infeasible to forge tag for another
message

The Design of Cryptosystems Example: Entity Recognition 7
Stefan Lucks

“Cheap” Symmetric Operations
Hash Chain
a0 := H(H(. . . (H(an)))) :

a0

an−2

an−1an

an−1

a1

Assumption (one-wayness):
given ai−1:
infeasible to find any a′ with
H(a′) = ai−1

Message Authentication Code (MAC)

message key

tag

secret

Assumption
(secure against existential
forgery):
given many (tag,message) pairs:
infeasible to forge tag for another
message

The Design of Cryptosystems Example: Entity Recognition 7
Stefan Lucks

“Cheap” Symmetric Operations
Hash Chain
a0 := H(H(. . . (H(an)))) :

a0

an−2

an−1an

an−1

a1

Assumption (one-wayness):
given ai−1:
infeasible to find any a′ with
H(a′) = ai−1

Message Authentication Code (MAC)

message key

tag

secret

Assumption
(secure against existential
forgery):
given many (tag,message) pairs:
infeasible to forge tag for another
message

The Design of Cryptosystems Example: Entity Recognition 7
Stefan Lucks

“Cheap” Symmetric Operations
Hash Chain
a0 := H(H(. . . (H(an)))) :

a0

an−2

an−1an

an−1

a1

Assumption (one-wayness):
given ai−1:
infeasible to find any a′ with
H(a′) = ai−1

Message Authentication Code (MAC)

message key

tag

secret

Assumption
(secure against existential
forgery):
given many (tag,message) pairs:
infeasible to forge tag for another
message

The Design of Cryptosystems Example: Entity Recognition 8
Stefan Lucks

Protocols for Entity Recognition

I “Zero Common-Knowledge”: Weimerskirch, Westhoff, 2003.

I “Jane Doe”: (not yet using that name):
Lucks, Zenner, Weimerskirch, Westhoff, 2005.

I “Jane Doe”: Lucks, Zenner, Weimerskirch, Westhoff, 2008.

The Design of Cryptosystems Example: Entity Recognition 9
Stefan Lucks

The Zero Common Knowledge Protocol
I one hash chain (a0, a1, . . .) for Alice, another one (b0, b1, . . .)

for Bob.

I Bob knows ai−1, Alice knows bj−1.

I Alice authenticates m by tag := MACaj+1
(m), and aj.

I Bob verifies H(ai) = ai−1 and responds bi.
Alice verifies H(bi) = bi−1.

I Alice sends aj+1.
Bob verifies H(aj+1) = aj and MACaj+1

(m) = tag.

The Design of Cryptosystems Example: Entity Recognition 10
Stefan Lucks

The Attack
I one hash chain (a0, a1, . . .) for Alice, another one (b0, b1, . . .)

for Bob.

I Bob knows ai−1, Alice knows bj−1.

I Alice authenticates m by tag := MACaj+1
(m), and aj.

I Bob verifies H(ai) = ai−1 and responds bi.
Alice verifies H(bi) = bi−1.

I Alice sends aj+1. Eve does not deliver this to Bob.

I Next time, Alice will send tag := MAC(. . .), and aj+2.

I Eve then knows aj+1 and aj+2 from Alice’s hash chain, which are
unknown to Bob.

I This allows her to forge a message for Bob.

The Design of Cryptosystems Example: Entity Recognition 10
Stefan Lucks

The Attack
I one hash chain (a0, a1, . . .) for Alice, another one (b0, b1, . . .)

for Bob.

I Bob knows ai−1, Alice knows bj−1.

I Alice authenticates m by tag := MACaj+1
(m), and aj.

I Bob verifies H(ai) = ai−1 and responds bi.
Alice verifies H(bi) = bi−1.

I Alice sends aj+1. Eve does not deliver this to Bob.

I Next time, Alice will send tag := MAC(. . .), and aj+2.

I Eve then knows aj+1 and aj+2 from Alice’s hash chain, which are
unknown to Bob.

I This allows her to forge a message for Bob.

The Design of Cryptosystems Example: Entity Recognition 11
Stefan Lucks

Comments

I The Zero Common Knowledge Protocol has been published at
SAC 2003 and proven secure!

I The proof makes the (implicit) assumption that messages are
always delivered.

I We could “repair” this by making the assumption explicit.

I The proof would be theoretically sound, but (most probably)
practically useless!

The Design of Cryptosystems Example: Entity Recognition 11
Stefan Lucks

Comments

I The Zero Common Knowledge Protocol has been published at
SAC 2003 and proven secure!

I The proof makes the (implicit) assumption that messages are
always delivered.

I We could “repair” this by making the assumption explicit.

I The proof would be theoretically sound, but (most probably)
practically useless!

The Design of Cryptosystems The Problem with Proofs 12
Stefan Lucks

Example: Entity Recognition

The Problem with Proofs

The Jane Doe Protocol

The Random Oracle Debate

The Jane Doe Protocol (revisited)

Summary

The Design of Cryptosystems The Problem with Proofs 13
Stefan Lucks

The Problem with Proofs

I Lars Knudsen: “If it is provably secure, it is probably not”

I Birgit Pfitzmann, Michael Waidner: “How To Break and Repair
A ’Provably Secure’ Untraceable Payment System”,
CRYPTO 1991

I Birgit Pfitzmann, Matthias Schunter, Michael Waidner: “How to
Break Another Provably Secure Payment System”,
EUROCRYPT 1995:

“Short statements of cryptographic properties (formal
or informal) should always come with an explicit trust
model, i.e., for whom a property is guaranteed, and
which other participants have to be trusted to
guarantee this.”

The Design of Cryptosystems The Problem with Proofs 14
Stefan Lucks

The Trinity of Cryptographic Security Proofs

A cryptographic “Security Proof” is actually
a trinity of

1. some definitions (trust model,
cryptographic assumptions, . . .),

2. a theorem, and

3. the proof itself.

I Leave it to the theoreticians to verify the proof.

I But understand that the theorem, with the associated
definitions, is like a contract between

I a service provider (the crypto-designer) and
I a client (the application designer).

The Design of Cryptosystems The Problem with Proofs 14
Stefan Lucks

The Trinity of Cryptographic Security Proofs

A cryptographic “Security Proof” is actually
a trinity of

1. some definitions (trust model,
cryptographic assumptions, . . .),

2. a theorem, and

3. the proof itself.

I Leave it to the theoreticians to verify the proof.

I But understand that the theorem, with the associated
definitions, is like a contract between

I a service provider (the crypto-designer) and
I a client (the application designer).

The Design of Cryptosystems The Problem with Proofs 14
Stefan Lucks

The Trinity of Cryptographic Security Proofs

A cryptographic “Security Proof” is actually
a trinity of

1. some definitions (trust model,
cryptographic assumptions, . . .),

2. a theorem, and

3. the proof itself.

I Leave it to the theoreticians to verify the proof.

I But understand that the theorem, with the associated
definitions, is like a contract between

I a service provider (the crypto-designer) and
I a client (the application designer).

The Design of Cryptosystems The Problem with Proofs 15
Stefan Lucks

The Proof as a Contract

I obligations for the client, such as
choosing primitives (MAC, Hash,
. . .), secure against well-defined
classes of attack

I responsibility of the service
provider (security against the
specified class of attacks in the
specified trust model)

I if the client follows her obligations,
mathematical laws guarantee the
promised security

This is an extremely useful concept for Applied Cryptography!
But the client must understand the contract!

The Design of Cryptosystems The Jane Doe Protocol 16
Stefan Lucks

Example: Entity Recognition

The Problem with Proofs

The Jane Doe Protocol

The Random Oracle Debate

The Jane Doe Protocol (revisited)

Summary

The Design of Cryptosystems The Jane Doe Protocol 17
Stefan Lucks

The Jane Doe Protocol
ia i−1a

ibi−1b

Alice

I Two hash chains (a0, a1, . . .) for Alice, and (b0, b1, . . .) for
Bob. Initially, Alice knows bi−1 and Bob knows ai−1.

I Later, Alice will reveal ai, and Bob will reveal bi.

I Alice sends message m and tag := MACai
(m).

I Bob responds with bi. Alice verifies H(bi) = bi−1.
I Alice sends ai.

Bob verifies H(ai) = ai−1 and MACai
(m) = tag.

The Design of Cryptosystems The Jane Doe Protocol 17
Stefan Lucks

The Jane Doe Protocol
ia i−1a

ibi−1b

iatag := MAC (m)
m, tag

Alice

I Two hash chains (a0, a1, . . .) for Alice, and (b0, b1, . . .) for
Bob. Initially, Alice knows bi−1 and Bob knows ai−1.

I Later, Alice will reveal ai, and Bob will reveal bi.

I Alice sends message m and tag := MACai
(m).

I Bob responds with bi. Alice verifies H(bi) = bi−1.
I Alice sends ai.

Bob verifies H(ai) = ai−1 and MACai
(m) = tag.

The Design of Cryptosystems The Jane Doe Protocol 17
Stefan Lucks

The Jane Doe Protocol
ia i−1a

ibi−1b

iatag := MAC (m)
m, tag

Alice

m, tag

I Two hash chains (a0, a1, . . .) for Alice, and (b0, b1, . . .) for
Bob. Initially, Alice knows bi−1 and Bob knows ai−1.

I Later, Alice will reveal ai, and Bob will reveal bi.
I Alice sends message m and tag := MACai

(m).

I Bob responds with bi. Alice verifies H(bi) = bi−1.
I Alice sends ai.

Bob verifies H(ai) = ai−1 and MACai
(m) = tag.

The Design of Cryptosystems The Jane Doe Protocol 17
Stefan Lucks

The Jane Doe Protocol
ia i−1a

ibi−1b

iatag := MAC (m)
m, tag

ib

Alice

m, tag

I Two hash chains (a0, a1, . . .) for Alice, and (b0, b1, . . .) for
Bob. Initially, Alice knows bi−1 and Bob knows ai−1.

I Later, Alice will reveal ai, and Bob will reveal bi.
I Alice sends message m and tag := MACai

(m).

I Bob responds with bi. Alice verifies H(bi) = bi−1.
I Alice sends ai.

Bob verifies H(ai) = ai−1 and MACai
(m) = tag.

The Design of Cryptosystems The Jane Doe Protocol 17
Stefan Lucks

The Jane Doe Protocol
ia i−1a

ibi−1b

ib

iatag := MAC (m)
m, tag

ib

Alice

m, tag

I Two hash chains (a0, a1, . . .) for Alice, and (b0, b1, . . .) for
Bob. Initially, Alice knows bi−1 and Bob knows ai−1.

I Later, Alice will reveal ai, and Bob will reveal bi.
I Alice sends message m and tag := MACai

(m).

I Bob responds with bi. Alice verifies H(bi) = bi−1.

I Alice sends ai.
Bob verifies H(ai) = ai−1 and MACai

(m) = tag.

The Design of Cryptosystems The Jane Doe Protocol 17
Stefan Lucks

The Jane Doe Protocol
ia i−1a

ibi−1b

ia

iatag := MAC (m)
m, tag

ib ib

Alice

m, tag

I Two hash chains (a0, a1, . . .) for Alice, and (b0, b1, . . .) for
Bob. Initially, Alice knows bi−1 and Bob knows ai−1.

I Later, Alice will reveal ai, and Bob will reveal bi.
I Alice sends message m and tag := MACai

(m).

I Bob responds with bi. Alice verifies H(bi) = bi−1.

I Alice sends ai.
Bob verifies H(ai) = ai−1 and MACai

(m) = tag.

The Design of Cryptosystems The Jane Doe Protocol 17
Stefan Lucks

The Jane Doe Protocol
ia i−1a

ibi−1b

ia

iatag := MAC (m)
m, tag

ib

ia

ib

Alice

m, tag

I Two hash chains (a0, a1, . . .) for Alice, and (b0, b1, . . .) for
Bob. Initially, Alice knows bi−1 and Bob knows ai−1.

I Later, Alice will reveal ai, and Bob will reveal bi.
I Alice sends message m and tag := MACai

(m).

I Bob responds with bi. Alice verifies H(bi) = bi−1.
I Alice sends ai.

Bob verifies H(ai) = ai−1 and MACai
(m) = tag.

The Design of Cryptosystems The Jane Doe Protocol 18
Stefan Lucks

Assumptions

We need both a one-way (hash)
function and secure MAC.

ai−1ai

message key

tag

secret

Problem: For the same Key, the protocol uses
both Hash(Key) and MAC(Key,∗). Thus,
MAC(Key,∗) must provide security, even if
Hash(Key) is known.

Here comes the problem:

I One can (maliciously) define a secure Hash and a secure MAC

I such that the Jane Doe protocol is actually insecure when using
both of them together.

The Design of Cryptosystems The Jane Doe Protocol 18
Stefan Lucks

Assumptions

We need both a one-way (hash)
function and secure MAC.

ai−1ai

message key

tag

secret
Problem: For the same Key, the protocol uses
both Hash(Key) and MAC(Key,∗). Thus,
MAC(Key,∗) must provide security, even if
Hash(Key) is known.

Here comes the problem:

I One can (maliciously) define a secure Hash and a secure MAC

I such that the Jane Doe protocol is actually insecure when using
both of them together.

The Design of Cryptosystems The Jane Doe Protocol 18
Stefan Lucks

Assumptions

We need both a one-way (hash)
function and secure MAC.

ai−1ai

message key

tag

secret
Problem: For the same Key, the protocol uses
both Hash(Key) and MAC(Key,∗). Thus,
MAC(Key,∗) must provide security, even if
Hash(Key) is known.

Here comes the problem:

I One can (maliciously) define a secure Hash and a secure MAC

I such that the Jane Doe protocol is actually insecure when using
both of them together.

The Design of Cryptosystems The Jane Doe Protocol 18
Stefan Lucks

Assumptions

We need both a one-way (hash)
function and secure MAC.

ai−1ai

message key

tag

secret
Problem: For the same Key, the protocol uses
both Hash(Key) and MAC(Key,∗). Thus,
MAC(Key,∗) must provide security, even if
Hash(Key) is known.

Here comes the problem:

I One can (maliciously) define a secure Hash and a secure MAC

I such that the Jane Doe protocol is actually insecure when using
both of them together.

The Design of Cryptosystems The Jane Doe Protocol 19
Stefan Lucks

Two Alternative Solutions

1. introduce a complex nonstandard security definition for the
combined security of MAC and Hash
(this is, what we actually did 2005)

2. model Hash as a random oracle

If the security definitions are complex and
nonstandard, the client will find it hard
to understand the contract. That is bad!

Definitions in the random oracle model
are quite easy to understand.
So why not just assume the Hash is a
random oracle?

The Design of Cryptosystems The Jane Doe Protocol 19
Stefan Lucks

Two Alternative Solutions

1. introduce a complex nonstandard security definition for the
combined security of MAC and Hash
(this is, what we actually did 2005)

2. model Hash as a random oracle

If the security definitions are complex and
nonstandard, the client will find it hard
to understand the contract. That is bad!

Definitions in the random oracle model
are quite easy to understand.
So why not just assume the Hash is a
random oracle?

The Design of Cryptosystems The Random Oracle Debate 20
Stefan Lucks

Example: Entity Recognition

The Problem with Proofs

The Jane Doe Protocol

The Random Oracle Debate

The Jane Doe Protocol (revisited)

Summary

The Design of Cryptosystems The Random Oracle Debate 21
Stefan Lucks

The Random Oracle Debate

Two reasons to criticize the usage of random oracles:

1. “Separation Results”:
Some (maliciously designed) cryptosystems are provable secure
in the ROM, but insecure under any real-world instantiation.
So far, this is a theoretical issue, only.

2. “Spoiling the Contract”:
Even if “good” primitives exist, the definition and the theorem
don’t tell the client how to choose “good” primitives.

The Design of Cryptosystems The Random Oracle Debate 22
Stefan Lucks

Spoiling the Contract

I no “real world object”

I client must choose a real-world
object, and thus (formally) violate
her obligations

I no guarantee by mathematical
laws for client
“Trust me! If the primitive is good,
you are secure.”
“Sorry, the primitive you used is not
good! That is not my fault!”

The Design of Cryptosystems The Random Oracle Debate 22
Stefan Lucks

Spoiling the Contract

I no “real world object”

I client must choose a real-world
object, and thus (formally) violate
her obligations

I no guarantee by mathematical
laws for client
“Trust me! If the primitive is good,
you are secure.”
“Sorry, the primitive you used is not
good! That is not my fault!”

The Design of Cryptosystems Jane Doe (revisited) 23
Stefan Lucks

Example: Entity Recognition

The Problem with Proofs

The Jane Doe Protocol

The Random Oracle Debate

The Jane Doe Protocol (revisited)

Summary

The Design of Cryptosystems Jane Doe (revisited) 24
Stefan Lucks

The Jane Doe Protocol (revisited)

We need both a one-way (hash)
function and secure MAC.

ai−1ai

message key

tag

secret
Problem: For the same Key, the protocol uses
both Hash(Key) and MAC(Key,∗). Thus,
MAC(Key,∗) must provide security, even if
Hash(Key) is known.

The Design of Cryptosystems Jane Doe (revisited) 25
Stefan Lucks

Same Protocol – but Slightly Different

Requirements

Start with a single primitive m∗ (a MAC):

I assume m∗ to be one-way, and

I assume m∗ to be secure against existential forgeries.

Derive a one-way function h and a new MAC m from M∗:

One-way function: h(Key) := m∗(Key, 0) ai−1ai

New MAC: m(Key, Message) := m∗(Key, 1||Message)

message key

tag

secret

The Design of Cryptosystems Jane Doe (revisited) 25
Stefan Lucks

Same Protocol – but Slightly Different

Requirements

Start with a single primitive m∗ (a MAC):

I assume m∗ to be one-way, and

I assume m∗ to be secure against existential forgeries.

Derive a one-way function h and a new MAC m from M∗:

One-way function: h(Key) := m∗(Key, 0) ai−1ai

New MAC: m(Key, Message) := m∗(Key, 1||Message)

message key

tag

secret

The Design of Cryptosystems Summary 26
Stefan Lucks

Example: Entity Recognition

The Problem with Proofs

The Jane Doe Protocol

The Random Oracle Debate

The Jane Doe Protocol (revisited)

Summary

The Design of Cryptosystems Summary 27
Stefan Lucks

Summary

I Security proofs are an important tool for Applied Cryptography.

I If you want to benefit from security proofs, you
must understand what the proof is about (the
definitions and the theorem, not necessarily the
proof itself).

I If you want people benefit from your proofs, try to
make reading and understanding your definitions
and your theorem as simple as possible.

I Theoretical abstractions (random oracle model, ideal cipher
model, . . .) help to avoid complex definitions, but hinder the
selection of real primitives (famous example: TDES-RMAC).

	Example: Entity Recognition
	The Problem with Proofs
	The Jane Doe Protocol
	The Random Oracle Debate
	The Jane Doe Protocol (revisited)
	Summary

